mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 b9154ecff9
			
		
	
	b9154ecff9
	
	
	
		
			
			* mtmd : add more api around mtmd_image_tokens * mtmd : ability to calc image hash * shared_ptr for mtmd_image_tokens * move hash to user-define ID (fixed) * fix prompt_modified * rm redundant data member
		
			
				
	
	
		
			324 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "log.h"
 | |
| #include "common.h"
 | |
| #include "sampling.h"
 | |
| #include "llama.h"
 | |
| #include "ggml.h"
 | |
| #include "console.h"
 | |
| #include "chat.h"
 | |
| #include "mtmd.h"
 | |
| 
 | |
| #include <vector>
 | |
| #include <limits.h>
 | |
| #include <cinttypes>
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #elif defined (_WIN32)
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #ifndef NOMINMAX
 | |
| #define NOMINMAX
 | |
| #endif
 | |
| #include <windows.h>
 | |
| #include <signal.h>
 | |
| #endif
 | |
| 
 | |
| static bool g_is_generating = false;
 | |
| 
 | |
| /**
 | |
|  * Please note that this is NOT a production-ready stuff.
 | |
|  * It is a playground for trying Gemma 3 vision capabilities.
 | |
|  * For contributors: please keep this code simple and easy to understand.
 | |
|  */
 | |
| 
 | |
| static void show_additional_info(int /*argc*/, char ** argv) {
 | |
|     LOG(
 | |
|         "Experimental CLI for using Gemma 3 vision model\n\n"
 | |
|         "Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> -p <prompt>\n\n"
 | |
|         "  -m and --mmproj are required\n"
 | |
|         "  --image and -p are optional, if NOT provided, the CLI will run in chat mode\n",
 | |
|         argv[0]
 | |
|     );
 | |
| }
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
| static void sigint_handler(int signo) {
 | |
|     if (signo == SIGINT) {
 | |
|         if (g_is_generating) {
 | |
|             g_is_generating = false;
 | |
|         } else {
 | |
|             console::cleanup();
 | |
|             LOG("\nInterrupted by user\n");
 | |
|             _exit(130);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct gemma3_context {
 | |
|     mtmd_context_ptr ctx_vision;
 | |
|     common_init_result llama_init;
 | |
| 
 | |
|     llama_model       * model;
 | |
|     llama_context     * lctx;
 | |
|     const llama_vocab * vocab;
 | |
|     llama_batch         batch;
 | |
|     int                 n_batch;
 | |
| 
 | |
|     // note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
 | |
|     // so here we don't need to keep track of chat history
 | |
|     common_chat_templates_ptr tmpls;
 | |
| 
 | |
|     int n_threads    = 1;
 | |
|     llama_pos n_past = 0;
 | |
| 
 | |
|     gemma3_context(common_params & params) : llama_init(common_init_from_params(params)) {
 | |
|         model = llama_init.model.get();
 | |
|         lctx = llama_init.context.get();
 | |
|         vocab = llama_model_get_vocab(model);
 | |
|         n_threads = params.cpuparams.n_threads;
 | |
|         batch = llama_batch_init(params.n_batch, 0, 1);
 | |
|         n_batch = params.n_batch;
 | |
|         tmpls = common_chat_templates_init(model, params.chat_template);
 | |
|         init_vision_context(params);
 | |
|     }
 | |
| 
 | |
|     void init_vision_context(common_params & params) {
 | |
|         const char * clip_path = params.mmproj.path.c_str();
 | |
|         ctx_vision.reset(mtmd_init_from_file(clip_path, model, mtmd_context_params{
 | |
|             /* use_gpu */   true,
 | |
|             /* timings */   true,
 | |
|             /* n_threads */ params.cpuparams.n_threads,
 | |
|             /* verbosity */ GGML_LOG_LEVEL_INFO,
 | |
|         }));
 | |
|         if (!ctx_vision.get()) {
 | |
|             LOG_ERR("Failed to load vision model from %s\n", clip_path);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct decode_embd_batch {
 | |
|     std::vector<llama_pos>      pos;
 | |
|     std::vector<int32_t>        n_seq_id;
 | |
|     std::vector<llama_seq_id>   seq_id_0;
 | |
|     std::vector<llama_seq_id *> seq_ids;
