mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			433 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			433 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "gguf-util.h"
 | |
| #include "gguf-llama.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cinttypes>
 | |
| #include <string>
 | |
| #include <sstream>
 | |
| #include <fstream>
 | |
| #include <vector>
 | |
| /*
 | |
| template<typename T>
 | |
| static std::string to_string(const T & val) {
 | |
|     std::stringstream ss;
 | |
|     ss << val;
 | |
|     return ss.str();
 | |
| }
 | |
| */
 | |
| void gguf_ex_write_str(std::ofstream & fout, const std::string & val) {
 | |
|     const int32_t n = val.size();
 | |
|     fout.write((const char *) &n, sizeof(n));
 | |
|     fout.write(val.c_str(), n);
 | |
| }
 | |
| 
 | |
| void gguf_ex_write_i32(std::ofstream & fout, int32_t val) {
 | |
|     fout.write((const char *) &val, sizeof(val));
 | |
| }
 | |
| 
 | |
| void gguf_ex_write_u64(std::ofstream & fout, size_t val) {
 | |
|     fout.write((const char *) &val, sizeof(val));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void gguf_ex_write_val(std::ofstream & fout, const std::string & key, enum gguf_type type, const T & val) {
 | |
|     gguf_ex_write_str(fout, key);
 | |
|     fout.write((const char *) &type, sizeof(type));
 | |
|     fout.write((const char *) &val,  sizeof(val));
 | |
| 
 | |
|     fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), to_string(val).c_str());
 | |
| }
 | |
| 
 | |
| template<>
 | |
| void gguf_ex_write_val<std::string>(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::string & val) {
 | |
|     gguf_ex_write_str(fout, key);
 | |
|     fout.write((const char *) &type, sizeof(type));
 | |
| 
 | |
|     const int32_t n = val.size();
 | |
|     fout.write((const char *) &n, sizeof(n));
 | |
|     fout.write(val.c_str(), n);
 | |
| 
 | |
|     fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), val.c_str());
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void gguf_ex_write_arr(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector<T> & val) {
 | |
|     gguf_ex_write_str(fout, key);
 | |
|     {
 | |
|         const enum gguf_type tarr = GGUF_TYPE_ARRAY;
 | |
|         fout.write((const char *) &tarr, sizeof(tarr));
 | |
|     }
 | |
| 
 | |
|     const int32_t n = val.size();
 | |
|     fout.write((const char *) &type, sizeof(type));
 | |
|     fout.write((const char *) &n,    sizeof(n));
 | |
|     fout.write((const char *) val.data(), n * sizeof(T));
 | |
| 
 | |
|     fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str());
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         fprintf(stdout, "%s", to_string(val[i]).c_str());
 | |
|         if (i < n - 1) {
 | |
|             fprintf(stdout, ", ");
 | |
|         }
 | |
|     }
 | |
|     fprintf(stdout, "]\n");
 | |
| }
 | |
| 
 | |
| template<>
 | |
| void gguf_ex_write_arr<std::string>(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector<std::string> & val) {
 | |
|     gguf_ex_write_str(fout, key);
 | |
|     {
 | |
|         const enum gguf_type tarr = GGUF_TYPE_ARRAY;
 | |
|         fout.write((const char *) &tarr, sizeof(tarr));
 | |
|     }
 | |
| 
 | |
|     const int32_t n = val.size();
 | |
|     fout.write((const char *) &type, sizeof(type));
 | |
|     fout.write((const char *) &n,    sizeof(n));
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         const int32_t nstr = val[i].size();
 | |
|         fout.write((const char *) &nstr, sizeof(nstr));
 | |
|         fout.write(val[i].c_str(), nstr);
 | |
|     }
 | |
| 
 | |
|     fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str());
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         fprintf(stdout, "%s", val[i].c_str());
 | |
|         if (i < n - 1) {
 | |
|             fprintf(stdout, ", ");
 | |
|         }
 | |
|     }
 | |
|     fprintf(stdout, "]\n");
 | |
| }
 | |
| 
 | |
| bool gguf_ex_write(const std::string & fname) {
 | |
|     std::ofstream fout(fname.c_str(), std::ios::binary);
 | |
| 
 | |
|     {
 | |
|         const int32_t magic = GGUF_MAGIC;
 | |
|         fout.write((const char *) &magic, sizeof(magic));
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         const int32_t version = GGUF_VERSION;
 | |
|         fout.write((const char *) &version, sizeof(version));
 | |
|     }
 | |
| 
 | |
|     // NOTE: these have to match the output below!
