mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-19 11:57:07 +00:00
* WIP * added a cpy kernel specific to transposed tensor which uses smem to avoid uncoalesced access; test cases also added shwoing improved memory bandwidth * added BF16 support * more strict check to make sure src0 is a transpose * reformulated to handle more complicated transpose cases * bring back 2D transpose for higher performance * allow build on windows * tranpose copy more shapes * minor tweak * final clean up * restore some test cases * keep only the kernel for true tranposed case; updated with review suggestions * make CI happy * remove headers not needed * reduced bank conflicts for fp16 and bf16 * add missing const* * now bank conflicts free * use padding instead of swizzling --------- Co-authored-by: bssrdf <bssrdf@gmail.com>
502 lines
25 KiB
Plaintext
502 lines
25 KiB
Plaintext
#include "cpy.cuh"
|
|
#include "dequantize.cuh"
|
|
#include "cpy-utils.cuh"
|
|
#if defined(GGML_USE_MUSA) && defined(GGML_MUSA_MUDNN_COPY)
|
|
#include "ggml-musa/mudnn.cuh"
|
|
#endif // GGML_USE_MUSA && GGML_MUSA_MUDNN_COPY
|
|
|
|
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
|
|
|
const int CUDA_CPY_TILE_DIM_2D = 32; // 2D tile dimension for transposed blocks
|
|
const int CUDA_CPY_BLOCK_NM = 8; // block size of 3rd dimension if available
|
|
const int CUDA_CPY_BLOCK_ROWS = 8; // block dimension for marching through rows
|
|
|
|
template <cpy_kernel_t cpy_1>
|
|
static __global__ void cpy_flt(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
|
const int nb12, const int nb13) {
|
|
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
|
// then combine those indices with the corresponding byte offsets to get the total offsets
|
|
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
|
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
|
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
|
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
|
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
|
|
|
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
|
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
|
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
|
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
|
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
|
|
|
cpy_1(cx + x_offset, cdst + dst_offset);
|
|
}
|
|
|
|
template <typename T>
|
|
static __global__ void cpy_flt_transpose(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
|
const int nb12, const int nb13) {
|
|
|
|
const T* src = reinterpret_cast<const T*>(cx);
|
|
T* dst = reinterpret_cast<T*>(cdst);
|
|
|
|
const int64_t nmat = ne / (ne00 * ne01);
|
|
const int64_t n = ne00 * ne01;
|
|
|
|
const int x = blockIdx.x * CUDA_CPY_TILE_DIM_2D + threadIdx.x;
|
|
const int y = blockIdx.y * CUDA_CPY_TILE_DIM_2D + threadIdx.y;
|
|
const int tx = blockIdx.y * CUDA_CPY_TILE_DIM_2D + threadIdx.x; // transpose block offset
|
|
const int ty = blockIdx.x * CUDA_CPY_TILE_DIM_2D + threadIdx.y;
|
|
|
|
__shared__ float tile[CUDA_CPY_TILE_DIM_2D][CUDA_CPY_TILE_DIM_2D+1];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < CUDA_CPY_BLOCK_NM; ++i) {
|
|
|
|
const unsigned int imat = blockIdx.z * CUDA_CPY_BLOCK_NM + i;
|
|
if (imat >= nmat)
|
|
break;
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < CUDA_CPY_TILE_DIM_2D; j += CUDA_CPY_BLOCK_ROWS) {
|
|
if(x < ne01 && y + j < ne00){
|
|
const int row = threadIdx.y+j;
|
|
const int col = threadIdx.x * sizeof(float)/sizeof(T);
|
|
T *tile2 = reinterpret_cast<T*>(tile[row]);
|
|
tile2[col] = src[imat*n + (y+j)*ne01 + x];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < CUDA_CPY_TILE_DIM_2D; j += CUDA_CPY_BLOCK_ROWS) {
|
|
if (ty + j < ne01 && tx < ne00) {
|
|
const int col = (threadIdx.y+j)*sizeof(float)/sizeof(T);
|
|
const T *tile2 = reinterpret_cast<const T*>(tile[threadIdx.x]);
|
|
dst[imat*n + (ty+j)*ne00 + tx] = tile2[col];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
|
|
float * cdstf = (float *)(cdsti);
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < QK8_0; j += 2) {
|
|
float2 dq;
|
|
dequantize_q8_0(cxi, 0, j, dq);
|
|
*(cdstf + j) = dq.x;
|
|
*(cdstf + j + 1) = dq.y;
|
|
}
|
|
}
|
|
|
|
template<dequantize_kernel_t dequant, int qk>
|
|
static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) {
|
|
float * cdstf = (float *)(cdsti);
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < qk/2; j++) {
|
|
float2 dq;
|
|
dequant(cxi, 0, j, dq);
|
|
*(cdstf + j) = dq.x;
|
|
*(cdstf + j + qk/2) = dq.y;
|
|
}
|
|
}
|
|
|
|
template <cpy_kernel_t cpy_blck, int qk>
|
|
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
|
const int nb12, const int nb13) {
|
|
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
const int i03 = i/(ne00 * ne01 * ne02);
|
|
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
|
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
|
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
