mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 1fcdcc28b1
			
		
	
	1fcdcc28b1
	
	
	
		
			
			* xor hack * block y dim * loop unrolling * Fixed cmake LLAMA_CUDA_BY option * Removed hipblas compatibility code * Define GGML_CUDA_DMMV_BLOCK_Y if not defined * Fewer iters, more ops per iter * Renamed DMMV X/Y compilation options
		
			
				
	
	
		
			958 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			958 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <atomic>
 | |
| 
 | |
| #include <cuda_runtime.h>
 | |
| #include <cublas_v2.h>
 | |
| #include <cuda_fp16.h>
 | |
| 
 | |
| #include "ggml-cuda.h"
 | |
| #include "ggml.h"
 | |
| 
 | |
| static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | |
| 
 | |
| #define CUDA_CHECK(err)                                                                 \
 | |
|     do {                                                                                \
 | |
|         cudaError_t err_ = (err);                                                       \
 | |
|         if (err_ != cudaSuccess) {                                                      \
 | |
|             fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__,   \
 | |
|                 cudaGetErrorString(err_));                                              \
 | |
|             exit(1);                                                                    \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| #define CUBLAS_CHECK(err)                                                               \
 | |
|     do {                                                                                \
 | |
|         cublasStatus_t err_ = (err);                                                    \
 | |
|         if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
 | |
|             fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);    \
 | |
|             exit(1);                                                                    \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
 | |
| typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
 | |
| typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream);
 | |
| 
 | |
| // QK = number of values after dequantization
 | |
| // QR = QK / number of values before dequantization
 | |
| 
 | |
| #define QK4_0 32
 | |
| #define QR4_0 2
 | |
| typedef struct {
 | |
|     half    d;              // delta
 | |
|     uint8_t qs[QK4_0 / 2];  // nibbles / quants
 | |
| } block_q4_0;
 | |
| static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
 | |
| 
 | |
| #define QK4_1 32
 | |
| #define QR4_1 2
 | |
| typedef struct {
 | |
|     half    d;              // delta
 | |
|     half    m;              // min
 | |
|     uint8_t qs[QK4_1 / 2];  // nibbles / quants
 | |
| } block_q4_1;
 | |
| static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
 | |
| 
 | |
| #define QK5_0 32
 | |
| #define QR5_0 2
 | |
| typedef struct {
 | |
|     half d;                 // delta
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_0 / 2];  // nibbles / quants
 | |
| } block_q5_0;
 | |
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
 | |
| 
 | |
| #define QK5_1 32
 | |
| #define QR5_1 2
 | |
| typedef struct {
 | |
|     half d;                 // delta
 | |
|     half m;                 // min
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_1 / 2];  // nibbles / quants
 | |
| } block_q5_1;
 | |
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
 | |
| 
 | |
| #define QK8_0 32
 | |
| #define QR8_0 1
 | |
| typedef struct {
 | |
|     half    d;              // delta
 | |
|     int8_t  qs[QK8_0];      // quants
 | |
| } block_q8_0;
 | |
| static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
 | |
| 
 | |
| #define WARP_SIZE 32
 | |
| 
 | |
| #define CUDA_MUL_BLOCK_SIZE 256
 | |
| 
 | |
| #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
 | |
| 
 | |
| // dmmv = dequantize_mul_mat_vec
 | |
| #ifndef GGML_CUDA_DMMV_X
 | |
| #define GGML_CUDA_DMMV_X 32
 | |
| #endif
 | |
| #ifndef GGML_CUDA_DMMV_Y
 | |
| #define GGML_CUDA_DMMV_Y 1
 | |
| #endif
 | |
| 
 | |
| static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= kx) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = x[i] * y[i%ky];
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q4_0 * x = (const block_q4_0 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
| 
 | |
|     const uint8_t vui = x[ib].qs[iqs];
 | |
| 
 | |
|     const int8_t vi0 = vui & 0xF;
 | |
|     const int8_t vi1 = vui >> 4;
 | |
| 
 | |
|     v0 = (vi0 - 8)*d;
 | |
|     v1 = (vi1 - 8)*d;
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q4_1 * x = (const block_q4_1 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
|     const float m = x[ib].m;
 | |
| 
 | |
|     const uint8_t vui = x[ib].qs[iqs];
 | |
| 
 | |
|     const int8_t vi0 = vui & 0xF;
 | |
|     const int8_t vi1 = vui >> 4;
 | |
| 
 | |
|     v0 = vi0*d + m;
