mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 ecf6b7f23e
			
		
	
	ecf6b7f23e
	
	
	
		
			
			* [example] batched-bench "segmentation fault" When `llama-batched-bench` is invoked _without_ setting `-npl`, "number of parallel prompts", it segfaults. The segfault is caused by invoking `max_element()` on a zero-length vector, `n_pl` This commit addresses that by first checking to see if the number of parallel prompts is zero, and if so sets the maximum sequence size to 1; otherwise, sets it to the original, the result of `max_element()`. Fixes, when running `lldb build/bin/llama-batched-bench -- -m models/Meta-Llama-3-8B.gguf` ``` * thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x0) frame #0: 0x000000010000366c llama-batched-bench`main(argc=3, argv=0x000000016fdff268) at batched-bench.cpp:72:28 69 llama_context_params ctx_params = llama_context_params_from_gpt_params(params); 70 71 // ensure enough sequences are available -> 72 ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end()); ``` * Update examples/batched-bench/batched-bench.cpp Co-authored-by: compilade <git@compilade.net> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: compilade <git@compilade.net>
		
			
				
	
	
		
			216 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| // mutates the input string
 | |
| static std::vector<int> parse_list(char * p) {
 | |
|     std::vector<int> ret;
 | |
| 
 | |
|     char * q = p;
 | |
| 
 | |
|     while (*p) {
 | |
|         if (*p == ',') {
 | |
|             *p = '\0';
 | |
|             ret.push_back(std::atoi(q));
 | |
|             q = p + 1;
 | |
|         }
 | |
| 
 | |
|         ++p;
 | |
|     }
 | |
| 
 | |
|     ret.push_back(std::atoi(q));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void print_usage(int argc, char ** argv, const gpt_params & params) {
 | |
|     gpt_params_print_usage(argc, argv, params);
 | |
| 
 | |
|     LOG_TEE("\nexample usage:\n");
 | |
|     LOG_TEE("\n    %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
 | |
|     LOG_TEE("\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (!gpt_params_parse(argc, argv, params)) {
 | |
|         print_usage(argc, argv, params);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     int is_pp_shared = params.is_pp_shared;
 | |
| 
 | |
|     std::vector<int> n_pp = params.n_pp;
 | |
|     std::vector<int> n_tg = params.n_tg;
 | |
|     std::vector<int> n_pl = params.n_pl;
 | |
| 
 | |
|     // init LLM
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // initialize the model
 | |
| 
 | |
|     llama_model_params model_params = llama_model_params_from_gpt_params(params);
 | |
| 
 | |
|     llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
 | |
| 
 | |
|     // ensure enough sequences are available
 | |
|     ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
 | |
| 
 | |
|     llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int32_t n_kv_max = llama_n_ctx(ctx);
 | |
| 
 | |
|     llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
 | |
| 
 | |
|     // decode in batches of ctx_params.n_batch tokens
 | |
|     auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
 | |
|         for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
 | |
|             const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
 | |
| 
 | |
|             llama_batch batch_view = {
 | |
|                 n_tokens,
 | |
|                 batch.token    + i,
 | |
|                 nullptr,
 | |
|                 batch.pos      + i,
 | |
|                 batch.n_seq_id + i,
 | |
|                 batch.seq_id   + i,
 | |
|                 batch.logits   + i,
 | |
|                 0, 0, 0, // unused
 | |
|             };
 | |
| 
 | |
|             const int ret = llama_decode(ctx, batch_view);
 | |
|             if (ret != 0) {
 | |
|                 LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             llama_synchronize(ctx);
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     };
 | |
| 
 | |
|     // warm up
 | |
|     {
 | |
|         for (int i = 0; i < 16; ++i) {
 | |
|             llama_batch_add(batch, 0, i, { 0 }, false);
 | |
|         }
 | |
| 
 | |
|         if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|             LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
|     LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
 | |
|     LOG_TEE("\n");
 | |
| 
 | |
|     LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP",     "TG",     "B",    "N_KV",     "T_PP s",   "S_PP t/s", "T_TG s",   "S_TG t/s", "T s",      "S t/s");
 | |
|     LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
 | |
| 
 | |
|     for (        int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
 | |
|         for (    int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
 | |
|             for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
 | |
|                 const int pp = n_pp[i_pp];
 | |
|                 const int tg = n_tg[i_tg];
 | |
|                 const int pl = n_pl[i_pl];
 | |
| 
 | |
|                 const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
 | |
| 
 | |
|                 if (n_ctx_req > n_kv_max) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 llama_batch_clear(batch);
 | |
| 
 | |
|                 for (int i = 0; i < pp; ++i) {
 | |
|                     for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
 | |
|                         llama_batch_add(batch, 0, i, { j }, false);
 | |
|                     }
 | |
|                 }
 | |
|                 batch.logits[batch.n_tokens - 1] = true;
 | |
| 
 | |
|                 const auto t_pp_start = ggml_time_us();
 | |
| 
 | |
|                 llama_kv_cache_clear(ctx);
 | |
| 
 | |
|                 if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|                     LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 if (is_pp_shared) {
 | |
|                     for (int32_t i = 1; i < pl; ++i) {
 | |
|                         llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 const auto t_pp_end = ggml_time_us();
 | |
| 
 | |
|                 const auto t_tg_start = ggml_time_us();
 | |
| 
 | |
|                 for (int i = 0; i < tg; ++i) {
 | |
|                     llama_batch_clear(batch);
 | |
| 
 | |
|                     for (int j = 0; j < pl; ++j) {
 | |
|                         llama_batch_add(batch, 0, pp + i, { j }, true);
 | |
|                     }
 | |
| 
 | |
|                     if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|                         LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|                         return 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 const auto t_tg_end = ggml_time_us();
 | |
| 
 | |
|                 const int32_t n_kv = n_ctx_req;
 | |
| 
 | |
|                 const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
 | |
|                 const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
 | |
|                 const float t    = t_pp + t_tg;
 | |
| 
 | |
|                 const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
 | |
|                 const float speed_tg = pl*tg / t_tg;
 | |
|                 const float speed    = n_kv / t;
 | |
| 
 | |
|                 LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 |