 | |
|     const int n_tensors = 10;
 | |
|     const int n_kv      = 12;
 | |
| 
 | |
|     fout.write((const char*) &n_tensors, sizeof(n_tensors));
 | |
|     fout.write((const char*) &n_kv, sizeof(n_kv));
 | |
| 
 | |
|     fprintf(stdout, "%s: write header\n", __func__);
 | |
| 
 | |
|     // kv data
 | |
|     {
 | |
|         gguf_ex_write_val< uint8_t>(fout, "some.parameter.uint8",   GGUF_TYPE_UINT8,   0x12);
 | |
|         gguf_ex_write_val<  int8_t>(fout, "some.parameter.int8",    GGUF_TYPE_INT8,   -0x13);
 | |
|         gguf_ex_write_val<uint16_t>(fout, "some.parameter.uint16",  GGUF_TYPE_UINT16,  0x1234);
 | |
|         gguf_ex_write_val< int16_t>(fout, "some.parameter.int16",   GGUF_TYPE_INT16,  -0x1235);
 | |
|         gguf_ex_write_val<uint32_t>(fout, "some.parameter.uint32",  GGUF_TYPE_UINT32,  0x12345678);
 | |
|         gguf_ex_write_val< int32_t>(fout, "some.parameter.int32",   GGUF_TYPE_INT32,  -0x12345679);
 | |
| 
 | |
|         gguf_ex_write_val<float>   (fout, "some.parameter.float32", GGUF_TYPE_FLOAT32, 0.123456789f);
 | |
|         gguf_ex_write_val<bool>    (fout, "some.parameter.bool",    GGUF_TYPE_BOOL,    true);
 | |
| 
 | |
|         gguf_ex_write_val<std::string>(fout, "some.parameter.string",  GGUF_TYPE_STRING,  "hello world");
 | |
| 
 | |
|         gguf_ex_write_arr<int16_t>    (fout, "some.parameter.arr.i16", GGUF_TYPE_INT16,   { 1, 2, 3, 4, });
 | |
|         gguf_ex_write_arr<float>      (fout, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, { 3.145f, 2.718f, 1.414f, });
 | |
|         gguf_ex_write_arr<std::string>(fout, "some.parameter.arr.str", GGUF_TYPE_STRING,  { "hello", "world", "!" });
 | |
|     }
 | |
| 
 | |
|     uint64_t offset_tensor = 0;
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ 128ull*1024ull*1024ull,
 | |
|         /*.mem_buffer =*/ NULL,
 | |
|         /*.no_alloc   =*/ false,
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx_data = ggml_init(params);
 | |
| 
 | |
|     // tensor infos
 | |
|     for (int i = 0; i < n_tensors; ++i) {
 | |
|         const std::string name = "tensor_" + to_string(i);
 | |
| 
 | |
|         int64_t ne[GGML_MAX_DIMS] = { 1 };
 | |
|         int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
 | |
| 
 | |
|         for (int j = 0; j < n_dims; ++j) {
 | |
|             ne[j] = rand() % 10 + 1;
 | |
|         }
 | |
| 
 | |
|         struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
 | |
|         ggml_set_name(cur, name.c_str());
 | |
| 
 | |
|         {
 | |
|             float * data = (float *) cur->data;
 | |
|             for (int j = 0; j < ggml_nelements(cur); ++j) {
 | |
|                 data[j] = 100 + i;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         fprintf(stdout, "%s: tensor: %s, %d dims, ne = [", __func__, name.c_str(), n_dims);
 | |
|         for (int j = 0; j < 4; ++j) {
 | |
|             fprintf(stdout, "%s%3d", j == 0 ? "" : ", ", (int) cur->ne[j]);
 | |
|         }
 | |
|         fprintf(stdout, "], offset_tensor = %6" PRIu64 "\n", offset_tensor);
 | |
| 
 | |
|         gguf_ex_write_str(fout, name);
 | |
|         gguf_ex_write_i32(fout, n_dims);
 | |
|         for (int j = 0; j < n_dims; ++j) {
 | |
|             gguf_ex_write_i32(fout, cur->ne[j]);
 | |
|         }
 | |
|         gguf_ex_write_i32(fout, cur->type);
 | |
|         gguf_ex_write_u64(fout, offset_tensor);
 | |
| 
 | |
|         offset_tensor += GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT);
 | |
|     }
 | |
| 
 | |
|     const uint64_t offset_data = GGML_PAD((uint64_t) fout.tellp(), GGUF_DEFAULT_ALIGNMENT);
 | |
| 
 | |
|     fprintf(stdout, "%s: data offset = %" PRIu64 "\n", __func__, offset_data);
 | |
| 
 | |
|     {
 | |
|         const size_t pad = offset_data - fout.tellp();
 | |
| 
 | |
|         for (size_t j = 0; j < pad; ++j) {