 | |
|     v1 = vi1*d + m;
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q5_0 * x = (const block_q5_0 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[ib].qh, sizeof(qh));
 | |
| 
 | |
|     const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
 | |
|     const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
 | |
| 
 | |
|     const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
 | |
|     const int32_t x1 = ((x[ib].qs[iqs] >>  4) | xh_1) - 16;
 | |
| 
 | |
|     v0 = x0*d;
 | |
|     v1 = x1*d;
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q5_1 * x = (const block_q5_1 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
|     const float m = x[ib].m;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[ib].qh, sizeof(qh));
 | |
| 
 | |
|     const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
 | |
|     const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
 | |
| 
 | |
|     const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
 | |
|     const int32_t x1 = ((x[ib].qs[iqs] >>  4) | xh_1);
 | |
| 
 | |
|     v0 = x0*d + m;
 | |
|     v1 = x1*d + m;
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q8_0 * x = (const block_q8_0 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
| 
 | |
|     const int8_t vi0 = x[ib].qs[iqs + 0];
 | |
|     const int8_t vi1 = x[ib].qs[iqs + 1];
 | |
| 
 | |
|     v0 = vi0*d;
 | |
|     v1 = vi1*d;
 | |
| }
 | |
| 
 | |
| static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const half * x = (const half *) vx;
 | |
| 
 | |
|     v0 = __half2float(x[ib + 0]);
 | |
|     v1 = __half2float(x[ib + 1]);
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
 | |
| static __global__ void dequantize_block(const void * vx, float * y, const int k) {
 | |
|     const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ib = i/qk; // block index
 | |
|     const int iqs = (i%qk)/qr; // quant index
 | |
|     const int iybs = i - i%qk; // y block start index
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
|     // dequantize
 | |
|     float & v0 = y[iybs + iqs + 0];
 | |
|     float & v1 = y[iybs + iqs + y_offset];
 | |
|     dequantize_kernel(vx, ib, iqs, v0, v1);
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
 | |
| static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) {
 | |
|     // qk = quantized weights per x block
 | |
|     // qr = number of quantized weights per data value in x block
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     const int tid = threadIdx.x;
 | |
| 
 | |
|     const int iter_stride = 2*GGML_CUDA_DMMV_X;
 | |
|     const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = 0; i < ncols; i += iter_stride) {
 | |
|         const int col = i + vals_per_iter*tid;
 | |
|         const int ib = (row*ncols + col)/qk; // x block index
 | |
|         const int iqs = (col%qk)/qr; // x quant index
 | |
|         const int iybs = col - col%qk; // y block start index
 | |
| 
 | |
| // processing >2 values per i iter is faster for fast GPUs
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < vals_per_iter; j += 2) {
 | |
|             // process 2 vals per j iter
 | |
| 
 | |
|             // dequantize
 | |
|             float v0, v1;
 | |
|             dequantize_kernel(vx, ib, iqs + j/qr, v0, v1);
 | |
|             // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
 | |
| 
 | |
|             // matrix multiplication
 | |
|             tmp += v0 * y[iybs + iqs + j/qr + 0];
 | |
|             tmp += v1 * y[iybs + iqs + j/qr + y_offset];
 | |
|             // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
|     __syncthreads();
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
 | |
|     const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
 | |
|     mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<1, 1, convert_f16>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_row_q4_0_cuda;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_row_q4_1_cuda;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_row_q5_0_cuda;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_row_q5_1_cuda;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_row_q8_0_cuda;
 | |
|         case GGML_TYPE_F16:
 | |
|             return convert_fp16_to_fp32_cuda;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_mul_mat_vec_q4_0_cuda;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_mul_mat_vec_q4_1_cuda;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_mul_mat_vec_q5_0_cuda;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_mul_mat_vec_q5_1_cuda;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_mul_mat_vec_q8_0_cuda;
 | |
|         case GGML_TYPE_F16:
 | |
|             return convert_mul_mat_vec_f16_cuda;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // buffer pool for cuda
 | |
| #define MAX_CUDA_BUFFERS 256
 | |
| 
 | |
| struct scoped_spin_lock {
 | |
|     std::atomic_flag& lock;
 | |
