mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 1b67731e18
			
		
	
	1b67731e18
	
	
	
		
			
			Key changes: * BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS * Nomic Embed conversion: pad vocab instead of slicing embedding tensor * llama_tokenize: handle added special tokens like HF does
		
			
				
	
	
		
			3815 lines
		
	
	
		
			152 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3815 lines
		
	
	
		
			152 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "utils.hpp"
 | |
| 
 | |
| #include "common.h"
 | |
| #include "json-schema-to-grammar.h"
 | |
| #include "llama.h"
 | |
| #include "grammar-parser.h"
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // crash the server in debug mode, otherwise send an http 500 error
 | |
| #define CPPHTTPLIB_NO_EXCEPTIONS 1
 | |
| #endif
 | |
| // increase max payload length to allow use of larger context size
 | |
| #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
 | |
| #include "httplib.h"
 | |
| #include "json.hpp"
 | |
| 
 | |
| // auto generated files (update with ./deps.sh)
 | |
| #include "index.html.hpp"
 | |
| #include "index.js.hpp"
 | |
| #include "completion.js.hpp"
 | |
| #include "json-schema-to-grammar.mjs.hpp"
 | |
| 
 | |
| #include <atomic>
 | |
| #include <chrono>
 | |
| #include <condition_variable>
 | |
| #include <cstddef>
 | |
| #include <set>
 | |
| #include <mutex>
 | |
| #include <thread>
 | |
| #include <signal.h>
 | |
| #include <memory>
 | |
| 
 | |
| using json = nlohmann::ordered_json;
 | |
| 
 | |
| bool server_verbose = false;
 | |
| bool server_log_json = true;
 | |
| 
 | |
| enum stop_type {
 | |
|     STOP_TYPE_FULL,
 | |
|     STOP_TYPE_PARTIAL,
 | |
| };
 | |
| 
 | |
| enum slot_state {
 | |
|     SLOT_STATE_IDLE,
 | |
|     SLOT_STATE_PROCESSING,
 | |
| };
 | |
| 
 | |
| enum slot_command {
 | |
|     SLOT_COMMAND_NONE,
 | |
|     SLOT_COMMAND_LOAD_PROMPT,
 | |
|     SLOT_COMMAND_RELEASE,
 | |
| };
 | |
| 
 | |
| enum server_state {
 | |
|     SERVER_STATE_LOADING_MODEL,  // Server is starting up, model not fully loaded yet
 | |
|     SERVER_STATE_READY,          // Server is ready and model is loaded
 | |
|     SERVER_STATE_ERROR           // An error occurred, load_model failed
 | |
| };
 | |
| 
 | |
| enum server_task_type {
 | |
|     SERVER_TASK_TYPE_COMPLETION,
 | |
|     SERVER_TASK_TYPE_CANCEL,
 | |
|     SERVER_TASK_TYPE_NEXT_RESPONSE,
 | |
|     SERVER_TASK_TYPE_METRICS,
 | |
|     SERVER_TASK_TYPE_SLOT_SAVE,
 | |
|     SERVER_TASK_TYPE_SLOT_RESTORE,
 | |
|     SERVER_TASK_TYPE_SLOT_ERASE,
 | |
| };
 | |
| 
 | |
| struct server_task {
 | |
|     int id        = -1; // to be filled by server_queue
 | |
|     int id_multi  = -1;
 | |
|     int id_target = -1;
 | |
| 
 | |
|     server_task_type type;
 | |
|     json data;
 | |
| 
 | |
|     bool infill    = false;
 | |
|     bool embedding = false;
 | |
| };
 | |
| 
 | |
| struct server_task_result {
 | |
|     int id       = -1;
 | |
|     int id_multi = -1;
 | |
| 
 | |
|     json data;
 | |
| 
 | |
|     bool stop;
 | |
|     bool error;
 | |
| };
 | |
| 
 | |
| struct server_task_multi {
 | |
|     int id = -1;
 | |
| 
 | |
|     std::set<int> subtasks_remaining;
 | |
|     std::vector<server_task_result> results;
 | |
| };
 | |
| 
 | |
| struct slot_params {
 | |
|     bool stream       = true;
 | |
|     bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
 | |
| 
 | |
|     uint32_t seed      = -1; // RNG seed
 | |
|     int32_t  n_keep    =  0; // number of tokens to keep from initial prompt
 | |
|     int32_t  n_discard =  0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
 | |
|     int32_t  n_predict = -1; // new tokens to predict
 | |
| 
 | |
|     std::vector<std::string> antiprompt;
 | |
| 
 | |
|     json input_prefix;
 | |
|     json input_suffix;
 | |
| };
 | |
| 
 | |
| struct server_params {
 | |
|     int32_t port           = 8080;
 | |
|     int32_t read_timeout   = 600;
 | |
|     int32_t write_timeout  = 600;
 | |
|     int32_t n_threads_http = -1;
 | |
| 
 | |
|     std::string hostname      = "127.0.0.1";
 | |
|     std::string public_path   = "";
 | |
|     std::string chat_template = "";
 | |
|     std::string system_prompt = "";
 | |
| 
 | |
|     std::vector<std::string> api_keys;
 | |
| 
 | |
| #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
 | |
|     std::string ssl_key_file = "";
 | |
|     std::string ssl_cert_file = "";
 | |
| #endif
 | |
| 
 | |
|     bool slots_endpoint   = true;
 | |
|     bool metrics_endpoint = false;
 | |
|     std::string slot_save_path;
 | |
| };
 | |
| 
 | |
| struct server_slot {
 | |
|     int id;
 | |
|     int id_task = -1;
 | |
|     int id_multi = -1;
 | |
| 
 | |
|     struct slot_params params;
 | |
| 
 | |
|     slot_state state = SLOT_STATE_IDLE;
 | |
|     slot_command command = SLOT_COMMAND_NONE;
 | |
| 
 | |
|     // used to determine the slot that has been used the longest
 | |
|     int64_t t_last_used = -1;
 | |
| 
 | |
|     // generation props
 | |
|     int32_t n_ctx       = 0;  // context size per slot
 | |
|     int32_t n_past      = 0;
 | |
|     int32_t n_decoded   = 0;
 | |
|     int32_t n_remaining = -1;
 | |
|     int32_t i_batch     = -1;
 | |
|     int32_t n_predict   = -1; // TODO: disambiguate from params.n_predict
 | |
| 
 | |
|     int32_t n_prompt_tokens           = 0;
 | |
|     int32_t n_prompt_tokens_processed = 0;
 | |
| 
 | |
|     json prompt;
 | |
| 
 | |
|     // when a task is submitted, we first tokenize the prompt and store it here
 | |
|     std::vector<llama_token> prompt_tokens;
 | |
| 
 | |
|     std::string generated_text;
 | |
|     std::vector<llama_token> cache_tokens;
 | |
|     std::vector<completion_token_output> generated_token_probs;
 | |
| 
 | |
|     bool infill         = false;
 | |
|     bool embedding      = false;
 | |
|     bool has_next_token = true;
 | |
|     bool truncated      = false;
 | |
|     bool stopped_eos    = false;
 | |
|     bool stopped_word   = false;
 | |
|     bool stopped_limit  = false;
 | |
| 
 | |
|     bool oaicompat = false;
 | |
| 
 | |
|     std::string oaicompat_model;
 | |
|     std::string stopping_word;
 | |
| 
 | |
|     // sampling
 | |
|     llama_token sampled;
 | |
|     struct llama_sampling_params sparams;
 | |
|     llama_sampling_context * ctx_sampling = nullptr;
 | |
|     json json_schema;
 | |
| 
 | |
|     int32_t ga_i = 0;   // group-attention state
 | |
|     int32_t ga_n = 1;   // group-attention factor
 | |
|     int32_t ga_w = 512; // group-attention width
 | |
| 
 | |
|     int32_t n_past_se = 0; // self-extend
 | |
| 
 | |
|     // stats
 | |
|     size_t n_sent_text = 0; // number of sent text character
 | |
|     size_t n_sent_token_probs = 0;
 | |
| 
 | |
|     int64_t t_start_process_prompt;
 | |
|     int64_t t_start_generation;
 | |
| 
 | |
|     double t_prompt_processing; // ms
 | |
|     double t_token_generation; // ms
 | |
| 
 | |
|     void reset() {
 | |
|         n_prompt_tokens    = 0;
 | |
|         generated_text     = "";
 | |
|         truncated          = false;
 | |
|         stopped_eos        = false;
 | |
|         stopped_word       = false;
 | |
|         stopped_limit      = false;
 | |
|         stopping_word      = "";
 | |
|         n_past             = 0;
 | |
|         n_sent_text        = 0;
 | |
|         n_sent_token_probs = 0;
 | |
|         infill             = false;
 | |
|         ga_i               = 0;
 | |
|         n_past_se          = 0;
 | |
| 
 | |
|         generated_token_probs.clear();
 | |
|     }
 | |
| 
 | |
|     bool has_budget(gpt_params &global_params) {
 | |
|         if (params.n_predict == -1 && global_params.n_predict == -1) {
 | |
|             return true; // limitless
 | |
|         }
 | |
| 
 | |
|         n_remaining = -1;
 | |
| 
 | |
|         if (params.n_predict != -1) {
 | |
|             n_remaining = params.n_predict - n_decoded;
 | |
|         } else if (global_params.n_predict != -1) {
 | |
|             n_remaining = global_params.n_predict - n_decoded;
 | |
|         }
 | |
| 
 | |
|         return n_remaining > 0; // no budget
 | |
|     }
 | |
| 
 | |
|     bool available() const {
 | |
|         return state == SLOT_STATE_IDLE && command == SLOT_COMMAND_NONE;
 | |
|     }
 | |
| 
 | |
|     bool is_processing() const {
 | |
|         return (state == SLOT_STATE_IDLE && command == SLOT_COMMAND_LOAD_PROMPT) || state == SLOT_STATE_PROCESSING;
 | |
|     }
 | |
| 
 | |
|     void add_token_string(const completion_token_output & token) {
 | |
|         if (command == SLOT_COMMAND_RELEASE) {
 | |
|             return;
 | |
|         }
 | |
|         generated_token_probs.push_back(token);
 | |
|     }
 | |
| 
 | |
|     void release() {
 | |
|         if (state == SLOT_STATE_PROCESSING) {
 | |
|             t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
 | |
|             command = SLOT_COMMAND_RELEASE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     json get_formated_timings() const {
 | |
|         return json {
 | |
|             {"prompt_n",               n_prompt_tokens_processed},
 | |
|             {"prompt_ms",              t_prompt_processing},
 | |
|             {"prompt_per_token_ms",    t_prompt_processing / n_prompt_tokens_processed},
 | |
|             {"prompt_per_second",      1e3 / t_prompt_processing * n_prompt_tokens_processed},
 | |
| 
 | |
|             {"predicted_n",            n_decoded},
 | |
|             {"predicted_ms",           t_token_generation},
 | |
|             {"predicted_per_token_ms", t_token_generation / n_decoded},
 | |
|             {"predicted_per_second",   1e3 / t_token_generation * n_decoded},
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
 | |
|         size_t stop_pos = std::string::npos;
 | |
| 
 | |
|         for (const std::string & word : params.antiprompt) {
 | |
|             size_t pos;
 | |
| 
 | |
|             if (type == STOP_TYPE_FULL) {
 | |
|                 const size_t tmp      = word.size() + last_token_size;
 | |
|                 const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
 | |
| 
 | |
|                 pos = text.find(word, from_pos);
 | |
|             } else {
 | |
|                 pos = find_partial_stop_string(word, text);
 | |
|             }
 | |
| 
 | |
|             if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
 | |
|                 if (type == STOP_TYPE_FULL) {
 | |
|                     stopped_word   = true;
 | |
|                     stopping_word  = word;
 | |
|                     has_next_token = false;
 | |
|                 }
 | |
|                 stop_pos = pos;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return stop_pos;
 | |
|     }
 | |
| 
 | |
|     void print_timings() const {
 | |
|         char buffer[512];
 | |
| 
 | |
|         double t_token = t_prompt_processing / n_prompt_tokens_processed;
 | |
|         double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
 | |
| 
 | |
|         snprintf(buffer, 512, "prompt eval time     = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
 | |
|                 t_prompt_processing, n_prompt_tokens_processed,
 | |
|                 t_token, n_tokens_second);
 | |
| 
 | |
|         LOG_INFO(buffer, {
 | |
|             {"id_slot",                   id},
 | |
|             {"id_task",                   id_task},
 | |
|             {"t_prompt_processing",       t_prompt_processing},
 | |
|             {"n_prompt_tokens_processed", n_prompt_tokens_processed},
 | |
|             {"t_token",                   t_token},
 | |
|             {"n_tokens_second",           n_tokens_second},
 | |
|         });
 | |
| 
 | |
|         t_token = t_token_generation / n_decoded;
 | |
|         n_tokens_second = 1e3 / t_token_generation * n_decoded;
 | |
| 
 | |
|         snprintf(buffer, 512, "generation eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)",
 | |
|                 t_token_generation, n_decoded,
 | |
|                 t_token, n_tokens_second);