 | |
|             fout.put(0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < n_tensors; ++i) {
 | |
|         fprintf(stdout, "%s: writing tensor %d data\n", __func__, i);
 | |
| 
 | |
|         const std::string name = "tensor_" + to_string(i);
 | |
| 
 | |
|         struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
 | |
| 
 | |
|         fout.write((const char *) cur->data, ggml_nbytes(cur));
 | |
| 
 | |
|         {
 | |
|             const size_t pad = GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT) - ggml_nbytes(cur);
 | |
| 
 | |
|             for (size_t j = 0; j < pad; ++j) {
 | |
|                 fout.put(0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fout.close();
 | |
| 
 | |
|     fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str());
 | |
| 
 | |
|     ggml_free(ctx_data);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // just read tensor info
 | |
| bool gguf_ex_read_0(const std::string & fname) {
 | |
|     struct gguf_init_params params = {
 | |
|         /*.no_alloc = */ false,
 | |
|         /*.ctx      = */ NULL,
 | |
|     };
 | |
| 
 | |
|     struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
 | |
| 
 | |
|     fprintf(stdout, "%s: version:      %d\n", __func__, gguf_get_version(ctx));
 | |
|     fprintf(stdout, "%s: alignment:   %zu\n", __func__, gguf_get_alignment(ctx));
 | |
|     fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
 | |
| 
 | |
|     // kv
 | |
|     {
 | |
|         const int n_kv = gguf_get_n_kv(ctx);
 | |
| 
 | |
|         fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
 | |
| 
 | |
|         for (int i = 0; i < n_kv; ++i) {
 | |
|             const char * key = gguf_get_key(ctx, i);
 | |
| 
 | |
|             fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // find kv string
 | |
|     {
 | |
|         const char * findkey = "some.parameter.string";
 | |
| 
 | |
|         const int keyidx = gguf_find_key(ctx, findkey);
 | |
|         if (keyidx == -1) {
 | |
|             fprintf(stdout, "%s: find key: %s not found.\n", __func__, findkey);
 | |
|         } else {
 | |
|             const char * key_value = gguf_get_val_str(ctx, keyidx);
 | |
|             fprintf(stdout, "%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // tensor info
 | |
|     {
 | |
|         const int n_tensors = gguf_get_n_tensors(ctx);
 | |
| 
 | |
|         fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
 | |
| 
 | |
|         for (int i = 0; i < n_tensors; ++i) {
 | |
|             const char * name   = gguf_get_tensor_name  (ctx, i);
 | |
|             const size_t offset = gguf_get_tensor_offset(ctx, i);
 | |
| 
 | |
|             fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     gguf_free(ctx);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // read and create ggml_context containing the tensors and their data
 | |
| bool gguf_ex_read_1(const std::string & fname) {
 | |
|     struct ggml_context * ctx_data = NULL;
 | |
| 
 | |
|     struct gguf_init_params params = {
 | |
|         /*.no_alloc = */ false,
 | |
|         /*.ctx      = */ &ctx_data,
 | |
|     };
 | |
| 
 | |
|     struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
 | |
| 
 | |
|     fprintf(stdout, "%s: version:      %d\n", __func__, gguf_get_version(ctx));
 | |
|     fprintf(stdout, "%s: alignment:   %zu\n", __func__, gguf_get_alignment(ctx));
 | |
|     fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
 | |
| 
 | |
|     // kv
 | |
|     {
 | |
|         const int n_kv = gguf_get_n_kv(ctx);
 | |
| 
 | |
|         fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
 | |
| 
 | |
|         for (int i = 0; i < n_kv; ++i) {
 | |
|             const char * key = gguf_get_key(ctx, i);
 | |
| 
 | |
|             fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // tensor info