 | |
|     std::vector<int8_t>         logits;
 | |
|     llama_batch batch;
 | |
|     decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
 | |
|         pos     .resize(n_tokens);
 | |
|         n_seq_id.resize(n_tokens);
 | |
|         seq_ids .resize(n_tokens + 1);
 | |
|         logits  .resize(n_tokens);
 | |
|         seq_id_0.resize(1);
 | |
|         seq_id_0[0] = seq_id;
 | |
|         seq_ids [n_tokens] = nullptr;
 | |
|         batch = {
 | |
|             /*n_tokens       =*/ n_tokens,
 | |
|             /*tokens         =*/ nullptr,
 | |
|             /*embd           =*/ embd,
 | |
|             /*pos            =*/ pos.data(),
 | |
|             /*n_seq_id       =*/ n_seq_id.data(),
 | |
|             /*seq_id         =*/ seq_ids.data(),
 | |
|             /*logits         =*/ logits.data(),
 | |
|         };
 | |
|         for (int i = 0; i < n_tokens; i++) {
 | |
|             batch.pos     [i] = pos_0 + i;
 | |
|             batch.n_seq_id[i] = 1;
 | |
|             batch.seq_id  [i] = seq_id_0.data();
 | |
|             batch.logits  [i] = false;
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_predict) {
 | |
|     for (int i = 0; i < n_predict; i++) {
 | |
|         if (i > n_predict || !g_is_generating) {
 | |
|             printf("\n");
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         llama_token token_id = common_sampler_sample(smpl, ctx.lctx, -1);
 | |
|         common_sampler_accept(smpl, token_id, true);
 | |
| 
 | |
|         if (llama_vocab_is_eog(ctx.vocab, token_id)) {
 | |
|             printf("\n");
 | |
|             break; // end of generation
 | |
|         }
 | |
| 
 | |
|         printf("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
 | |
|         fflush(stdout);
 | |
| 
 | |
|         // eval the token
 | |
|         common_batch_clear(ctx.batch);
 | |
|         common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
 | |
|         if (llama_decode(ctx.lctx, ctx.batch)) {
 | |
|             LOG_ERR("failed to decode token\n");
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int eval_message(gemma3_context & ctx, common_chat_msg & msg, std::vector<std::string> & images_fname, bool add_bos = false) {
 | |
|     std::vector<mtmd_bitmap> bitmaps;
 | |
| 
 | |
|     common_chat_templates_inputs tmpl_inputs;
 | |
|     tmpl_inputs.messages = {msg};
 | |
|     tmpl_inputs.add_generation_prompt = true;
 | |
|     tmpl_inputs.use_jinja = false; // jinja is buggy here
 | |
|     auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
 | |
|     LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
 | |
| 
 | |
|     for (auto & fname : images_fname) {
 | |
|         mtmd_bitmap bitmap;
 | |
|         if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) {
 | |
|             LOG_ERR("Unable to load image %s\n", fname.c_str());
 | |
|             return 2; // image not found
 | |
|         }
 | |
|         bitmaps.push_back(std::move(bitmap));
 | |
|     }
 | |
| 
 | |
|     mtmd_input_text text;
 | |
|     text.text          = formatted_chat.prompt;
 | |
|     text.add_special   = add_bos;
 | |
|     text.parse_special = true;
 | |
|     mtmd_input_chunks chunks;
 | |
|     int32_t res = mtmd_tokenize(ctx.ctx_vision.get(), chunks, text, bitmaps);
 | |
|     if (res != 0) {
 | |
|         LOG_ERR("Unable to tokenize prompt, res = %d\n", res);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (mtmd_helper_eval(ctx.ctx_vision.get(), ctx.lctx, chunks, ctx.n_past, 0, ctx.n_batch)) {
 | |
|         LOG_ERR("Unable to eval prompt\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     ctx.n_past += mtmd_helper_get_n_tokens(chunks);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     common_params params;
 | |
|     params.sampling.temp = 0.2; // lower temp by default for better quality
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     if (params.mmproj.path.empty()) {
 | |
|         show_additional_info(argc, argv);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     gemma3_context ctx(params);