 | |
| 
 | |
|         LOG_INFO(buffer, {
 | |
|             {"id_slot",            id},
 | |
|             {"id_task",            id_task},
 | |
|             {"t_token_generation", t_token_generation},
 | |
|             {"n_decoded",          n_decoded},
 | |
|             {"t_token",            t_token},
 | |
|             {"n_tokens_second",    n_tokens_second},
 | |
|         });
 | |
| 
 | |
|         snprintf(buffer, 512, "          total time = %10.2f ms", t_prompt_processing + t_token_generation);
 | |
| 
 | |
|         LOG_INFO(buffer, {
 | |
|             {"id_slot",             id},
 | |
|             {"id_task",             id_task},
 | |
|             {"t_prompt_processing", t_prompt_processing},
 | |
|             {"t_token_generation",  t_token_generation},
 | |
|             {"t_total",             t_prompt_processing + t_token_generation},
 | |
|         });
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct server_metrics {
 | |
|     int64_t t_start = 0;
 | |
| 
 | |
|     uint64_t n_prompt_tokens_processed_total = 0;
 | |
|     uint64_t t_prompt_processing_total       = 0;
 | |
|     uint64_t n_tokens_predicted_total        = 0;
 | |
|     uint64_t t_tokens_generation_total       = 0;
 | |
| 
 | |
|     uint64_t n_prompt_tokens_processed = 0;
 | |
|     uint64_t t_prompt_processing       = 0;
 | |
| 
 | |
|     uint64_t n_tokens_predicted  = 0;
 | |
|     uint64_t t_tokens_generation = 0;
 | |
| 
 | |
|     void init() {
 | |
|         t_start = ggml_time_us();
 | |
|     }
 | |
| 
 | |
|     void on_prompt_eval(const server_slot & slot) {
 | |
|         n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
 | |
|         n_prompt_tokens_processed       += slot.n_prompt_tokens_processed;
 | |
|         t_prompt_processing             += slot.t_prompt_processing;
 | |
|         t_prompt_processing_total       += slot.t_prompt_processing;
 | |
|     }
 | |
| 
 | |
|     void on_prediction(const server_slot & slot) {
 | |
|         n_tokens_predicted_total   += slot.n_decoded;
 | |
|         n_tokens_predicted         += slot.n_decoded;
 | |
|         t_tokens_generation        += slot.t_token_generation;
 | |
|         t_tokens_generation_total  += slot.t_token_generation;
 | |
|     }
 | |
| 
 | |
|     void reset_bucket() {
 | |
|         n_prompt_tokens_processed = 0;
 | |
|         t_prompt_processing       = 0;
 | |
|         n_tokens_predicted        = 0;
 | |
|         t_tokens_generation       = 0;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct server_queue {
 | |
|     int id = 0;
 | |
|     bool running;
 | |
| 
 | |
|     // queues
 | |
|     std::vector<server_task> queue_tasks;
 | |
|     std::vector<server_task> queue_tasks_deferred;
 | |
| 
 | |
|     std::vector<server_task_multi> queue_multitasks;
 | |
| 
 | |
|     std::mutex mutex_tasks;
 | |
|     std::condition_variable condition_tasks;
 | |
| 
 | |
|     // callback functions
 | |
|     std::function<void(server_task       &)> callback_new_task;
 | |
|     std::function<void(server_task_multi &)> callback_finish_multitask;
 | |
|     std::function<void(void)>                callback_update_slots;
 | |
| 
 | |
|     // Add a new task to the end of the queue
 | |
|     int post(server_task task) {
 | |
|         std::unique_lock<std::mutex> lock(mutex_tasks);
 | |
|         if (task.id == -1) {
 | |
|             task.id = id++;
 | |
|             LOG_VERBOSE("new task id", {{"new_id", task.id}});
 | |
|         }
 | |
|         queue_tasks.push_back(std::move(task));
 | |
|         condition_tasks.notify_one();
 | |
|         return task.id;
 | |
|     }
 | |
| 
 | |
|     // Add a new task, but defer until one slot is available
 | |
|     void defer(server_task task) {
 | |
|         std::unique_lock<std::mutex> lock(mutex_tasks);
 | |
|         queue_tasks_deferred.push_back(std::move(task));
 | |
|     }
 | |
| 
 | |
|     // Get the next id for creating anew task
 | |
|     int get_new_id() {
 | |
|         std::unique_lock<std::mutex> lock(mutex_tasks);
 | |
|         int new_id = id++;
 | |
|         LOG_VERBOSE("new task id", {{"new_id", new_id}});
 | |
|         return new_id;
 | |
|     }
 | |
| 
 | |
|     // Register function to process a new task
 | |
|     void on_new_task(std::function<void(server_task &)> callback) {
 | |
|         callback_new_task = std::move(callback);
 | |
|     }
 | |
| 
 | |
|     // Register function to process a multitask when it is finished
 | |
|     void on_finish_multitask(std::function<void(server_task_multi&)> callback) {
 | |
|         callback_finish_multitask = std::move(callback);
 | |
|     }
 | |
| 
 | |
|     // Register the function to be called when all slots data is ready to be processed
 | |
|     void on_update_slots(std::function<void(void)> callback) {
 | |
|         callback_update_slots = std::move(callback);
 | |
|     }
 | |
| 
 | |
|     // Call when the state of one slot is changed
 | |
|     void notify_slot_changed() {
 | |
|         // move deferred tasks back to main loop
 | |
|         std::unique_lock<std::mutex> lock(mutex_tasks);
 | |
|         for (auto & task : queue_tasks_deferred) {
 | |
|             queue_tasks.push_back(std::move(task));
 | |
|         }
 | |
|         queue_tasks_deferred.clear();
 | |
|     }
 | |
| 
 | |
|     // end the start_loop routine
 | |
|     void terminate() {
 | |
|         std::unique_lock<std::mutex> lock(mutex_tasks);
 | |
|         running = false;
 | |
|         condition_tasks.notify_all();
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Main loop consists of these steps:
 | |
|      * - Wait until a new task arrives
 | |
|      * - Process the task (i.e. maybe copy data into slot)
 | |
|      * - Check if multitask is finished
 | |
|      * - Update all slots
 | |
|      */
 | |
|     void start_loop() {
 | |
|         running = true;
 | |
| 
 | |
|         while (true) {
 | |
|             LOG_VERBOSE("new task may arrive", {});
 | |
| 
 | |
|             while (true) {
 | |
|                 std::unique_lock<std::mutex> lock(mutex_tasks);
 | |
|                 if (queue_tasks.empty()) {
 | |
|                     lock.unlock();
 | |
|                     break;
 | |
|                 }
 | |
|                 server_task task = queue_tasks.front();
 | |
|                 queue_tasks.erase(queue_tasks.begin());
 | |
|                 lock.unlock();
 | |
|                 LOG_VERBOSE("callback_new_task", {{"id_task", task.id}});
 | |
|                 callback_new_task(task);
 | |
|             }
 | |
| 
 | |
|             LOG_VERBOSE("update_multitasks", {});
 | |
| 
 | |
|             // check if we have any finished multitasks
 | |
|             auto queue_iterator = queue_multitasks.begin();
 | |
|             while (queue_iterator != queue_multitasks.end()) {
 | |
|                 if (queue_iterator->subtasks_remaining.empty()) {
 | |
|                     // all subtasks done == multitask is done
 | |
|                     server_task_multi current_multitask = *queue_iterator;
 | |
|                     callback_finish_multitask(current_multitask);
 | |
|                     // remove this multitask
 | |
|                     queue_iterator = queue_multitasks.erase(queue_iterator);
 | |
|                 } else {
 | |
|                     ++queue_iterator;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // all tasks in the current loop is processed, slots data is now ready
 | |
|             LOG_VERBOSE("callback_update_slots", {});
 | |
| 
 | |
|             callback_update_slots();
 | |
| 
 | |
|             LOG_VERBOSE("wait for new task", {});
 | |
|             {
 | |
|                 std::unique_lock<std::mutex> lock(mutex_tasks);
 | |
|                 if (queue_tasks.empty()) {
 | |
|                     if (!running) {
 | |
|                         LOG_VERBOSE("ending start_loop", {});
 | |
|                         return;
 | |
|                     }
 | |
|                     condition_tasks.wait(lock, [&]{
 | |
|                         return (!queue_tasks.empty() || !running);
 | |
|                     });
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // functions to manage multitasks
 | |
|     //
 | |
| 
 | |
|     // add a multitask by specifying the id of all subtask (subtask is a server_task)
 | |
|     void add_multitask(int id_multi, std::vector<int> & sub_ids) {
 | |
|         std::lock_guard<std::mutex> lock(mutex_tasks);
 | |
|         server_task_multi multi;
 | |
|         multi.id = id_multi;
 | |
|         std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
 | |
|         queue_multitasks.push_back(multi);
 | |
|     }
 | |
| 
 | |
|     // updatethe remaining subtasks, while appending results to multitask
 | |
|     void update_multitask(int id_multi, int id_sub, server_task_result & result) {
 | |
|         std::lock_guard<std::mutex> lock(mutex_tasks);
 | |
|         for (auto & multitask : queue_multitasks) {
 | |
|             if (multitask.id == id_multi) {
 | |
|                 multitask.subtasks_remaining.erase(id_sub);
 | |
|                 multitask.results.push_back(result);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct server_response {
 | |
|     typedef std::function<void(int, int, server_task_result &)> callback_multitask_t;
 | |
|     callback_multitask_t callback_update_multitask;
 | |
| 
 | |
|     // for keeping track of all tasks waiting for the result
 | |
|     std::set<int> waiting_task_ids;
 | |
| 
 | |
|     // the main result queue
 | |
|     std::vector<server_task_result> queue_results;
 | |
| 
 | |
|     std::mutex mutex_results;
 | |
|     std::condition_variable condition_results;
 | |
| 
 | |
|     // add the id_task to the list of tasks waiting for response
 | |
|     void add_waiting_task_id(int id_task) {
 | |
|         LOG_VERBOSE("waiting for task id", {{"id_task", id_task}});
 | |
| 
 | |
|         std::unique_lock<std::mutex> lock(mutex_results);
 | |
|         waiting_task_ids.insert(id_task);
 | |
|     }
 | |
| 
 | |
|     // when the request is finished, we can remove task associated with it
 | |
|     void remove_waiting_task_id(int id_task) {
 | |
|         LOG_VERBOSE("remove waiting for task id", {{"id_task", id_task}});
 | |
| 
 | |
|         std::unique_lock<std::mutex> lock(mutex_results);
 | |
|         waiting_task_ids.erase(id_task);
 | |
|     }
 | |
| 
 | |
|     // This function blocks the thread until there is a response for this id_task
 | |
|     server_task_result recv(int id_task) {
 | |
|         while (true) {
 | |
|             std::unique_lock<std::mutex> lock(mutex_results);
 | |
|             condition_results.wait(lock, [&]{
 | |
|                 return !queue_results.empty();
 | |
|             });
 | |
| 
 | |
|             for (int i = 0; i < (int) queue_results.size(); i++) {
 | |
|                 if (queue_results[i].id == id_task) {
 | |
|                     assert(queue_results[i].id_multi == -1);
 | |
|                     server_task_result res = queue_results[i];
 | |
|                     queue_results.erase(queue_results.begin() + i);
 | |
|                     return res;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // should never reach here
 | |
|     }
 | |
| 
 | |
|     // Register the function to update multitask
 | |
|     void on_multitask_update(callback_multitask_t callback) {
 | |
|         callback_update_multitask = std::move(callback);
 | |
|     }
 | |
| 
 | |
|     // Send a new result to a waiting id_task
 | |
|     void send(server_task_result result) {
 | |
|         LOG_VERBOSE("send new result", {{"id_task", result.id}});
 | |
| 
 | |
|         std::unique_lock<std::mutex> lock(mutex_results);
 | |
|         for (const auto & id_task : waiting_task_ids) {
 | |
|             // LOG_TEE("waiting task id %i \n", id_task);
 | |
|             // for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
 | |
|             if (result.id_multi == id_task) {
 | |