|
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
|
|
|
const int i13 = i/(ne10 * ne11 * ne12);
|
|
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
|
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
|
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
|
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
|
|
|
cpy_blck(cx + x_offset, cdst + dst_offset);
|
|
}
|
|
|
|
template <cpy_kernel_t cpy_blck, int qk>
|
|
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
|
const int nb12, const int nb13) {
|
|
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
const int i03 = i/(ne00 * ne01 * ne02);
|
|
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
|
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
|
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
|
const int x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
|
|
|
const int i13 = i/(ne10 * ne11 * ne12);
|
|
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
|
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
|
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
|
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
|
|
|
cpy_blck(cx + x_offset, cdst + dst_offset);
|
|
}
|
|
|
|
template<typename src_t, typename dst_t>
|
|
static __global__ void cpy_flt_contiguous(const char * cx, char * cdst, const int64_t ne) {
|
|
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
const src_t * x = (const src_t *) cx;
|
|
dst_t * dst = (dst_t *) cdst;
|
|
|
|
dst[i] = ggml_cuda_cast<dst_t>(x[i]);
|
|
}
|
|
|
|
template<typename src_t, typename dst_t>
|
|
static void ggml_cpy_flt_contiguous_cuda(
|
|
const char * cx, char * cdst, const int64_t ne,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
|
cpy_flt_contiguous<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
|
(cx, cdst, ne);
|
|
}
|
|
|
|
template<typename src_t, typename dst_t, bool transposed = false>
|
|
static void ggml_cpy_flt_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
|
|
|
if (transposed) {
|
|
GGML_ASSERT(ne == ne00*ne01*ne02); // ne[3] is 1 assumed
|
|
int ne00n, ne01n, ne02n;
|
|
if (nb00 < nb02) {
|
|
ne00n = ne00;
|
|
ne01n = ne01;
|
|
ne02n = ne02;
|
|
} else if (nb00 > nb02) {
|
|
ne00n = ne00;
|
|
ne01n = ne01*ne02;
|
|
ne02n = 1;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
dim3 dimGrid( (ne01n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
|
(ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
|
(ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM);
|
|
dim3 dimBlock(CUDA_CPY_TILE_DIM_2D, CUDA_CPY_BLOCK_ROWS, 1);
|
|
cpy_flt_transpose<dst_t><<<dimGrid, dimBlock, 0, stream>>>
|
|
(cx, cdst, ne, ne00n, ne01n, ne02n, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
} else {
|
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
|
cpy_flt<cpy_1_flt<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
}
|
|
|
|
static void ggml_cpy_f32_q8_0_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ne % QK8_0 == 0);
|
|
const int num_blocks = ne / QK8_0;
|
|
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_q8_0_f32_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
|
|
|
const int num_blocks = ne;
|
|
cpy_q_f32<cpy_blck_q8_0_f32, QK8_0><<<num_blocks, 1, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_f32_q4_0_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ne % QK4_0 == 0);
|
|
const int num_blocks = ne / QK4_0;
|
|
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_q4_0_f32_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02,
|
|
const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12,
|
|
const int nb10, const int nb11, const int nb12, const int nb13,
|
|
cudaStream_t stream) {
|
|
const int num_blocks = ne;
|
|
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0><<<num_blocks, 1, 0, stream>>>(
|
|
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
|
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_f32_q4_1_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ne % QK4_1 == 0);
|
|
const int num_blocks = ne / QK4_1;
|
|
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_q4_1_f32_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02,
|
|
const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12,
|
|
const int nb10, const int nb11, const int nb12, const int nb13,
|
|
cudaStream_t stream) {
|
|
const int num_blocks = ne;
|
|
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1><<<num_blocks, 1, 0, stream>>>(
|
|
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
|
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_f32_q5_0_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ne % QK5_0 == 0);
|
|
const int num_blocks = ne / QK5_0;
|
|
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_q5_0_f32_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02,
|
|
const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12,
|
|
const int nb10, const int nb11, const int nb12, const int nb13,
|
|