|     scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
 | |
|         while (lock.test_and_set(std::memory_order_acquire)) {
 | |
|             ; // spin
 | |
|         }
 | |
|     }
 | |
|     ~scoped_spin_lock() {
 | |
|         lock.clear(std::memory_order_release);
 | |
|     }
 | |
|     scoped_spin_lock(const scoped_spin_lock&) = delete;
 | |
|     scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
 | |
| };
 | |
| 
 | |
| struct cuda_buffer {
 | |
|     void * ptr = nullptr;
 | |
|     size_t size = 0;
 | |
| };
 | |
| 
 | |
| static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
 | |
| static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
 | |
| 
 | |
| static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[i];
 | |
|         if (b.size >= size && b.ptr != nullptr) {
 | |
|             void * ptr = b.ptr;
 | |
|             *actual_size = b.size;
 | |
|             b.ptr = nullptr;
 | |
|             b.size = 0;
 | |
|             return ptr;
 | |
|         }
 | |
|     }
 | |
|     void * ptr;
 | |
|     CUDA_CHECK(cudaMalloc((void **) &ptr, size));
 | |
|     *actual_size = size;
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_pool_free(void * ptr, size_t size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[i];
 | |
|         if (b.ptr == nullptr) {
 | |
|             b.ptr = ptr;
 | |
|             b.size = size;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
 | |
|     CUDA_CHECK(cudaFree(ptr));
 | |
| }
 | |
| 
 | |
| #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
 | |
| #define GGML_CUDA_MAX_EVENTS 64
 | |
| static cublasHandle_t g_cublasH = nullptr;
 | |
| static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
 | |
| static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
 | |
| static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
 | |
| 
 | |
| void ggml_init_cublas() {
 | |
|     if (g_cublasH == nullptr) {
 | |
|         // create streams
 | |
|         for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
 | |
|             CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
 | |
|             CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
 | |
|         }
 | |
|         // create events
 | |
|         for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
 | |
|             CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
 | |
|         }
 | |
| 
 | |
|         // create cublas handle
 | |
|         CUBLAS_CHECK(cublasCreate(&g_cublasH));
 | |
|         CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
 | |
| 
 | |
|         // configure logging to stdout
 | |
|         // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void * ggml_cuda_host_malloc(size_t size) {
 | |
|     if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     void * ptr = nullptr;
 | |
|     cudaError_t err = cudaMallocHost((void **) &ptr, size);
 | |
|     if (err != cudaSuccess) {
 | |
|         fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
 | |
|             size/1024.0/1024.0, cudaGetErrorString(err));
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_host_free(void * ptr) {
 | |
|     CUDA_CHECK(cudaFreeHost(ptr));
 | |
| }
 | |
| 
 | |
| static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
 | |
|     const uint64_t ne0 = src->ne[0];
 | |
|     const uint64_t ne1 = src->ne[1];
 | |
|     const uint64_t nb0 = src->nb[0];
 | |
|     const uint64_t nb1 = src->nb[1];
 | |
|     const uint64_t nb2 = src->nb[2];
 | |
|     const uint64_t nb3 = src->nb[3];
 | |
|     const enum ggml_type type = src->type;
 | |
|     const size_t ts = ggml_type_size(type);
 | |
|     const size_t bs = ggml_blck_size(type);
 | |
| 
 | |
|     const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
 | |
|     if (nb0 == ts && nb1 == ts*ne0/bs) {
 | |
|         return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
 | |
|     } else if (nb0 == ts) {
 | |
|         return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
 | |
|     } else {
 | |
|         for (uint64_t i1 = 0; i1 < ne1; i1++) {
 | |
|             const void * rx = (const void *) ((const char *) x + i1*nb1);
 | |
|             void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
 | |
|             // pretend the row is a matrix with cols=1
 | |
|             cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
 | |
|             if (r != cudaSuccess) return r;
 | |
|         }
 | |
|         return cudaSuccess;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA);
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[2];
 | |
|     const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
|     const int64_t ne13 = src1->ne[3];
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
|     size_t x_size, d_size;
 | |
| 
 | |
|     float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0
 | |
|     float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted.