|                 LOG_VERBOSE("callback_update_multitask", {{"id_task", id_task}});
 | |
|                 callback_update_multitask(id_task, result.id, result);
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (result.id == id_task) {
 | |
|                 LOG_VERBOSE("queue_results.push_back", {{"id_task", id_task}});
 | |
|                 queue_results.push_back(result);
 | |
|                 condition_results.notify_all();
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct server_context {
 | |
|     llama_model * model = nullptr;
 | |
|     llama_context * ctx = nullptr;
 | |
| 
 | |
|     gpt_params params;
 | |
| 
 | |
|     llama_batch batch;
 | |
| 
 | |
|     bool clean_kv_cache = true;
 | |
|     bool add_bos_token  = true;
 | |
| 
 | |
|     int32_t n_ctx; // total context for all clients / slots
 | |
| 
 | |
|     // system prompt
 | |
|     bool system_need_update = false;
 | |
| 
 | |
|     std::string              system_prompt;
 | |
|     std::vector<llama_token> system_tokens;
 | |
| 
 | |
|     std::string name_user;      // this should be the antiprompt
 | |
|     std::string name_assistant;
 | |
| 
 | |
|     // slots / clients
 | |
|     std::vector<server_slot> slots;
 | |
|     json default_generation_settings_for_props;
 | |
| 
 | |
|     server_queue    queue_tasks;
 | |
|     server_response queue_results;
 | |
| 
 | |
|     server_metrics metrics;
 | |
| 
 | |
|     ~server_context() {
 | |
|         if (ctx) {
 | |
|             llama_free(ctx);
 | |
|             ctx = nullptr;
 | |
|         }
 | |
| 
 | |
|         if (model) {
 | |
|             llama_free_model(model);
 | |
|             model = nullptr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool load_model(const gpt_params & params_) {
 | |
|         params = params_;
 | |
| 
 | |
|         // dedicate one sequence to the system prompt
 | |
|         params.n_parallel += 1;
 | |
| 
 | |
|         std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|         params.n_parallel -= 1; // but be sneaky about it
 | |
|         if (model == nullptr) {
 | |
|             LOG_ERROR("unable to load model", {{"model", params.model}});
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         n_ctx = llama_n_ctx(ctx);
 | |
| 
 | |
|         add_bos_token = llama_should_add_bos_token(model);
 | |
|         GGML_ASSERT(llama_add_eos_token(model) != 1);
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     bool validate_model_chat_template() const {
 | |
|         llama_chat_message chat[] = {{"user", "test"}};
 | |
| 
 | |
|         const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
 | |
| 
 | |
|         return res > 0;
 | |
|     }
 | |
| 
 | |
|     void init() {
 | |
|         const int32_t n_ctx_slot = n_ctx / params.n_parallel;
 | |
| 
 | |
|         LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
 | |
| 
 | |
|         for (int i = 0; i < params.n_parallel; i++) {
 | |
|             server_slot slot;
 | |
| 
 | |
|             slot.id = i;
 | |
|             slot.n_ctx = n_ctx_slot;
 | |
|             slot.n_predict = params.n_predict;
 | |
| 
 | |
|             LOG_INFO("new slot", {
 | |
|                 {"id_slot",    slot.id},
 | |
|                 {"n_ctx_slot", slot.n_ctx}
 | |
|             });
 | |
| 
 | |
|             const int ga_n = params.grp_attn_n;
 | |
|             const int ga_w = params.grp_attn_w;
 | |
| 
 | |
|             if (ga_n != 1) {
 | |
|                 GGML_ASSERT(ga_n > 0                    && "ga_n must be positive");                       // NOLINT
 | |
|                 GGML_ASSERT(ga_w % ga_n == 0            && "ga_w must be a multiple of ga_n");             // NOLINT
 | |
|                 //GGML_ASSERT(n_ctx_train % ga_w == 0     && "n_ctx_train must be a multiple of ga_w");    // NOLINT
 | |
|                 //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
 | |
| 
 | |
|                 LOG_INFO("slot self-extend", {
 | |
|                     {"id_slot", slot.id},
 | |
|                     {"ga_n",    ga_n},
 | |
|                     {"ga_w",    ga_w}
 | |
|                 });
 | |
|             }
 | |
| 
 | |
|             slot.ga_i = 0;
 | |
|             slot.ga_n = ga_n;
 | |
|             slot.ga_w = ga_w;
 | |
| 
 | |
|             slot.reset();
 | |
| 
 | |
|             slots.push_back(slot);
 | |
|         }
 | |
| 
 | |
|         default_generation_settings_for_props = get_formated_generation(slots.front());
 | |
|         default_generation_settings_for_props["seed"] = -1;
 | |
| 
 | |
|         // the update_slots() logic will always submit a maximum of n_batch tokens
 | |
|         // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
 | |
|         {
 | |
|             const int32_t n_batch = llama_n_batch(ctx);
 | |
| 
 | |
|             // only a single seq_id per token is needed
 | |
|             batch = llama_batch_init(n_batch, 0, 1);
 | |
|         }
 | |
| 
 | |
|         metrics.init();
 | |
|     }
 | |
| 
 | |
|     std::vector<llama_token> tokenize(const json & json_prompt, bool add_special) const {
 | |
|         // TODO: currently, we tokenize using special tokens by default
 | |
|         //       this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
 | |
|         //       but it's better compared to completely ignoring ChatML and other chat templates
 | |
|         const bool TMP_FORCE_SPECIAL = true;
 | |
| 
 | |
|         // If `add_bos` is true, we only add BOS, when json_prompt is a string,
 | |
|         // or the first element of the json_prompt array is a string.
 | |
|         std::vector<llama_token> prompt_tokens;
 | |
| 
 | |
|         if (json_prompt.is_array()) {
 | |
|             bool first = true;
 | |
|             for (const auto & p : json_prompt) {
 | |
|                 if (p.is_string()) {
 | |
|                     auto s = p.template get<std::string>();
 | |
| 
 | |
|                     std::vector<llama_token> p;
 | |
|                     if (first) {
 | |
|                         p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
 | |
|                         first = false;
 | |
|                     } else {
 | |
|                         p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
 | |
|                     }
 | |
| 
 | |
|                     prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
 | |
|                 } else {
 | |
|                     if (first) {
 | |
|                         first = false;
 | |
|                     }
 | |
| 
 | |
|                     prompt_tokens.push_back(p.template get<llama_token>());
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             auto s = json_prompt.template get<std::string>();
 | |
|             prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
 | |
|         }
 | |
| 
 | |
|         return prompt_tokens;
 | |
|     }
 | |
| 
 | |
|     server_slot * get_slot(int id) {
 | |
|         int64_t t_last = ggml_time_us();
 | |
| 
 | |
|         server_slot * last_used = nullptr;
 | |
| 
 | |
|         for (server_slot & slot : slots) {
 | |
|             if (slot.id == id && slot.available()) {
 | |
|                 return &slot;
 | |
|             }
 | |
| 
 | |
|             // among all available slots, find the one that has been least recently used
 | |
|             if (slot.available() && slot.t_last_used < t_last) {
 | |
|                 last_used = &slot;
 | |
|                 t_last = slot.t_last_used;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return last_used;
 | |
|     }
 | |
| 
 | |
|     bool launch_slot_with_task(server_slot & slot, const server_task & task) {
 | |
|         slot_params default_params;
 | |
|         llama_sampling_params default_sparams;
 | |
|         auto & data = task.data;
 | |
| 
 | |
|         if (data.count("__oaicompat") != 0) {
 | |
|             slot.oaicompat = true;
 | |
|             slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
 | |
|         } else {
 | |
|             slot.oaicompat = false;
 | |
|             slot.oaicompat_model = "";
 | |
|         }
 | |
| 
 | |
|         slot.params.stream             = json_value(data, "stream",            false);
 | |
|         slot.params.cache_prompt       = json_value(data, "cache_prompt",      false);
 | |
|         slot.params.n_predict          = json_value(data, "n_predict",         default_params.n_predict);
 | |
|         slot.sparams.top_k             = json_value(data, "top_k",             default_sparams.top_k);
 | |
|         slot.sparams.top_p             = json_value(data, "top_p",             default_sparams.top_p);
 | |
|         slot.sparams.min_p             = json_value(data, "min_p",             default_sparams.min_p);
 | |
|         slot.sparams.tfs_z             = json_value(data, "tfs_z",             default_sparams.tfs_z);
 | |
|         slot.sparams.typical_p         = json_value(data, "typical_p",         default_sparams.typical_p);
 | |
|         slot.sparams.temp              = json_value(data, "temperature",       default_sparams.temp);
 | |
|         slot.sparams.dynatemp_range    = json_value(data, "dynatemp_range",    default_sparams.dynatemp_range);
 | |
|         slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
 | |
|         slot.sparams.penalty_last_n    = json_value(data, "repeat_last_n",     default_sparams.penalty_last_n);
 | |
|         slot.sparams.penalty_repeat    = json_value(data, "repeat_penalty",    default_sparams.penalty_repeat);
 | |
|         slot.sparams.penalty_freq      = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
 | |
|         slot.sparams.penalty_present   = json_value(data, "presence_penalty",  default_sparams.penalty_present);
 | |
|         slot.sparams.mirostat          = json_value(data, "mirostat",          default_sparams.mirostat);
 | |
|         slot.sparams.mirostat_tau      = json_value(data, "mirostat_tau",      default_sparams.mirostat_tau);
 | |
|         slot.sparams.mirostat_eta      = json_value(data, "mirostat_eta",      default_sparams.mirostat_eta);
 | |
|         slot.sparams.penalize_nl       = json_value(data, "penalize_nl",       default_sparams.penalize_nl);
 | |
|         slot.params.n_keep             = json_value(data, "n_keep",            slot.params.n_keep);
 | |
|         slot.params.n_discard          = json_value(data, "n_discard",         default_params.n_discard);
 | |
|         slot.params.seed               = json_value(data, "seed",              default_params.seed);
 | |
|         slot.sparams.n_probs           = json_value(data, "n_probs",           default_sparams.n_probs);
 | |
|         slot.sparams.min_keep          = json_value(data, "min_keep",          default_sparams.min_keep);
 | |
| 
 | |
|         // process "json_schema" and "grammar"
 | |
|         if (data.contains("json_schema") && data.contains("grammar")) {
 | |
|             send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
 | |
|             return false;
 | |
|         } else if (data.contains("json_schema") && !data.contains("grammar")) {
 | |
|             try {
 | |
|                 auto schema                = json_value(data, "json_schema", json::object());
 | |
|                 slot.sparams.grammar       = json_schema_to_grammar(schema);
 | |
|             } catch (const std::exception & e) {
 | |
|                 send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
 | |
|                 return false;
 | |
|             }
 | |
|         } else {
 | |
|             slot.sparams.grammar       = json_value(data, "grammar",           default_sparams.grammar);
 | |
|         }
 | |
| 
 | |
|         if (slot.params.cache_prompt && slot.ga_n != 1) {
 | |
|             LOG_WARNING("cache_prompt is not supported with group-attention", {});
 | |
|             slot.params.cache_prompt = false;
 | |
|         }
 | |
| 
 | |
|         if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
 | |
|             // Might be better to reject the request with a 400 ?
