mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 92d0b751a7
			
		
	
	92d0b751a7
	
	
	
		
			
			* convert : fix python 3.8 support * convert : sort imports * convert : fix required parameters in convert-llama-ggmlv3-to-gguf * convert : fix mypy errors in convert-llama-ggmlv3-to-gguf * convert : use PEP 585 generics and PEP 604 unions Now that we have `from __future__ import annotations`, we can use this modern syntax in Python 3.7 instead of restricting support to Python 3.9 or 3.10 respectively. * gguf.py : a tuple is already a tuple * add mypy.ini * convert : add necessary `type: ignore` comments * gguf-py: bump version
		
			
				
	
	
		
			138 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| from __future__ import annotations
 | |
| 
 | |
| import json
 | |
| import os
 | |
| import re
 | |
| import struct
 | |
| import sys
 | |
| from typing import Any, BinaryIO, Sequence
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
 | |
| 
 | |
| 
 | |
| HF_SUBLAYER_TO_GGML = {
 | |
|     "self_attn.q_proj": "attn_q",
 | |
|     "self_attn.k_proj": "attn_k",
 | |
|     "self_attn.v_proj": "attn_v",
 | |
|     "self_attn.o_proj": "attn_output",
 | |
|     "mlp.gate_proj": "ffn_gate",
 | |
|     "mlp.down_proj": "ffn_down",
 | |
|     "mlp.up_proj": "ffn_up",
 | |
|     "input_layernorm": "attn_norm",
 | |
|     "post_attention_layernorm": "ffn_norm",
 | |
| }
 | |
| 
 | |
| 
 | |
| def translate_tensor_name(t: str) -> str:
 | |
|     match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t)
 | |
|     if match:
 | |
|         nn = match.group(1)
 | |
|         sub_layer = match.group(2)
 | |
|         lora_type = match.group(3)
 | |
| 
 | |
|         sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer)
 | |
|         if sub_layer_renamed is None:
 | |
|             print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}")
 | |
|             sys.exit(1)
 | |
| 
 | |
|         output_string = (
 | |
|             f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
 | |
|         )
 | |
|         return output_string
 | |
|     else:
 | |
|         print(f"Error: unrecognized tensor {t}")
 | |
|         sys.exit(1)
 | |
| 
 | |
| 
 | |
| def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
 | |
|     fout.write(b"ggla"[::-1])  # magic (ggml lora)
 | |
|     fout.write(struct.pack("i", 1))  # file version
 | |
|     fout.write(struct.pack("i", params["r"]))
 | |
|     # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
 | |
|     # but some models ship a float value instead
 | |
|     # let's convert to int, but fail if lossless conversion is not possible
 | |
|     assert (
 | |
|         int(params["lora_alpha"]) == params["lora_alpha"]
 | |
|     ), "cannot convert float to int losslessly"
 | |
|     fout.write(struct.pack("i", int(params["lora_alpha"])))
 | |
| 
 | |
| 
 | |
| def write_tensor_header(
 | |
|     self, name: str, shape: Sequence[int], data_type: np.dtype[Any]
 | |
| ) -> None:
 | |
|     sname = name.encode("utf-8")
 | |
|     fout.write(
 | |
|         struct.pack(
 | |
|             "iii",
 | |
|             len(shape),
 | |
|             len(sname),
 | |
|             NUMPY_TYPE_TO_FTYPE[data_type.name],
 | |
|         )
 | |
|     )
 | |
|     fout.write(struct.pack("i" * len(shape), *shape[::-1]))
 | |
|     fout.write(sname)
 | |
|     fout.seek((fout.tell() + 31) & -32)
 | |
| 
 | |
| 
 | |
| if len(sys.argv) != 2:
 | |
|     print(f"Usage: python {sys.argv[0]} <path>")
 | |
|     print(
 | |
|         "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
 | |
|     )
 | |
|     sys.exit(1)
 | |
| 
 | |
| input_json = os.path.join(sys.argv[1], "adapter_config.json")
 | |
| input_model = os.path.join(sys.argv[1], "adapter_model.bin")
 | |
| output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
 | |
| 
 | |
| model = torch.load(input_model, map_location="cpu")
 | |
| 
 | |
| with open(input_json, "r") as f:
 | |
|     params = json.load(f)
 | |
| 
 | |
| if params["peft_type"] != "LORA":
 | |
|     print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
 | |
|     sys.exit(1)
 | |
| 
 | |
| if params["fan_in_fan_out"] is True:
 | |
|     print("Error: param fan_in_fan_out is not supported")
 | |
|     sys.exit(1)
 | |
| 
 | |
| if params["bias"] is not None and params["bias"] != "none":
 | |
|     print("Error: param bias is not supported")
 | |
|     sys.exit(1)
 | |
| 
 | |
| # TODO: these seem to be layers that have been trained but without lora.
 | |
| # doesn't seem widely used but eventually should be supported
 | |
| if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
 | |
|     print("Error: param modules_to_save is not supported")
 | |
|     sys.exit(1)
 | |
| 
 | |
| with open(output_path, "wb") as fout:
 | |
|     fout.truncate()
 | |
| 
 | |
|     write_file_header(fout, params)
 | |
|     for k, v in model.items():
 | |
|         if k.endswith(".default.weight"):
 | |
|             k = k.replace(".default.weight", ".weight")
 | |
|         if k in ["llama_proj.weight", "llama_proj.bias"]:
 | |
|             continue
 | |
|         if k.endswith("lora_A.weight"):
 | |
|             if v.dtype != torch.float16 and v.dtype != torch.float32:
 | |
|                 v = v.float()
 | |
|             v = v.T
 | |
|         else:
 | |
|             v = v.float()
 | |
| 
 | |
|         t = v.detach().numpy()
 | |
|         tname = translate_tensor_name(k)
 | |
|         print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
 | |
|         write_tensor_header(fout, tname, t.shape, t.dtype)
 | |
|         t.tofile(fout)
 | |
| 
 | |
| print(f"Converted {input_json} and {input_model} to {output_path}")
 |