mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 7084755396
			
		
	
	7084755396
	
	
	
		
			
			This is a follup of Commit fc0c8d286a
("llava : update surgery script to not remove tensors") but this time
the change is to the BakLLaVA specific part of the surgery script.
I've been able to test this using SkunkworksAI/BakLLaVA-1 and it works
as expected using the instructions in README.md.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
		
	
		
			
				
	
	
		
			39 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			39 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import glob
 | |
| import os
 | |
| import torch
 | |
| 
 | |
| 
 | |
| ap = argparse.ArgumentParser()
 | |
| ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
 | |
| args = ap.parse_args()
 | |
| 
 | |
| # find the model part that includes the the multimodal projector weights
 | |
| path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1]
 | |
| checkpoint = torch.load(path)
 | |
| 
 | |
| # get a list of mm tensor names
 | |
| mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
 | |
| 
 | |
| # store these tensors in a new dictionary and torch.save them
 | |
| projector = {name: checkpoint[name].float() for name in mm_tensors}
 | |
| torch.save(projector, f"{args.model}/llava.projector")
 | |
| 
 | |
| # BakLLaVA models contain CLIP tensors in it
 | |
| clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")]
 | |
| if len(clip_tensors) > 0:
 | |
|     clip = {name.replace("vision_tower.vision_tower.", ""): checkpoint[name].float() for name in clip_tensors}
 | |
|     torch.save(clip, f"{args.model}/llava.clip")
 | |
| 
 | |
| 
 | |
|     # added tokens should be removed to be able to convert Mistral models
 | |
|     if os.path.exists(f"{args.model}/added_tokens.json"):
 | |
|         with open(f"{args.model}/added_tokens.json", "w") as f:
 | |
|             f.write("{}\n")
 | |
| 
 | |
| 
 | |
| 
 | |
| print("Done!")
 | |
| print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
 | |
| print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
 |