 | |
|             LOG_WARNING("Max tokens to predict exceeds server configuration", {
 | |
|                 {"params.n_predict", slot.params.n_predict},
 | |
|                 {"slot.n_predict",   slot.n_predict},
 | |
|             });
 | |
|             slot.params.n_predict = slot.n_predict;
 | |
|         }
 | |
| 
 | |
|         // infill
 | |
|         slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
 | |
|         slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
 | |
| 
 | |
|         // get prompt
 | |
|         {
 | |
|             const auto & prompt = data.find("prompt");
 | |
|             if (prompt == data.end()) {
 | |
|                 send_error(task, "Either \"prompt\" or \"messages\" must be provided", ERROR_TYPE_INVALID_REQUEST);
 | |
|                 return false;
 | |
|             } else {
 | |
|                 slot.prompt = *prompt;
 | |
|             }
 | |
|             if (slot.prompt.is_array() && slot.prompt.size() == 0) {
 | |
|                 send_error(task, "\"prompt\" cannot be an empty array", ERROR_TYPE_INVALID_REQUEST);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // penalize user-provided tokens
 | |
|         {
 | |
|             slot.sparams.penalty_prompt_tokens.clear();
 | |
|             slot.sparams.use_penalty_prompt_tokens = false;
 | |
| 
 | |
|             const auto & penalty_prompt = data.find("penalty_prompt");
 | |
| 
 | |
|             if (penalty_prompt != data.end()) {
 | |
|                 if (penalty_prompt->is_string()) {
 | |
|                     const auto penalty_prompt_string = penalty_prompt->get<std::string>();
 | |
|                     slot.sparams.penalty_prompt_tokens = llama_tokenize(model, penalty_prompt_string, false);
 | |
| 
 | |
|                     if (slot.params.n_predict > 0) {
 | |
|                         slot.sparams.penalty_prompt_tokens.reserve(slot.sparams.penalty_prompt_tokens.size() + slot.params.n_predict);
 | |
|                     }
 | |
|                     slot.sparams.use_penalty_prompt_tokens = true;
 | |
| 
 | |
|                     LOG_VERBOSE("penalty_prompt_tokens", {
 | |
|                         {"id_slot", slot.id},
 | |
|                         {"tokens",  slot.sparams.penalty_prompt_tokens},
 | |
|                     });
 | |
|                 }
 | |
|                 else if (penalty_prompt->is_array()) {
 | |
|                     const auto n_tokens = penalty_prompt->size();
 | |
|                     slot.sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot.params.n_predict));
 | |
| 
 | |
|                     const int n_vocab = llama_n_vocab(model);
 | |
|                     for (const auto & penalty_token : *penalty_prompt) {
 | |
|                         if (penalty_token.is_number_integer()) {
 | |
|                             const auto tok = penalty_token.get<llama_token>();
 | |
|                             if (tok >= 0 && tok < n_vocab) {
 | |
|                                 slot.sparams.penalty_prompt_tokens.push_back(tok);
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     slot.sparams.use_penalty_prompt_tokens = true;
 | |
| 
 | |
|                     LOG_VERBOSE("penalty_prompt_tokens", {
 | |
|                         {"id_slot", slot.id},
 | |
|                         {"tokens",  slot.sparams.penalty_prompt_tokens},
 | |
|                     });
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             slot.sparams.logit_bias.clear();
 | |
| 
 | |
|             if (json_value(data, "ignore_eos", false)) {
 | |
|                 slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
 | |
|             }
 | |
| 
 | |
|             const auto & logit_bias = data.find("logit_bias");
 | |
|             if (logit_bias != data.end() && logit_bias->is_array()) {
 | |
|                 const int n_vocab = llama_n_vocab(model);
 | |
|                 for (const auto & el : *logit_bias) {
 | |
|                     // TODO: we may want to throw errors here, in case "el" is incorrect
 | |
|                     if (el.is_array() && el.size() == 2) {
 | |
|                         float bias;
 | |
|                         if (el[1].is_number()) {
 | |
|                             bias = el[1].get<float>();
 | |
|                         } else if (el[1].is_boolean() && !el[1].get<bool>()) {
 | |
|                             bias = -INFINITY;
 | |
|                         } else {
 | |
|                             continue;
 | |
|                         }
 | |
| 
 | |
|                         if (el[0].is_number_integer()) {
 | |
|                             llama_token tok = el[0].get<llama_token>();
 | |
|                             if (tok >= 0 && tok < n_vocab) {
 | |
|                                 slot.sparams.logit_bias[tok] = bias;
 | |
|                             }
 | |
|                         } else if (el[0].is_string()) {
 | |
|                             auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
 | |
|                             for (auto tok : toks) {
 | |
|                                 slot.sparams.logit_bias[tok] = bias;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             slot.params.antiprompt.clear();
 | |
| 
 | |
|             const auto & stop = data.find("stop");
 | |
|             if (stop != data.end() && stop->is_array()) {
 | |
|                 for (const auto & word : *stop) {
 | |
|                     if (!word.empty()) {
 | |
|                         slot.params.antiprompt.push_back(word);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             const auto & samplers_sequence = data.find("samplers");
 | |
|             if (samplers_sequence != data.end() && samplers_sequence->is_array()) {
 | |
|                 std::vector<std::string> sampler_names;
 | |
|                 for (const auto & sampler_name : *samplers_sequence) {
 | |
|                     if (sampler_name.is_string()) {
 | |
|                         sampler_names.emplace_back(sampler_name);
 | |
|                     }
 | |
|                 }
 | |
|                 slot.sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
 | |
|             } else {
 | |
|                 slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             if (slot.ctx_sampling != nullptr) {
 | |
|                 llama_sampling_free(slot.ctx_sampling);
 | |
|             }
 | |
|             slot.ctx_sampling = llama_sampling_init(slot.sparams);
 | |
|             if (slot.ctx_sampling == nullptr) {
 | |
|                 // for now, the only error that may happen here is invalid grammar
 | |
|                 send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
 | |
|                 return false;
 | |
|             }
 | |
|             llama_set_rng_seed(ctx, slot.params.seed);
 | |
|         }
 | |
| 
 | |
|         slot.command = SLOT_COMMAND_LOAD_PROMPT;
 | |
|         slot.prompt_tokens.clear();
 | |
| 
 | |
|         LOG_INFO("slot is processing task", {
 | |
|             {"id_slot", slot.id},
 | |
|             {"id_task", slot.id_task},
 | |
|         });
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     void kv_cache_clear() {
 | |
|         LOG_VERBOSE("clearing KV cache", {});
 | |
| 
 | |
|         // clear the entire KV cache
 | |
|         llama_kv_cache_clear(ctx);
 | |
|         clean_kv_cache = false;
 | |
|     }
 | |
| 
 | |
|     void system_prompt_update() {
 | |
|         LOG_VERBOSE("system prompt update", {
 | |
|             {"system_prompt", system_prompt},
 | |
|         });
 | |
| 
 | |
|         kv_cache_clear();
 | |
|         system_tokens.clear();
 | |
| 
 | |
|         if (!system_prompt.empty()) {
 | |
|             system_tokens = ::llama_tokenize(ctx, system_prompt, true);
 | |
| 
 | |
|             llama_batch_clear(batch);
 | |
| 
 | |
|             for (int i = 0; i < (int)system_tokens.size(); ++i) {
 | |
|                 llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
 | |
|             }
 | |
| 
 | |
|             const int32_t n_batch = llama_n_batch(ctx);
 | |
| 
 | |
|             for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
 | |
|                 const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i);
 | |
|                 llama_batch batch_view = {
 | |
|                     n_tokens,
 | |
|                     batch.token    + i,
 | |
|                     nullptr,
 | |
|                     batch.pos      + i,
 | |
|                     batch.n_seq_id + i,
 | |
|                     batch.seq_id   + i,
 | |
|                     batch.logits   + i,
 | |
|                     0, 0, 0, // unused
 | |
|                 };
 | |
| 
 | |
|                 if (llama_decode(ctx, batch_view) != 0) {
 | |
|                     LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // assign the system KV cache to all parallel sequences
 | |
|             for (int32_t i = 1; i <= params.n_parallel; ++i) {
 | |
|                 llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         system_need_update = false;
 | |
|     }
 | |
| 
 | |
|     void system_prompt_set(const json & sys_props) {
 | |
|         system_prompt  = sys_props.value("prompt", "");
 | |
|         name_user      = sys_props.value("anti_prompt", "");
 | |
|         name_assistant = sys_props.value("assistant_name", "");
 | |
| 
 | |
|         LOG_VERBOSE("system prompt process", {
 | |
|             {"system_prompt",  system_prompt},
 | |
|             {"name_user",      name_user},
 | |
|             {"name_assistant", name_assistant},
 | |
|         });
 | |
| 
 | |
|         // release all slots
 | |
|         for (server_slot & slot : slots) {
 | |
|             slot.release();
 | |
|         }
 | |
| 
 | |
|         system_need_update = true;
 | |
|     }
 | |
| 
 | |
|     bool process_token(completion_token_output & result, server_slot & slot) {
 | |
|         // remember which tokens were sampled - used for repetition penalties during sampling
 | |
|         const std::string token_str = llama_token_to_piece(ctx, result.tok);
 | |
|         slot.sampled = result.tok;
 | |
| 
 | |
|         // search stop word and delete it
 | |
|         slot.generated_text += token_str;
 | |
|         slot.has_next_token = true;
 | |
| 
 | |
|         if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) {
 | |
|             // we can change penalty_prompt_tokens because it is always created from scratch each request
 | |
|             slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
 | |
|         }
 | |
| 
 | |
|         // check if there is incomplete UTF-8 character at the end
 | |
|         bool incomplete = false;
 | |
|         for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
 | |
|             unsigned char c = slot.generated_text[slot.generated_text.size() - i];
 | |
|             if ((c & 0xC0) == 0x80) {
 | |
|                 // continuation byte: 10xxxxxx
 | |
|                 continue;
 | |
|             }
 | |
|             if ((c & 0xE0) == 0xC0) {
 | |
|                 // 2-byte character: 110xxxxx ...
 | |
|                 incomplete = i < 2;
 | |
|             } else if ((c & 0xF0) == 0xE0) {
 | |
|                 // 3-byte character: 1110xxxx ...
 | |
|                 incomplete = i < 3;
 | |
|             } else if ((c & 0xF8) == 0xF0) {
 | |
|                 // 4-byte character: 11110xxx ...
