mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			117 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Various helper functions and utilities
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <random>
 | |
| #include <thread>
 | |
| #include <unordered_map>
 | |
| 
 | |
| //
 | |
| // CLI argument parsing
 | |
| //
 | |
| int32_t get_num_physical_cores();
 | |
| 
 | |
| struct gpt_params {
 | |
|     int32_t seed          = -1;   // RNG seed
 | |
|     int32_t n_threads     = get_num_physical_cores();
 | |
|     int32_t n_predict     = -1;  // new tokens to predict
 | |
|     int32_t n_parts       = -1;   // amount of model parts (-1 = determine from model dimensions)
 | |
|     int32_t n_ctx         = 512;  // context size
 | |
|     int32_t n_batch       = 512;  // batch size for prompt processing (must be >=32 to use BLAS)
 | |
|     int32_t n_keep        = 0;    // number of tokens to keep from initial prompt
 | |
| 
 | |
|     // sampling parameters
 | |
|     std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
 | |
|     int32_t top_k             = 40;    // <= 0 to use vocab size
 | |
|     float   top_p             = 0.95f; // 1.0 = disabled
 | |
|     float   tfs_z             = 1.00f; // 1.0 = disabled
 | |
|     float   typical_p         = 1.00f; // 1.0 = disabled
 | |
|     float   temp              = 0.80f; // 1.0 = disabled
 | |
|     float   repeat_penalty    = 1.10f; // 1.0 = disabled
 | |
|     int32_t repeat_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
 | |
|     float   frequency_penalty = 0.00f; // 0.0 = disabled
 | |
|     float   presence_penalty  = 0.00f; // 0.0 = disabled
 | |
|     int     mirostat          = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
 | |
|     float   mirostat_tau      = 5.00f; // target entropy
 | |
|     float   mirostat_eta      = 0.10f; // learning rate
 | |
| 
 | |
|     std::string model  = "models/lamma-7B/ggml-model.bin"; // model path
 | |
|     std::string prompt = "";
 | |
|     std::string path_session = "";       // path to file for saving/loading model eval state
 | |
|     std::string input_prefix = "";       // string to prefix user inputs with
 | |
|     std::string input_suffix = "";       // string to suffix user inputs with
 | |
|     std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
 | |
| 
 | |
|     std::string lora_adapter = "";  // lora adapter path
 | |
|     std::string lora_base = "";     // base model path for the lora adapter
 | |
| 
 | |
|     bool memory_f16        = true;  // use f16 instead of f32 for memory kv
 | |
|     bool random_prompt     = false; // do not randomize prompt if none provided
 | |
|     bool use_color         = false; // use color to distinguish generations and inputs
 | |
|     bool interactive       = false; // interactive mode
 | |
| 
 | |
|     bool embedding         = false; // get only sentence embedding
 | |
|     bool interactive_first = false; // wait for user input immediately
 | |
| 
 | |
|     bool instruct          = false; // instruction mode (used for Alpaca models)
 | |
|     bool penalize_nl       = true;  // consider newlines as a repeatable token
 | |
|     bool perplexity        = false; // compute perplexity over the prompt
 | |
|     bool use_mmap          = true;  // use mmap for faster loads
 | |
|     bool use_mlock         = false; // use mlock to keep model in memory
 | |
|     bool mem_test          = false; // compute maximum memory usage
 | |
|     bool verbose_prompt    = false; // print prompt tokens before generation
 | |
| };
 | |
| 
 | |
| bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | |
| 
 | |
| void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | |
| 
 | |
| std::string gpt_random_prompt(std::mt19937 & rng);
 | |
| 
 | |
| //
 | |
| // Vocab utils
 | |
| //
 | |
| 
 | |
| std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
 | |
| 
 | |
| //
 | |
| // Model utils
 | |
| //
 | |
| 
 | |
| struct llama_context * llama_init_from_gpt_params(const gpt_params & params);
 | |
| 
 | |
| //
 | |
| // Console utils
 | |
| //
 | |
| 
 | |
| #define ANSI_COLOR_RED     "\x1b[31m"
 | |
| #define ANSI_COLOR_GREEN   "\x1b[32m"
 | |
| #define ANSI_COLOR_YELLOW  "\x1b[33m"
 | |
| #define ANSI_COLOR_BLUE    "\x1b[34m"
 | |
| #define ANSI_COLOR_MAGENTA "\x1b[35m"
 | |
| #define ANSI_COLOR_CYAN    "\x1b[36m"
 | |
| #define ANSI_COLOR_RESET   "\x1b[0m"
 | |
| #define ANSI_BOLD          "\x1b[1m"
 | |
| 
 | |
| enum console_color_t {
 | |
|     CONSOLE_COLOR_DEFAULT=0,
 | |
|     CONSOLE_COLOR_PROMPT,
 | |
|     CONSOLE_COLOR_USER_INPUT
 | |
| };
 | |
| 
 | |
| struct console_state {
 | |
|     bool use_color = false;
 | |
|     console_color_t color = CONSOLE_COLOR_DEFAULT;
 | |
| };
 | |
| 
 | |
| void set_console_color(console_state & con_st, console_color_t color);
 | |
| 
 | |
| #if defined (_WIN32)
 | |
| void win32_console_init(bool enable_color);
 | |
| void win32_utf8_encode(const std::wstring & wstr, std::string & str);
 | |
| #endif
 | 