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             const int i0 = i03*ne02 + i02;
 | |
|             float * c_X2 = d_X + i0*ne01*ne00;
 | |
|             float * c_D2 = d_D + i0*ne01*ne00;
 | |
| 
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaEvent_t  cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS];
 | |
| 
 | |
|             // copy src0 to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2));
 | |
|             CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
 | |
| 
 | |
|             // wait for data
 | |
|             CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
 | |
| 
 | |
|             for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                 const int64_t i13 = i03%ne13;
 | |
|                 const int64_t i12 = i02%ne12;
 | |
|                 const int64_t i11 = i01%ne11;
 | |
|                 const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
 | |
| 
 | |
|                 float * c_X1 = c_X2 + i01*ne00;
 | |
|                 float * c_Y = d_Y + i1*ne10;
 | |
|                 float * c_D1 = c_D2 + i01*ne00;
 | |
| 
 | |
|                 // compute
 | |
|                 mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
|             }
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
| 
 | |
|     size_t x_size, y_size, d_size;
 | |
|     float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
 | |
|     float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
| 
 | |
|             float * c_X = d_X + i * x_ne;
 | |
|             float * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
| 
 | |
|             // copy data to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | |
| 
 | |
|             // compute
 | |
|             CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|             CUBLAS_CHECK(
 | |
|                 cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                         ne01, ne11, ne10,
 | |
|                         &alpha, c_X, ne00,
 | |
|                                 c_Y, ne10,
 | |
|                         &beta,  c_D, ne01));
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb10 = src1->nb[0];
 | |
|     const int nb11 = src1->nb[1];
 | |
|     const int nb12 = src1->nb[2];
 | |
|     const int nb13 = src1->nb[3];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
| 
 | |
|     size_t x_size, y_size, d_size;
 | |
|     half  * d_X =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
 | |
|     half  * d_Y =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
| 
 | |
|     bool src1_cont_rows = nb10 == sizeof(float);
 | |
|     bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
| 
 | |
|             half  * c_X = d_X + i * x_ne;
 | |
|             half  * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
| 
 | |
|             // copy src0 to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
 | |
| 
 | |
|             // convert src1 to fp16
 | |
|             // TODO: use multiple threads
 | |
|             ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
 | |
|             char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
 | |
|             if (src1_cont_rows) {
 | |
|                 if (src1_cont_cols) {
 | |
|                     ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
 | |
|                 }
 | |
|                 else {
 | |
|                     for (int64_t i01 = 0; i01 < ne11; i01++) {
 | |
|                         ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 for (int64_t i01 = 0; i01 < ne11; i01++) {
 | |
|                     for (int64_t i00 = 0; i00 < ne10; i00++) {
 | |
|                         // very slow due to no inlining
 | |
|                         tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // copy src1 to device
 | |
|             CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
 | |
| 
 | |
|             // compute
 | |
|             CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|             CUBLAS_CHECK(
 | |
|                 cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                         ne01, ne11, ne10,
 | |
|                         &alpha, c_X, CUDA_R_16F, ne00,
 | |
|                                 c_Y, CUDA_R_16F, ne10,
 | |
|                         &beta,  c_D, CUDA_R_32F, ne01,
 | |
|                         CUBLAS_COMPUTE_32F_FAST_16F,
 | |
|                         CUBLAS_GEMM_DEFAULT));
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
|     const ggml_type type = src0->type;
 | |
|     const bool mul_mat_vec = ne11 == 1;
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
|     const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
 | |
| 
 | |
|     size_t x_size, y_size, d_size, q_size;
 | |
|     float * d_X = nullptr;
 | |
|     if (!mul_mat_vec) {
 | |
|         d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
 | |
|     }
 | |
|     float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
|     char  * d_Q = (char  *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
 | |
| 
 | |
|     const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
 | |
|     dequantize_mul_mat_vec_cuda_t dmmv = ggml_get_dequantize_mul_mat_vec_cuda(type);
 | |
|     GGML_ASSERT(to_fp32_cuda != nullptr);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaEvent_t  cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
 | |
| 
 | |
|             float * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
|             char  * c_Q = d_Q + i * q_sz;
 | |
| 
 | |
|             // copy src0 to device if necessary
 | |
|             if (src0->backend == GGML_BACKEND_CPU) {
 | |
|                 CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
 | |