 | |
|                 incomplete = i < 4;
 | |
|             }
 | |
|             // else 1-byte character or invalid byte
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (!incomplete) {
 | |
|             size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
 | |
| 
 | |
|             const std::string str_test = slot.generated_text.substr(pos);
 | |
|             bool is_stop_full = false;
 | |
| 
 | |
|             size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
 | |
|             if (stop_pos != std::string::npos) {
 | |
|                 is_stop_full = true;
 | |
|                 slot.generated_text.erase(
 | |
|                     slot.generated_text.begin() + pos + stop_pos,
 | |
|                     slot.generated_text.end());
 | |
|                 pos = std::min(slot.n_sent_text, slot.generated_text.size());
 | |
|             } else {
 | |
|                 is_stop_full = false;
 | |
|                 stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
 | |
|             }
 | |
| 
 | |
|             // check if there is any token to predict
 | |
|             if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
 | |
|                 // no send the stop word in the response
 | |
|                 result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
 | |
|                 slot.n_sent_text += result.text_to_send.size();
 | |
|                 // add the token to slot queue and cache
 | |
|             }
 | |
| 
 | |
|             slot.add_token_string(result);
 | |
|             if (slot.params.stream) {
 | |
|                 send_partial_response(slot, result);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (incomplete) {
 | |
|             slot.has_next_token = true;
 | |
|         }
 | |
| 
 | |
|         // check the limits
 | |
|         if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
 | |
|             slot.stopped_limit  = true;
 | |
|             slot.has_next_token = false;
 | |
| 
 | |
|             LOG_VERBOSE("stopped by limit", {
 | |
|                 {"id_slot",   slot.id},
 | |
|                 {"id_task",   slot.id_task},
 | |
|                 {"n_decoded", slot.n_decoded},
 | |
|                 {"n_predict", slot.params.n_predict},
 | |
|             });
 | |
|         }
 | |
| 
 | |
|         if (result.tok == llama_token_eos(model)) {
 | |
|             slot.stopped_eos    = true;
 | |
|             slot.has_next_token = false;
 | |
| 
 | |
|             LOG_VERBOSE("eos token found", {});
 | |
|         }
 | |
| 
 | |
|         LOG_VERBOSE("next token", {
 | |
|             {"id_slot",        slot.id},
 | |
|             {"id_task",        slot.id_task},
 | |
|             {"token",          result.tok},
 | |
|             {"token_text",     tokens_to_output_formatted_string(ctx, result.tok)},
 | |
|             {"has_next_token", slot.has_next_token},
 | |
|             {"n_remain",       slot.n_remaining},
 | |
|             {"n_decoded",      slot.n_decoded},
 | |
|             {"stopped_eos",    slot.stopped_eos},
 | |
|             {"stopped_word",   slot.stopped_word},
 | |
|             {"stopped_limit",  slot.stopped_limit},
 | |
|             {"stopping_word",  slot.stopping_word},
 | |
|         });
 | |
| 
 | |
|         return slot.has_next_token; // continue
 | |
|     }
 | |
| 
 | |
|     json get_formated_generation(const server_slot & slot) const {
 | |
|         const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
 | |
|         const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second);
 | |
| 
 | |
|         std::vector<std::string> samplers_sequence;
 | |
|         samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
 | |
|         for (const auto & sampler_type : slot.sparams.samplers_sequence) {
 | |
|             samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
 | |
|         }
 | |
| 
 | |
|         return json {
 | |
|             {"n_ctx",                     slot.n_ctx},
 | |
|             {"n_predict",                 slot.n_predict},
 | |
|             {"model",                     params.model_alias},
 | |
|             {"seed",                      slot.params.seed},
 | |
|             {"temperature",               slot.sparams.temp},
 | |
|             {"dynatemp_range",            slot.sparams.dynatemp_range},
 | |
|             {"dynatemp_exponent",         slot.sparams.dynatemp_exponent},
 | |
|             {"top_k",                     slot.sparams.top_k},
 | |
|             {"top_p",                     slot.sparams.top_p},
 | |
|             {"min_p",                     slot.sparams.min_p},
 | |
|             {"tfs_z",                     slot.sparams.tfs_z},
 | |
|             {"typical_p",                 slot.sparams.typical_p},
 | |
|             {"repeat_last_n",             slot.sparams.penalty_last_n},
 | |
|             {"repeat_penalty",            slot.sparams.penalty_repeat},
 | |
|             {"presence_penalty",          slot.sparams.penalty_present},
 | |
|             {"frequency_penalty",         slot.sparams.penalty_freq},
 | |
|             {"penalty_prompt_tokens",     slot.sparams.penalty_prompt_tokens},
 | |
|             {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
 | |
|             {"mirostat",                  slot.sparams.mirostat},
 | |
|             {"mirostat_tau",              slot.sparams.mirostat_tau},
 | |
|             {"mirostat_eta",              slot.sparams.mirostat_eta},
 | |
|             {"penalize_nl",               slot.sparams.penalize_nl},
 | |
|             {"stop",                      slot.params.antiprompt},
 | |
|             {"n_predict",                 slot.params.n_predict}, // TODO: fix duplicate key n_predict
 | |
|             {"n_keep",                    slot.params.n_keep},
 | |
|             {"n_discard",                 slot.params.n_discard},
 | |
|             {"ignore_eos",                ignore_eos},
 | |
|             {"stream",                    slot.params.stream},
 | |
|             {"logit_bias",                slot.sparams.logit_bias},
 | |
|             {"n_probs",                   slot.sparams.n_probs},
 | |
|             {"min_keep",                  slot.sparams.min_keep},
 | |
|             {"grammar",                   slot.sparams.grammar},
 | |
|             {"samplers",                  samplers_sequence}
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
 | |
|         send_error(task.id, task.id_multi, error, type);
 | |
|     }
 | |
| 
 | |
|     void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
 | |
|         send_error(slot.id_task, slot.id_multi, error, type);
 | |
|     }
 | |
| 
 | |
|     void send_error(const int id_task, const int id_multi, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
 | |
|         LOG_TEE("task %i - error: %s\n", id_task, error.c_str());
 | |
| 
 | |
|         server_task_result res;
 | |
|         res.id       = id_task;
 | |
|         res.id_multi = id_multi;
 | |
|         res.stop     = false;
 | |
|         res.error    = true;
 | |
|         res.data     = format_error_response(error, type);
 | |
| 
 | |
|         queue_results.send(res);
 | |
|     }
 | |
| 
 | |
|     void send_partial_response(server_slot & slot, completion_token_output tkn) {
 | |
|         server_task_result res;
 | |
|         res.id       = slot.id_task;
 | |
|         res.id_multi = slot.id_multi;
 | |
|         res.error    = false;
 | |
|         res.stop     = false;
 | |
|         res.data     = json {
 | |
|             {"content",    tkn.text_to_send},
 | |
|             {"stop",       false},
 | |
|             {"id_slot",    slot.id},
 | |
|             {"multimodal", false}
 | |
|         };
 | |
| 
 | |
|         if (slot.sparams.n_probs > 0) {
 | |
|             const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
 | |
|             const size_t probs_pos      = std::min(slot.n_sent_token_probs,                       slot.generated_token_probs.size());
 | |
|             const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
 | |
| 
 | |
|             std::vector<completion_token_output> probs_output;
 | |
|             if (probs_pos < probs_stop_pos) {
 | |
|                 probs_output = std::vector<completion_token_output>(
 | |
|                         slot.generated_token_probs.begin() + probs_pos,
 | |
|                         slot.generated_token_probs.begin() + probs_stop_pos);
 | |
|             }
 | |
|             slot.n_sent_token_probs = probs_stop_pos;
 | |
| 
 | |
|             res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
 | |
|         }
 | |
| 
 | |
|         if (slot.oaicompat) {
 | |
|             res.data["oaicompat_token_ctr"] = slot.n_decoded;
 | |
|             res.data["model"] = slot.oaicompat_model;
 | |
|         }
 | |
| 
 | |
|         queue_results.send(res);
 | |
|     }
 | |
| 
 | |
|     void send_final_response(const server_slot & slot) {
 | |
|         server_task_result res;
 | |
|         res.id       = slot.id_task;
 | |
|         res.id_multi = slot.id_multi;
 | |
|         res.error    = false;
 | |
|         res.stop     = true;
 | |
|         res.data     = json {
 | |
|             {"content",             !slot.params.stream ? slot.generated_text : ""},
 | |
|             {"id_slot",             slot.id},
 | |
|             {"stop",                true},
 | |
|             {"model",               params.model_alias},
 | |
|             {"tokens_predicted",    slot.n_decoded},
 | |
|             {"tokens_evaluated",    slot.n_prompt_tokens},
 | |
|             {"generation_settings", get_formated_generation(slot)},
 | |
|             {"prompt",              slot.prompt},
 | |
|             {"truncated",           slot.truncated},
 | |
|             {"stopped_eos",         slot.stopped_eos},
 | |
|             {"stopped_word",        slot.stopped_word},
 | |
|             {"stopped_limit",       slot.stopped_limit},
 | |
|             {"stopping_word",       slot.stopping_word},
 | |
|             {"tokens_cached",       slot.n_past},
 | |
|             {"timings",             slot.get_formated_timings()}
 | |
|         };
 | |
| 
 | |
|         if (slot.sparams.n_probs > 0) {
 | |
|             std::vector<completion_token_output> probs;
 | |
|             if (!slot.params.stream && slot.stopped_word) {
 | |
|                 const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
 | |
| 
 | |
|                 probs = std::vector<completion_token_output>(
 | |
|                         slot.generated_token_probs.begin(),
 | |
|                         slot.generated_token_probs.end() - stop_word_toks.size());
 | |
|             } else {
 | |
|                 probs = std::vector<completion_token_output>(
 | |
|                         slot.generated_token_probs.begin(),
 | |
|                         slot.generated_token_probs.end());
 | |
|             }
 | |
| 
 | |
|             res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
 | |
|         }
 | |
| 
 | |
|         if (slot.oaicompat) {
 | |
|             res.data["oaicompat_token_ctr"] = slot.n_decoded;
 | |
|             res.data["model"] = slot.oaicompat_model;
 | |
|         }
 | |
| 
 | |
|         queue_results.send(res);
 | |
|     }
 | |
| 
 | |
|     void send_embedding(const server_slot & slot, const llama_batch & batch) {
 | |
|         server_task_result res;
 | |
|         res.id       = slot.id_task;
 | |
|         res.id_multi = slot.id_multi;
 | |
|         res.error    = false;
 | |
|         res.stop     = true;
 | |
| 
 | |
|         const int n_embd = llama_n_embd(model);
 | |
| 
 | |
|         std::vector<float> embd_res(n_embd, 0.0f);
 | |
| 
 | |
|         for (int i = 0; i < batch.n_tokens; ++i) {
 | |
|             if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
 | |
|             if (embd == NULL) {
 | |
|                 embd = llama_get_embeddings_ith(ctx, i);
 | |
|             }
 | |
| 
 | |
|             if (embd == NULL) {
 | |
|                 LOG_ERROR("failed to get embeddings", {
 | |
|                     {"token",  batch.token [i]},
 | |
|                         {"seq_id", batch.seq_id[i][0]}
 | |
|                 });
 | |
| 
 | |
|                 res.data = json {
 | |
|                     {"embedding", std::vector<float>(n_embd, 0.0f)},
 | |
|                 };
 | |
| 
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             llama_embd_normalize(embd, embd_res.data(), n_embd);
 | |
| 
 | |
|             res.data = json {
 | |
|                 {"embedding", embd_res},
 | |
|             };
 | |
|         }
 | |
| 
 | |
|         queue_results.send(res);
 | |
|     }
 | |
| 
 | |
|     void request_completion(int id_task, int id_multi, json data, bool infill, bool embedding) {
 | |
|         server_task task;
 | |
|         task.id        = id_task;
 | |
|         task.id_multi  = id_multi;
 | |
|         task.id_target = 0;
 | |
|         task.data      = std::move(data);
 | |
|         task.infill    = infill;
 | |
|         task.embedding = embedding;
 | |
|         task.type      = SERVER_TASK_TYPE_COMPLETION;
 | |
| 
 | |
|         // when a completion task's prompt array is not a singleton, we split it into multiple requests
 | |
|         // otherwise, it's a single-prompt task, we actually queue it
 | |
|         // if there's numbers in the prompt array it will be treated as an array of tokens
 | |
|         if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
 | |
|             bool numbers = false;
 | |
|             for (const auto & e : task.data.at("prompt")) {
 | |
|                 if (e.is_number()) {
 | |
|                     numbers = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
 | |
|             // it will completely stall the server. I don't know where the bug for this is.
 | |
|             //
 | |
|             // if there are numbers, it needs to be treated like a single prompt,
 | |
|             // queue_tasks handles a mix of strings and numbers just fine.