cudaStream_t stream) {
|
|
const int num_blocks = ne;
|
|
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0><<<num_blocks, 1, 0, stream>>>(
|
|
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
|
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_f32_q5_1_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ne % QK5_1 == 0);
|
|
const int num_blocks = ne / QK5_1;
|
|
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_q5_1_f32_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02,
|
|
const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12,
|
|
const int nb10, const int nb11, const int nb12, const int nb13,
|
|
cudaStream_t stream) {
|
|
const int num_blocks = ne;
|
|
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1><<<num_blocks, 1, 0, stream>>>(
|
|
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
|
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
static void ggml_cpy_f32_iq4_nl_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ne % QK4_NL == 0);
|
|
const int num_blocks = ne / QK4_NL;
|
|
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
|
}
|
|
|
|
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
|
|
const int64_t ne = ggml_nelements(src0);
|
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
|
|
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
//GGML_ASSERT(src0->ne[3] == 1);
|
|
|
|
const int64_t nb00 = src0->nb[0];
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
const int64_t nb03 = src0->nb[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
|
|
//GGML_ASSERT(src1->ne[3] == 1);
|
|
|
|
const int64_t nb10 = src1->nb[0];
|
|
const int64_t nb11 = src1->nb[1];
|
|
const int64_t nb12 = src1->nb[2];
|
|
const int64_t nb13 = src1->nb[3];
|
|
|
|
cudaStream_t main_stream = ctx.stream();
|
|
|
|
char * src0_ddc = (char *) src0->data;
|
|
char * src1_ddc = (char *) src1->data;
|
|
|
|
const bool contiguous_srcs = ggml_is_contiguous(src0) && ggml_is_contiguous(src1);
|
|
const bool can_be_transposed = nb01 == (int64_t)ggml_element_size(src0) && src0->ne[3] == 1;
|
|
|
|
if (src0->type == src1->type && contiguous_srcs) {
|
|
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
|
|
#if defined(GGML_USE_MUSA) && defined(GGML_MUSA_MUDNN_COPY)
|
|
if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) {
|
|
CUDA_CHECK(mudnnMemcpyAsync(ctx, src1, src0));
|
|
} else
|
|
#endif // GGML_USE_MUSA && GGML_MUSA_MUDNN_COPY
|
|
{
|
|
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
|
|
}
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
|
if (can_be_transposed) {
|
|
ggml_cpy_flt_cuda<float, float, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
|
|
if (contiguous_srcs) {
|
|
ggml_cpy_flt_contiguous_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
|
if (contiguous_srcs) {
|
|
ggml_cpy_flt_contiguous_cuda<float, half> (src0_ddc, src1_ddc, ne, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<float, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
|
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
|
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_q4_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
|
|
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
|
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_q4_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
|
|
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
|
|
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_q5_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
|
|
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
|
|
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
|
|
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
|
if (can_be_transposed) {
|
|
ggml_cpy_flt_cuda<half, half, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<half, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) {
|
|
if (contiguous_srcs) {
|
|
ggml_cpy_flt_contiguous_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
|
if (contiguous_srcs) {
|
|
ggml_cpy_flt_contiguous_cuda<half, float> (src0_ddc, src1_ddc, ne, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<half, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) {
|
|
if (can_be_transposed) {
|
|
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) {
|
|
if (contiguous_srcs) {
|
|
ggml_cpy_flt_contiguous_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
|
|
if (contiguous_srcs) {
|
|
ggml_cpy_flt_contiguous_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
|
|
if (contiguous_srcs) {
|
|
ggml_cpy_flt_contiguous_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
|
|
if (contiguous_srcs) {
|
|
ggml_cpy_flt_contiguous_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, main_stream);
|
|
} else {
|
|
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
}
|
|
} else {
|
|
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
|
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
ggml_cuda_cpy(ctx, src0, dst);
|
|
}
|