|             } else if (src0->backend == GGML_BACKEND_CUDA) {
 | |
|                 c_Q = ((char *) src0->data) + i * q_sz;
 | |
|             } else {
 | |
|                 GGML_ASSERT(false);
 | |
|             }
 | |
|             if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
 | |
|                 CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
 | |
| 
 | |
|                 // copy src1 to device
 | |
|                 CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | |
| 
 | |
|                 // wait for data
 | |
|                 CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
 | |
| 
 | |
|                 // compute
 | |
|                 dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|             } else { // general dequantization kernel + cuBLAS matrix matrix multiplication
 | |
|                 float * c_X = d_X + i * x_ne;
 | |
| 
 | |
|                 // convert src0 to fp32 on device
 | |
|                 to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
|                 CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
 | |
| 
 | |
|                 // copy src1 to device
 | |
|                 CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | |
| 
 | |
|                 // wait for conversion
 | |
|                 CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
 | |
| 
 | |
|                 // compute
 | |
|                 CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|                 CUBLAS_CHECK(
 | |
|                     cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                             ne01, ne11, ne10,
 | |
|                             &alpha, c_X, ne00,
 | |
|                                     c_Y, ne10,
 | |
|                             &beta,  c_D, ne01));
 | |
|             }
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     if (!mul_mat_vec) {
 | |
|         ggml_cuda_pool_free(d_X, x_size);
 | |
|     }
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
|     ggml_cuda_pool_free(d_Q, q_size);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
 | |
|     ggml_cuda_mul_f32(src0, src1, dst);
 | |
| }
 | |
| 
 | |
| bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     // TODO: find the optimal values for these
 | |
|     if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
 | |
|         src1->type == GGML_TYPE_F32 &&
 | |
|         dst->type == GGML_TYPE_F32 &&
 | |
|         ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CUDA)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
 | |
|     size_t src0_sz = ggml_nbytes(src0);
 | |
|     size_t src1_sz = ggml_nbytes(src1);
 | |
| 
 | |
|     // mul_mat_q: src0 is converted to fp32 on device
 | |
|     size_t mul_mat_q_transfer = src0_sz + src1_sz;
 | |
| 
 | |
|     // mul_mat_f16: src1 is converted to fp16 on cpu
 | |
|     size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
 | |
| 
 | |
|     // choose the smaller one to transfer to the device
 | |
|     // TODO: this is not always the best choice due to the overhead of converting to fp16
 | |
|     return mul_mat_f16_transfer < mul_mat_q_transfer;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
 | |
|     GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
 | |
| 
 | |
|     if (src0->type == GGML_TYPE_F32) {
 | |
|         ggml_cuda_mul_mat_f32(src0, src1, dst);
 | |
|     }
 | |
|     else if (src0->type == GGML_TYPE_F16) {
 | |
|         if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
 | |
|             ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
 | |
|         }
 | |
|         else {
 | |
|             ggml_cuda_mul_mat_q_f32(src0, src1, dst);
 | |
|         }
 | |
|     }
 | |
|     else if (ggml_is_quantized(src0->type)) {
 | |
|         ggml_cuda_mul_mat_q_f32(src0, src1, dst);
 | |
|     }
 | |
|     else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
 | |
|         return ggml_nelements(src1) * sizeof(ggml_fp16_t);
 | |
|     }
 | |
|     else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_cuda_transform_tensor(ggml_tensor * tensor) {
 | |
|     const int64_t ne0 = tensor->ne[0];
 | |
|     const int64_t ne1 = tensor->ne[1];
 | |
|     const int64_t ne2 = tensor->ne[2];
 | |
|     const int64_t ne3 = tensor->ne[3];
 | |
| 
 | |
|     const ggml_type type = tensor->type;
 | |
|     const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
 | |
| 
 | |
|     size_t q_size;
 | |
|     char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
 | |
| 
 | |
|     cudaStream_t cudaStream2 = g_cudaStreams2[0];
 | |
| 
 | |
|     // copy tensor to device
 | |
|     for (int64_t i3 = 0; i3 < ne3; i3++) {
 | |
|         for (int64_t i2 = 0; i2 < ne2; i2++) {
 | |
|             int i = i3*ne2 + i2;
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tensor->data = dst;
 | |
|     tensor->backend = GGML_BACKEND_CUDA;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
 | |
|     FILE * fp = fopen(fname, "rb");
 | |
| 
 | |
|     const size_t size = ggml_nbytes(tensor);
 | |
| 
 | |
|     void * buf;
 | |
|     CUDA_CHECK(cudaMalloc(&buf, size));
 | |
|     void * buf_host = malloc(size);
 | |
| 
 | |
| #ifdef _WIN32
 | |
|     int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
 | |
| #else
 | |
|     int ret = fseek(fp, (long) offset, SEEK_SET);
 | |
| #endif
 | |
|     GGML_ASSERT(ret == 0); // same
 | |
| 
 | |
|     size_t ret2 = fread(buf_host, size, 1, fp);
 | |
|     if (ret2 != 1) {
 | |
|         fprintf(stderr, "unexpectedly reached end of file");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
 | |
|     cudaDeviceSynchronize();
 | |
| 
 | |
|     tensor->data = buf;
 | |
|     free(buf_host);
 | |
|     fclose(fp);
 | |
| }
 |