 | |
|             if (numbers) {
 | |
|                 queue_tasks.post(task);
 | |
|             } else {
 | |
|                 split_multiprompt_task(id_task, task);
 | |
|             }
 | |
|         } else {
 | |
|             queue_tasks.post(task);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void request_cancel(int id_task) {
 | |
|         server_task task;
 | |
|         task.type      = SERVER_TASK_TYPE_CANCEL;
 | |
|         task.id_target = id_task;
 | |
| 
 | |
|         queue_tasks.post(task);
 | |
|     }
 | |
| 
 | |
|     void split_multiprompt_task(int id_multi, const server_task & multiprompt_task) {
 | |
|         const int prompt_count = multiprompt_task.data.at("prompt").size();
 | |
|         if (prompt_count <= 1) {
 | |
|             send_error(multiprompt_task, "error while handling multiple prompts");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // generate all the ID for subtask
 | |
|         std::vector<int> subtask_ids(prompt_count);
 | |
|         for (int i = 0; i < prompt_count; i++) {
 | |
|             subtask_ids[i] = queue_tasks.get_new_id();
 | |
|         }
 | |
| 
 | |
|         // queue up the multitask so we can track its subtask progression
 | |
|         queue_tasks.add_multitask(id_multi, subtask_ids);
 | |
| 
 | |
|         // add subtasks
 | |
|         for (int i = 0; i < prompt_count; i++) {
 | |
|             json subtask_data = multiprompt_task.data;
 | |
|             subtask_data["prompt"] = subtask_data["prompt"][i];
 | |
| 
 | |
|             // subtasks inherit everything else (infill mode, embedding mode, etc.)
 | |
|             request_completion(subtask_ids[i], id_multi, subtask_data, multiprompt_task.infill, multiprompt_task.embedding);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void process_single_task(const server_task & task) {
 | |
|         switch (task.type) {
 | |
|             case SERVER_TASK_TYPE_COMPLETION:
 | |
|                 {
 | |
|                     server_slot * slot = get_slot(json_value(task.data, "id_slot", -1));
 | |
|                     if (slot == nullptr) {
 | |
|                         // if no slot is available, we defer this task for processing later
 | |
|                         LOG_VERBOSE("no slot is available", {{"id_task", task.id}});
 | |
|                         queue_tasks.defer(task);
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     if (task.data.contains("system_prompt")) {
 | |
|                         system_prompt_set(task.data["system_prompt"]);
 | |
| 
 | |
|                         for (server_slot & slot : slots) {
 | |
|                             slot.n_past    = 0;
 | |
|                             slot.n_past_se = 0;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     slot->reset();
 | |
| 
 | |
|                     slot->id_task   = task.id;
 | |
|                     slot->id_multi  = task.id_multi;
 | |
|                     slot->infill    = task.infill;
 | |
|                     slot->embedding = task.embedding;
 | |
| 
 | |
|                     if (!launch_slot_with_task(*slot, task)) {
 | |
|                         LOG_ERROR("error while launching slot", task.data);
 | |
|                         break;
 | |
|                     }
 | |
|                 } break;
 | |
|             case SERVER_TASK_TYPE_CANCEL:
 | |
|                 {
 | |
|                     // release slot linked with the task id
 | |
|                     for (auto & slot : slots) {
 | |
|                         if (slot.id_task == task.id_target) {
 | |
|                             slot.release();
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 } break;
 | |
|             case SERVER_TASK_TYPE_NEXT_RESPONSE:
 | |
|                 {
 | |
|                     // do nothing
 | |
|                 } break;
 | |
|             case SERVER_TASK_TYPE_METRICS:
 | |
|                 {
 | |
|                     json slots_data = json::array();
 | |
| 
 | |
|                     int n_idle_slots       = 0;
 | |
|                     int n_processing_slots = 0;
 | |
| 
 | |
|                     for (server_slot & slot : slots) {
 | |
|                         json slot_data = get_formated_generation(slot);
 | |
|                         slot_data["id"]         = slot.id;
 | |
|                         slot_data["id_task"]    = slot.id_task;
 | |
|                         slot_data["state"]      = slot.state;
 | |
|                         slot_data["prompt"]     = slot.prompt;
 | |
|                         slot_data["next_token"] = {
 | |
|                             {"has_next_token", slot.has_next_token},
 | |
|                             {"n_remain",       slot.n_remaining},
 | |
|                             {"n_decoded",      slot.n_decoded},
 | |
|                             {"stopped_eos",    slot.stopped_eos},
 | |
|                             {"stopped_word",   slot.stopped_word},
 | |
|                             {"stopped_limit",  slot.stopped_limit},
 | |
|                             {"stopping_word",  slot.stopping_word},
 | |
|                         };
 | |
| 
 | |
|                         if (slot_data["state"] == SLOT_STATE_IDLE) {
 | |
|                             n_idle_slots++;
 | |
|                         } else {
 | |
|                             n_processing_slots++;
 | |
|                         }
 | |
| 
 | |
|                         slots_data.push_back(slot_data);
 | |
|                     }
 | |
|                     LOG_INFO("slot data", {
 | |
|                         {"id_task",            task.id},
 | |
|                         {"n_idle_slots",       n_idle_slots},
 | |
|                         {"n_processing_slots", n_processing_slots}
 | |
|                     });
 | |
| 
 | |
|                     LOG_VERBOSE("slot data", {
 | |
|                         {"id_task",            task.id},
 | |
|                         {"n_idle_slots",       n_idle_slots},
 | |
|                         {"n_processing_slots", n_processing_slots},
 | |
|                         {"slots",              slots_data}
 | |
|                     });
 | |
| 
 | |
|                     server_task_result res;
 | |
|                     res.id       = task.id;
 | |
|                     res.id_multi = task.id_multi;
 | |
|                     res.stop     = true;
 | |
|                     res.error    = false;
 | |
|                     res.data     = {
 | |
|                         { "idle",                            n_idle_slots       },
 | |
|                         { "processing",                      n_processing_slots },
 | |
|                         { "deferred",                        queue_tasks.queue_tasks_deferred.size() },
 | |
|                         { "t_start",                         metrics.t_start},
 | |
| 
 | |
|                         { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
 | |
|                         { "t_tokens_generation_total",       metrics.t_tokens_generation_total},
 | |
|                         { "n_tokens_predicted_total",        metrics.n_tokens_predicted_total},
 | |
|                         { "t_prompt_processing_total",       metrics.t_prompt_processing_total},
 | |
| 
 | |
|                         { "n_prompt_tokens_processed",       metrics.n_prompt_tokens_processed},
 | |
|                         { "t_prompt_processing",             metrics.t_prompt_processing},
 | |
|                         { "n_tokens_predicted",              metrics.n_tokens_predicted},
 | |
|                         { "t_tokens_generation",             metrics.t_tokens_generation},
 | |
| 
 | |
|                         { "kv_cache_tokens_count",           llama_get_kv_cache_token_count(ctx)},
 | |
|                         { "kv_cache_used_cells",             llama_get_kv_cache_used_cells(ctx)},
 | |
| 
 | |
|                         { "slots",                           slots_data },
 | |
|                     };
 | |
| 
 | |
|                     if (json_value(task.data, "reset_bucket", false)) {
 | |
|                         metrics.reset_bucket();
 | |
|                     }
 | |
|                     queue_results.send(res);
 | |
|                 } break;
 | |
|             case SERVER_TASK_TYPE_SLOT_SAVE:
 | |
|                 {
 | |
|                     int id_slot = task.data["id_slot"];
 | |
|                     server_slot * slot = get_slot(id_slot);
 | |
|                     if (slot == nullptr) {
 | |
|                         send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     const size_t token_count = slot->cache_tokens.size();
 | |
|                     const int64_t t_start = ggml_time_us();
 | |
| 
 | |
|                     std::string filename = task.data["filename"];
 | |
|                     std::string filepath = task.data["filepath"];
 | |
| 
 | |
|                     const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
 | |
| 
 | |
|                     const int64_t t_end = ggml_time_us();
 | |
|                     const double t_save_ms = (t_end - t_start) / 1000.0;
 | |
| 
 | |
|                     server_task_result result;
 | |
|                     result.id = task.id;
 | |
|                     result.stop = true;
 | |
|                     result.error = false;
 | |
|                     result.data = json {
 | |
|                         { "id_slot",   id_slot },
 | |
|                         { "filename",  filename },
 | |
|                         { "n_saved",   token_count }, // tokens saved
 | |
|                         { "n_written", nwrite },      // bytes written
 | |
|                         { "timings", {
 | |
|                             { "save_ms", t_save_ms }
 | |
|                         } }
 | |
|                     };
 | |
|                     queue_results.send(result);
 | |
|                 } break;
 | |
|             case SERVER_TASK_TYPE_SLOT_RESTORE:
 | |
|                 {
 | |
|                     int id_slot = task.data["id_slot"];
 | |
|                     server_slot * slot = get_slot(id_slot);
 | |
|                     if (slot == nullptr) {
 | |
|                         send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     const int64_t t_start = ggml_time_us();
 | |
| 
 | |
|                     std::string filename = task.data["filename"];
 | |
|                     std::string filepath = task.data["filepath"];
 | |
| 
 | |
|                     slot->cache_tokens.resize(slot->n_ctx);
 | |
|                     size_t token_count = 0;
 | |
|                     size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
 | |
|                     if (nread == 0) {
 | |
|                         slot->cache_tokens.resize(0);
 | |
|                         send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
 | |
|                         break;
 | |
|                     }
 | |
|                     slot->cache_tokens.resize(token_count);
 | |
| 
 | |
|                     const int64_t t_end = ggml_time_us();
 | |
|                     const double t_restore_ms = (t_end - t_start) / 1000.0;
 | |
| 
 | |
|                     server_task_result result;
 | |
|                     result.id = task.id;
 | |
|                     result.stop = true;
 | |
|                     result.error = false;
 | |
|                     result.data = json {
 | |
|                         { "id_slot",    id_slot },
 | |
|                         { "filename",   filename },
 | |
|                         { "n_restored", token_count }, // tokens restored
 | |
|                         { "n_read",     nread },       // bytes read
 | |
|                         { "timings", {
 | |
|                             { "restore_ms", t_restore_ms }
 | |
|                         } }
 | |
|                     };
 | |
|                     queue_results.send(result);
 | |
|                 } break;
 | |
|             case SERVER_TASK_TYPE_SLOT_ERASE:
 | |
|                 {
 | |
|                     int id_slot = task.data["id_slot"];
 | |
|                     server_slot * slot = get_slot(id_slot);
 | |
|                     if (slot == nullptr) {
 | |
|                         send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     // Erase token cache
 | |
|                     const size_t n_erased = slot->cache_tokens.size();
 | |
|                     llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
 | |
|                     slot->cache_tokens.clear();
 | |
| 
 | |
|                     server_task_result result;
 | |
|                     result.id = task.id;
 | |
|                     result.stop = true;
 | |
|                     result.error = false;
 | |
|                     result.data = json {
 | |
|                         { "id_slot",  id_slot },
 | |
|                         { "n_erased", n_erased }
 | |
|                     };
 | |
|                     queue_results.send(result);
 | |
|                 } break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void on_finish_multitask(const server_task_multi & multitask) {
 | |
|         // all subtasks done == multitask is done
 | |
|         server_task_result result;
 | |
|         result.id    = multitask.id;
 | |
|         result.stop  = true;
 | |
|         result.error = false;
 | |
| 
 | |
|         // collect json results into one json result
 | |
|         std::vector<json> result_jsons;
 | |
|         for (const auto & subres : multitask.results) {
 | |
|             result_jsons.push_back(subres.data);
 | |
|             result.error = result.error && subres.error;
 | |
|         }
 | |
|         result.data = json {
 | |
|             { "results", result_jsons }
 | |
|         };
 | |
| 
 | |
|         queue_results.send(result);
 | |
|     }
 | |
| 
 | |
|     void update_slots() {
 | |