 | |
|     {
 | |
|         const int n_tensors = gguf_get_n_tensors(ctx);
 | |
| 
 | |
|         fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
 | |
| 
 | |
|         for (int i = 0; i < n_tensors; ++i) {
 | |
|             const char * name   = gguf_get_tensor_name  (ctx, i);
 | |
|             const size_t offset = gguf_get_tensor_offset(ctx, i);
 | |
| 
 | |
|             fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // data
 | |
|     {
 | |
|         const int n_tensors = gguf_get_n_tensors(ctx);
 | |
| 
 | |
|         for (int i = 0; i < n_tensors; ++i) {
 | |
|             fprintf(stdout, "%s: reading tensor %d data\n", __func__, i);
 | |
| 
 | |
|             const char * name = gguf_get_tensor_name(ctx, i);
 | |
| 
 | |
|             struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
 | |
| 
 | |
|             fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n",
 | |
|                     __func__, i, cur->n_dims, cur->name, cur->data);
 | |
| 
 | |
|             // check data
 | |
|             {
 | |
|                 const float * data = (const float *) cur->data;
 | |
|                 for (int j = 0; j < ggml_nelements(cur); ++j) {
 | |
|                     if (data[j] != 100 + i) {
 | |
|                         fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
 | |
| 
 | |
|     ggml_free(ctx_data);
 | |
|     gguf_free(ctx);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // read just the tensor info and mmap the data in user code
 | |
| bool gguf_ex_read_2(const std::string & fname) {
 | |
|     struct ggml_context * ctx_data = NULL;
 | |
| 
 | |
|     struct gguf_init_params params = {
 | |
|         /*.no_alloc = */ true,
 | |
|         /*.ctx      = */ &ctx_data,
 | |
|     };
 | |
| 
 | |
|     struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
 | |
| 
 | |
|     struct gguf_file file(fname.c_str(), "rb");
 | |
|     gguf_mmap data_mmap(&file, 0, false);
 | |
|     const int n_tensors = gguf_get_n_tensors(ctx);
 | |
| 
 | |
|     for (int i = 0; i < n_tensors; ++i) {
 | |
|         const char * name             = gguf_get_tensor_name(ctx, i);
 | |
|         const size_t offset      = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
 | |
|         struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
 | |
| 
 | |
|         cur->data = static_cast<char *>(data_mmap.addr) + offset;
 | |
| 
 | |
|         // print first 10 elements
 | |
|     const float * data = (const float *) cur->data;
 | |
| 
 | |
|         printf("%s data[:10] : ", name);
 | |
| 
 | |
|         for (int j = 0; j < 10; ++j) {
 | |
|             printf("%f ", data[j]);
 | |
|         }
 | |
| 
 | |
|         printf("\n\n");
 | |
|     }
 | |
| 
 | |
| fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
 | |
| 
 | |
|     ggml_free(ctx_data);
 | |
|     gguf_free(ctx);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     if (argc < 3) {
 | |
|         fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     const std::string fname(argv[1]);
 | |
|     const std::string mode (argv[2]);
 | |
| 
 | |
|     GGML_ASSERT((mode == "r" || mode == "w" || mode == "q") && "mode must be r, w or q");
 | |
| 
 | |
|     if (mode == "w") {
 | |
|         GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
 | |
|     } else if (mode == "r") {
 | |
|         GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
 | |
|         //GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
 | |
|         GGML_ASSERT(gguf_ex_read_2(fname) && "failed to read gguf file");
 | |
|     } else if (mode == "q") {
 | |
|         llama_model_quantize_params params = llama_model_quantize_default_params();
 | |
|         llama_model_quantize(fname.c_str(), "quant.gguf", ¶ms);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