 | |
|     printf("%s: %s\n", __func__, params.model.path.c_str());
 | |
| 
 | |
|     bool is_single_turn = !params.prompt.empty() && !params.image.empty();
 | |
| 
 | |
|     struct common_sampler * smpl = common_sampler_init(ctx.model, params.sampling);
 | |
|     int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict;
 | |
| 
 | |
|     // ctrl+C handling
 | |
|     {
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
|         struct sigaction sigint_action;
 | |
|         sigint_action.sa_handler = sigint_handler;
 | |
|         sigemptyset (&sigint_action.sa_mask);
 | |
|         sigint_action.sa_flags = 0;
 | |
|         sigaction(SIGINT, &sigint_action, NULL);
 | |
| #elif defined (_WIN32)
 | |
|         auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
 | |
|             return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
 | |
|         };
 | |
|         SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (is_single_turn) {
 | |
|         g_is_generating = true;
 | |
|         if (params.prompt.find("<__image__>") == std::string::npos) {
 | |
|             params.prompt += " <__image__>";
 | |
|         }
 | |
|         common_chat_msg msg;
 | |
|         msg.role = "user";
 | |
|         msg.content = params.prompt;
 | |
|         if (eval_message(ctx, msg, params.image, true)) {
 | |
|             return 1;
 | |
|         }
 | |
|         if (generate_response(ctx, smpl, n_predict)) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|     } else {
 | |
|         LOG("\n Running in chat mode, available commands:");
 | |
|         LOG("\n   /image <path>    load an image");
 | |
|         LOG("\n   /clear           clear the chat history");
 | |
|         LOG("\n   /quit or /exit   exit the program");
 | |
|         LOG("\n");
 | |
| 
 | |
|         bool is_first_msg = true;
 | |
|         std::vector<std::string> images_fname;
 | |
|         std::string content;
 | |
| 
 | |
|         while (true) {
 | |
|             g_is_generating = false;
 | |
|             LOG("\n> ");
 | |
|             console::set_display(console::user_input);
 | |
|             std::string line;
 | |
|             console::readline(line, false);
 | |
|             console::set_display(console::reset);
 | |
|             line = string_strip(line);
 | |
|             if (line.empty()) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (line == "/quit" || line == "/exit") {
 | |
|                 break;
 | |
|             }
 | |
|             if (line == "/clear") {
 | |
|                 ctx.n_past = 0;
 | |
|                 llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
 | |
|                 LOG("Chat history cleared\n\n");
 | |
|                 continue;
 | |
|             }
 | |
|             g_is_generating = true;
 | |
|             if (line.find("/image") == 0) {
 | |
|                 std::string image = line.substr(7);
 | |
|                 images_fname.push_back(string_strip(image));
 | |
|                 content += "<__image__>";
 | |
|                 continue;
 | |
|             } else {
 | |
|                 content += line;
 | |
|             }
 | |
|             common_chat_msg msg;
 | |
|             msg.role = "user";
 | |
|             msg.content = content;
 | |
|             int ret = eval_message(ctx, msg, images_fname, is_first_msg);
 | |
|             if (ret == 2) {
 | |
|                 // non-fatal error
 | |
|                 images_fname.clear();
 | |
|                 content.clear();
 | |
|                 continue;
 | |
|             }
 | |
|             if (ret) {
 | |
|                 return 1;
 | |
|             }
 | |
|             if (generate_response(ctx, smpl, n_predict)) {
 | |
|                 return 1;
 | |
|             }
 | |
|             images_fname.clear();
 | |
|             content.clear();
 | |
|             is_first_msg = false;
 | |
|         }
 | |
|     }
 | |
|     llama_perf_context_print(ctx.lctx);
 | |
|     return 0;
 | |
| }
 |