|         if (system_need_update) {
 | |
|             system_prompt_update();
 | |
|         }
 | |
| 
 | |
|         // release slots
 | |
|         for (auto & slot : slots) {
 | |
|             if (slot.command == SLOT_COMMAND_RELEASE) {
 | |
|                 slot.state       = SLOT_STATE_IDLE;
 | |
|                 slot.command     = SLOT_COMMAND_NONE;
 | |
|                 slot.t_last_used = ggml_time_us();
 | |
| 
 | |
|                 LOG_INFO("slot released", {
 | |
|                     {"id_slot",         slot.id},
 | |
|                     {"id_task",         slot.id_task},
 | |
|                     {"n_ctx",           n_ctx},
 | |
|                     {"n_past",          slot.n_past},
 | |
|                     {"n_system_tokens", system_tokens.size()},
 | |
|                     {"n_cache_tokens",  slot.cache_tokens.size()},
 | |
|                     {"truncated",       slot.truncated}
 | |
|                 });
 | |
| 
 | |
|                 queue_tasks.notify_slot_changed();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // check if all slots are idle
 | |
|         {
 | |
|             bool all_idle = true;
 | |
| 
 | |
|             for (auto & slot : slots) {
 | |
|                 if (slot.state != SLOT_STATE_IDLE || slot.command != SLOT_COMMAND_NONE) {
 | |
|                     all_idle = false;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (all_idle) {
 | |
|                 LOG_INFO("all slots are idle", {});
 | |
|                 if (system_prompt.empty() && clean_kv_cache) {
 | |
|                     kv_cache_clear();
 | |
|                 }
 | |
| 
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             LOG_VERBOSE("posting NEXT_RESPONSE", {});
 | |
| 
 | |
|             server_task task;
 | |
|             task.type      = SERVER_TASK_TYPE_NEXT_RESPONSE;
 | |
|             task.id_target = -1;
 | |
| 
 | |
|             queue_tasks.post(task);
 | |
|         }
 | |
| 
 | |
|         // apply context-shift if needed
 | |
|         // TODO: simplify and improve
 | |
|         for (server_slot & slot : slots) {
 | |
|             if (slot.ga_n == 1) {
 | |
|                 if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
 | |
|                     // Shift context
 | |
|                     const int n_keep    = slot.params.n_keep + add_bos_token;
 | |
|                     const int n_left    = (int) system_tokens.size() + slot.n_past - n_keep;
 | |
|                     const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
 | |
| 
 | |
|                     LOG_INFO("slot context shift", {
 | |
|                         {"id_slot",         slot.id},
 | |
|                         {"id_task",         slot.id_task},
 | |
|                         {"n_keep",          n_keep},
 | |
|                         {"n_left",          n_left},
 | |
|                         {"n_discard",       n_discard},
 | |
|                         {"n_ctx",           n_ctx},
 | |
|                         {"n_past",          slot.n_past},
 | |
|                         {"n_system_tokens", system_tokens.size()},
 | |
|                         {"n_cache_tokens",  slot.cache_tokens.size()}
 | |
|                     });
 | |
| 
 | |
|                     llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep            , n_keep + n_discard);
 | |
|                     llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
 | |
| 
 | |
|                     if (slot.params.cache_prompt) {
 | |
|                         for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
 | |
|                             slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
 | |
|                         }
 | |
| 
 | |
|                         slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
 | |
|                     }
 | |
| 
 | |
|                     slot.n_past -= n_discard;
 | |
| 
 | |
|                     slot.truncated = true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // start populating the batch for this iteration
 | |
|         llama_batch_clear(batch);
 | |
| 
 | |
|         // frist, add sampled tokens from any ongoing sequences
 | |
|         for (auto & slot : slots) {
 | |
|             if (slot.state == SLOT_STATE_IDLE) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             slot.i_batch = batch.n_tokens;
 | |
| 
 | |
|             const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
 | |
| 
 | |
|             // TODO: we always have to take into account the "system_tokens"
 | |
|             //       this is not great and needs to be improved somehow
 | |
|             llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
 | |
| 
 | |
|             slot.n_past += 1;
 | |
| 
 | |
|             if (slot.params.cache_prompt) {
 | |
|                 slot.cache_tokens.push_back(slot.sampled);
 | |
|             }
 | |
| 
 | |
|             LOG_VERBOSE("slot decode token", {
 | |
|                 {"id_slot",         slot.id},
 | |
|                 {"id_task",         slot.id_task},
 | |
|                 {"n_ctx",           n_ctx},
 | |
|                 {"n_past",          slot.n_past},
 | |
|                 {"n_system_tokens", system_tokens.size()},
 | |
|                 {"n_cache_tokens",  slot.cache_tokens.size()},
 | |
|                 {"truncated",       slot.truncated}
 | |
|             });
 | |
|         }
 | |
| 
 | |
|         // process in chunks of params.n_batch
 | |
|         int32_t n_batch  = llama_n_batch(ctx);
 | |
|         int32_t n_ubatch = llama_n_ubatch(ctx);
 | |
| 
 | |
|         // next, batch any pending prompts without exceeding n_batch
 | |
|         if (params.cont_batching || batch.n_tokens == 0) {
 | |
|             for (auto & slot : slots) {
 | |
|                 // this slot still has a prompt to be processed
 | |
|                 if (slot.state == SLOT_STATE_IDLE && slot.command == SLOT_COMMAND_LOAD_PROMPT) {
 | |
|                     auto & prompt_tokens = slot.prompt_tokens;
 | |
| 
 | |
|                     // we haven't tokenized the prompt yet - do it now:
 | |
|                     if (prompt_tokens.empty()) {
 | |
|                         LOG_VERBOSE("tokenizing prompt", {
 | |
|                             {"id_slot", slot.id},
 | |
|                             {"id_task", slot.id_task}
 | |
|                         });
 | |
| 
 | |
|                         slot.t_start_process_prompt = ggml_time_us();
 | |
|                         slot.t_start_generation = 0;
 | |
| 
 | |
|                         if (slot.infill) {
 | |
|                             bool suff_rm_leading_spc = true;
 | |
|                             if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
 | |
|                                 params.input_suffix.erase(0, 1);
 | |
|                                 suff_rm_leading_spc = false;
 | |
|                             }
 | |
| 
 | |
|                             auto prefix_tokens = tokenize(slot.params.input_prefix, false);
 | |
|                             auto suffix_tokens = tokenize(slot.params.input_suffix, false);
 | |
| 
 | |
|                             const int space_token = 29871; // TODO: this should not be hardcoded
 | |
|                             if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
 | |
|                                 suffix_tokens.erase(suffix_tokens.begin());
 | |
|                             }
 | |
| 
 | |
|                             prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
 | |
|                             prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
 | |
|                             prefix_tokens.insert(prefix_tokens.end(),   llama_token_suffix(model));
 | |
|                             prefix_tokens.insert(prefix_tokens.end(),   suffix_tokens.begin(), suffix_tokens.end());
 | |
|                             prefix_tokens.push_back(llama_token_middle(model));
 | |
|                             prompt_tokens = prefix_tokens;
 | |
|                         } else {
 | |
|                             prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
 | |
|                         }
 | |
| 
 | |
|                         slot.n_past = 0;
 | |
|                         slot.n_prompt_tokens = prompt_tokens.size();
 | |
| 
 | |
|                         LOG_VERBOSE("prompt tokenized", {
 | |
|                             {"id_slot",         slot.id},
 | |
|                             {"id_task",         slot.id_task},
 | |
|                             {"n_ctx",           slot.n_ctx},
 | |
|                             {"n_keep",          slot.params.n_keep},
 | |
|                             {"n_prompt_tokens", slot.n_prompt_tokens},
 | |
|                             {"prompt_tokens",   tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
 | |
|                         });
 | |
| 
 | |
|                         // empty prompt passed -> release the slot and send empty response
 | |
|                         if (prompt_tokens.empty()) {
 | |
|                             LOG_INFO("empty prompt - releasing slot", {
 | |
|                                 {"id_slot", slot.id},
 | |
|                                 {"id_task", slot.id_task}
 | |
|                             });
 | |
| 
 | |
|                             slot.state = SLOT_STATE_PROCESSING;
 | |
|                             slot.command = SLOT_COMMAND_NONE;
 | |
|                             slot.release();
 | |
|                             slot.print_timings();
 | |
|                             send_final_response(slot);
 | |
|                             continue;
 | |
|                         }
 | |
| 
 | |
|                         if (slot.embedding) {
 | |
|                             // this prompt is too large to process - discard it
 | |
|                             if (slot.n_prompt_tokens > n_ubatch) {
 | |
|                                 slot.state = SLOT_STATE_PROCESSING;
 | |
|                                 slot.command = SLOT_COMMAND_NONE;
 | |
|                                 slot.release();
 | |
|                                 slot.print_timings();
 | |
|                                 send_final_response(slot);
 | |
|                                 continue;
 | |
|                             }
 | |
|                         } else {
 | |
|                             if (slot.params.n_keep < 0) {
 | |
|                                 slot.params.n_keep = slot.n_prompt_tokens;
 | |
|                             }
 | |
|                             slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
 | |
| 
 | |
|                             // if input prompt is too big, truncate it (if group attention self-extend is disabled)
 | |
|                             if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
 | |
|                                 const int n_left = slot.n_ctx - slot.params.n_keep;
 | |
| 
 | |
|                                 const int n_block_size = n_left / 2;
 | |
|                                 const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
 | |
| 
 | |
|                                 std::vector<llama_token> new_tokens(
 | |
|                                         prompt_tokens.begin(),
 | |
|                                         prompt_tokens.begin() + slot.params.n_keep);
 | |
| 
 | |
|                                 new_tokens.insert(
 | |
|                                         new_tokens.end(),
 | |
|                                         prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
 | |
|                                         prompt_tokens.end());
 | |
| 
 | |
|                                 prompt_tokens = std::move(new_tokens);
 | |
| 
 | |
|                                 slot.truncated = true;
 | |
|                                 slot.n_prompt_tokens = prompt_tokens.size();
 | |
| 
 | |
|                                 LOG_VERBOSE("input truncated", {
 | |
|                                     {"id_slot",         slot.id},
 | |
|                                     {"id_task",         slot.id_task},
 | |
|                                     {"n_ctx",           slot.n_ctx},
 | |
|                                     {"n_keep",          slot.params.n_keep},
 | |
|                                     {"n_left",          n_left},
 | |
|                                     {"n_prompt_tokens", slot.n_prompt_tokens},
 | |
|                                     {"prompt_tokens",   tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
 | |
|                                 });
 | |
| 
 | |
|                                 GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
 | |
|                             }
 | |
| 
 | |
|                             llama_sampling_reset(slot.ctx_sampling);
 | |
| 
 | |
|                             if (!slot.params.cache_prompt) {
 | |
|                                 slot.n_past_se = 0;
 | |
|                                 slot.ga_i      = 0;
 | |
|                             } else {
 | |
|                                 GGML_ASSERT(slot.ga_n == 1);
 | |
| 
 | |
|                                 // reuse any previously computed tokens that are common with the new prompt
 | |
|                                 slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
 | |
| 
 | |
|                                 // push the prompt into the sampling context (do not apply grammar)
 | |
|                                 for (int i = 0; i < slot.n_past; ++i) {
 | |
|                                     llama_sampling_accept(slot.ctx_sampling, ctx, slot.cache_tokens[i], false);
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
 | |
|                             // we have to evaluate at least 1 token to generate logits.
 | |
|                             LOG_INFO("we have to evaluate at least 1 token to generate logits", {
 | |
|                                 { "id_slot", slot.id },
 | |
|                                 { "id_task", slot.id_task }
 | |
|                             });
 | |
| 
 | |
|                             slot.n_past--;
 | |
|                             if (slot.ga_i > 0) {
 | |
|                                 slot.n_past_se--;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         slot.n_prompt_tokens_processed = 0;
 | |
|                     }
 | |
| 
 | |
|                     if (slot.embedding) {
 | |
|                         // cannot fit the prompt in the current batch - will try next iter
 | |
|                         if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
 | |
|                             continue;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     // keep only the common part
 | |
|                     int p0 = (int) system_tokens.size() + slot.n_past;
 | |
|                     if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
 | |
|                         // could not partially delete (likely using a non-Transformer model)
 | |
|                         llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
 | |
| 
 | |
|                         p0 = (int) system_tokens.size();
 | |
|                         if (p0 != 0) {
 | |
|                             // copy over the system prompt when there is one
 | |
|                             llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1);
 | |
|                         }
 | |
| 
 | |
|                         // there is no common part left (except for the system prompt)
 | |
|                         slot.n_past = 0;
 | |
|                         slot.n_past_se = 0;
 | |
|                         slot.ga_i = 0;
 | |
|                         // TODO: is the system prompt ever in the sampling context?
 | |
|                         llama_sampling_reset(slot.ctx_sampling);
 | |
|                     }
 | |
| 
 | |
|                     // remove the non-common part from the cache
 | |
|                     slot.cache_tokens.resize(slot.n_past);
 | |
| 
 | |
|                     LOG_INFO("kv cache rm [p0, end)", {
 | |
|                         { "id_slot", slot.id },
 | |
|                         { "id_task", slot.id_task },
 | |
|                         { "p0",      p0 }
 | |
|                     });
 | |
| 
 | |
|                     int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
 | |
| 
 | |
|                     int32_t ga_i = slot.ga_i;
 | |
|                     int32_t ga_n = slot.ga_n;
 | |
|                     int32_t ga_w = slot.ga_w;
 | |
| 
 | |
|                     // add prompt tokens for processing in the current batch
 | |
|                     // TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
 | |
|                     for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) {
 | |
|                         if (slot.ga_n != 1) {
 | |
|                             while (slot_npast >= ga_i + ga_w) {
 | |
|                                 const int bd = (ga_w/ga_n)*(ga_n - 1);
 | |
|                                 slot_npast -= bd;
 | |
|                                 ga_i += ga_w/ga_n;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         llama_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
 | |
| 
 | |
|                         if (slot.params.cache_prompt) {
 | |
|                             slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
 | |
|                         }
 | |
| 
 | |
|                         slot.n_prompt_tokens_processed++;
 | |
|                         slot_npast++;
 | |
|                     }
 | |
| 
 | |
|                     LOG_VERBOSE("prompt processing progress", {
 | |
|                         {"id_slot",  slot.id},
 | |
|                         {"n_past",   slot.n_past},
 | |
|                         {"n_ctx",    n_ctx},
 | |
|                         {"n_tokens", batch.n_tokens},
 | |
|                         {"progress", (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens},
 | |
|                     });
 | |
| 
 | |
|                     // entire prompt has been processed - start decoding new tokens
 | |
|                     if (slot.n_past == slot.n_prompt_tokens) {
 | |
|                         slot.state   = SLOT_STATE_PROCESSING;
 | |
|                         slot.command = SLOT_COMMAND_NONE;
 | |
| 
 | |
|                         GGML_ASSERT(batch.n_tokens > 0);
 | |
| 
 | |
|                         // extract the logits only for the last token
 | |
|                         batch.logits[batch.n_tokens - 1] = true;
 | |
| 
 | |
|                         slot.n_decoded = 0;
 | |
|                         slot.i_batch   = batch.n_tokens - 1;
 | |
| 
 | |
|                         LOG_VERBOSE("prompt done", {
 | |
|                             {"id_slot",  slot.id},
 | |
|                             {"n_past",   slot.n_past},
 | |
|                             {"n_ctx",    n_ctx},
 | |
|                             {"n_tokens", batch.n_tokens},
 | |
|                         });
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (batch.n_tokens >= n_batch) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (batch.n_tokens == 0) {
 | |
|             LOG_VERBOSE("no tokens to decode", {});
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         LOG_VERBOSE("decoding batch", {
 | |
|             {"n_tokens", batch.n_tokens},
 | |
|         });
 | |
| 
 | |
|         // process the created batch of tokens
 | |
|         for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
 | |
|             const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
 | |
| 
 | |
|             for (auto & slot : slots) {
 | |
|                 if (slot.ga_n != 1) {
 | |
|                     // context extension via Self-Extend
 | |
|                     // TODO: simplify and/or abstract this
 | |
|                     while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
 | |
|                         const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
 | |
|                         const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
 | |
|                         const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
 | |
| 
 | |
|                         LOG_TEE("\n");
 | |
|                         LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
 | |
|                         LOG_TEE("div:   [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
 | |
|                         LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
 | |
| 
 | |
|                         llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd);
 | |
|                         llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
 | |
|                         llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
 | |
| 
 | |
|                         slot.n_past_se -= bd;
 | |
| 
 | |
|                         slot.ga_i += slot.ga_w / slot.ga_n;
 | |
| 
 | |
|                         LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
 | |
|                     }
 | |
| 
 | |
|                     slot.n_past_se += n_tokens;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             llama_batch batch_view = {
 | |
|                 n_tokens,
 | |
|                 batch.token    + i,
 | |
|                 nullptr,
 | |
|                 batch.pos      + i,
 | |
|                 batch.n_seq_id + i,
 | |
|                 batch.seq_id   + i,
 | |
|                 batch.logits   + i,
 | |
|                 0, 0, 0, // unused
 | |
|             };
 | |
| 
 | |
|             const int ret = llama_decode(ctx, batch_view);
 | |
| 
 | |
|             if (ret != 0) {
 | |
|                 if (n_batch == 1 || ret < 0) {
 | |
|                     // if you get here, it means the KV cache is full - try increasing it via the context size
 | |
|                     LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
 | |
|                     for (auto & slot : slots) {
 | |
|                         slot.state = SLOT_STATE_PROCESSING;
 | |
|                         slot.command = SLOT_COMMAND_NONE;
 | |
|                         slot.release();
 | |
|                         send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
 | |
|                     }
 | |
|                     break; // break loop of n_batch
 | |
|                 }
 | |
| 
 | |
|                 LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
 | |
| 
 | |
|                 // retry with half the batch size to try to find a free slot in the KV cache
 | |
|                 n_batch /= 2;
 | |
|                 i -= n_batch;
 | |
| 
 | |
|                 continue; // continue loop of n_batch
 | |
|             }
 | |
| 
 | |
|             for (auto & slot : slots) {
 | |
|                 if (slot.state != SLOT_STATE_PROCESSING || slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
 | |
|                     continue; // continue loop of slots
 | |
|                 }
 | |
| 
 | |
|                 // prompt evaluated for embedding
 | |
|                 if (slot.embedding) {
 | |
|                     send_embedding(slot, batch_view);
 | |
|                     slot.release();
 | |
|                     slot.i_batch = -1;
 | |
|                     continue; // continue loop of slots
 | |
|                 }
 | |
| 
 | |
|                 completion_token_output result;
 | |
|                 const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
 | |
| 
 | |
|                 llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
 | |
| 
 | |
|                 slot.n_decoded += 1;
 | |
|                 if (slot.n_decoded == 1) {
 | |
|                     slot.t_start_generation = ggml_time_us();
 | |
|                     slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
 | |
|                     metrics.on_prompt_eval(slot);
 | |
|                 }
 | |
| 
 | |
|                 llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
 | |
|                 result.tok = id;
 | |
| 
 | |
|                 const int32_t n_probs = slot.sparams.n_probs;
 | |
|                 if (slot.sparams.temp <= 0 && n_probs > 0) {
 | |
|                     // for llama_sample_token_greedy we need to sort candidates
 | |
|                     llama_sample_softmax(ctx, &cur_p);
 | |
|                 }
 | |
| 
 | |
|                 for (size_t i = 0; i < std::min(cur_p.size, (size_t) n_probs); ++i) {
 | |
|                     result.probs.push_back({
 | |
|                         cur_p.data[i].id,
 | |
|                         cur_p.data[i].p
 | |
|                     });
 | |
|                 }
 | |
| 
 | |
|                 if (!process_token(result, slot)) {
 | |
|                     slot.release();
 | |
|                     slot.print_timings();
 | |
|                     send_final_response(slot);
 | |
|                     metrics.on_prediction(slot);
 | |
|                 }
 | |
| 
 | |
|                 slot.i_batch = -1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         LOG_VERBOSE("run slots completed", {});
 | |
|     }
 | |
| 
 | |
|     json model_meta() const {
 | |
|         return json {
 | |
|             {"vocab_type",  llama_vocab_type    (model)},
 | |
|             {"n_vocab",     llama_n_vocab       (model)},
 | |
|             {"n_ctx_train", llama_n_ctx_train   (model)},
 | |
|             {"n_embd",      llama_n_embd        (model)},
 | |
|             {"n_params",    llama_model_n_params(model)},
 | |
|             {"size",        llama_model_size    (model)},
 | |
|         };
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void server_print_usage(const char * argv0, const gpt_params & params, const server_params & sparams) {
 | |
|     printf("usage: %s [options]\n", argv0);
 | |
|     printf("\n");
 | |
|     printf("options:\n");
 | |
|     printf("  -h, --help                show this help message and exit\n");
 | |
|     printf("  -v, --verbose             verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
 | |
|     printf("  -t N, --threads N         number of threads to use during computation (default: %d)\n", params.n_threads);
 | |
|     printf("  -tb N, --threads-batch N  number of threads to use during batch and prompt processing (default: same as --threads)\n");
 | |
|     printf("  --threads-http N          number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
 | |
|     printf("  -c N, --ctx-size N        size of the prompt context (default: %d)\n", params.n_ctx);
 | |
|     printf("  --rope-scaling {none,linear,yarn}\n");
 | |
|     printf("                            RoPE frequency scaling method, defaults to linear unless specified by the model\n");
 | |
|     printf("  --rope-freq-base N        RoPE base frequency (default: loaded from model)\n");
 | |
|     printf("  --rope-freq-scale N       RoPE frequency scaling factor, expands context by a factor of 1/N\n");
 | |
|     printf("  --yarn-ext-factor N       YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
 | |
|     printf("  --yarn-attn-factor N      YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
 | |
|     printf("  --yarn-beta-slow N        YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
 | |
|     printf("  --yarn-beta-fast N        YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
 | |
|     printf("  --pooling {none,mean,cls} pooling type for embeddings, use model default if unspecified\n");
 | |
|     printf("  -dt N, --defrag-thold N\n");
 | |
|     printf("                            KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
 | |
|     printf("  -b N, --batch-size N      logical maximum batch size (default: %d)\n", params.n_batch);
 | |
|     printf("  -ub N, --ubatch-size N    physical maximum batch size (default: %d)\n", params.n_ubatch);
 | |
|     if (llama_supports_mlock()) {
 | |
|         printf("  --mlock                   force system to keep model in RAM rather than swapping or compressing\n");
 | |
|     }
 | |
|     if (llama_supports_mmap()) {
 | |
|         printf("  --no-mmap                 do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
 | |
|     }
 | |
|     printf("  --numa TYPE               attempt optimizations that help on some NUMA systems\n");
 | |
|     printf("                              - distribute: spread execution evenly over all nodes\n");
 | |
|     printf("                              - isolate: only spawn threads on CPUs on the node that execution started on\n");
 | |
|     printf("                              - numactl: use the CPU map provided my numactl\n");
 | |
|     if (llama_supports_gpu_offload()) {
 | |
|         printf("  -ngl N, --n-gpu-layers N\n");
 | |
|         printf("                            number of layers to store in VRAM\n");
 | |
|         printf("  -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
 | |
|         printf("                            how to split the model across multiple GPUs, one of:\n");
 | |
|         printf("                              - none: use one GPU only\n");
 | |
|         printf("                              - layer (default): split layers and KV across GPUs\n");
 | |
|         printf("                              - row: split rows across GPUs\n");
 | |
|         printf("  -ts SPLIT --tensor-split SPLIT\n");
 | |
|         printf("                            fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
 | |
|         printf("  -mg i, --main-gpu i       the GPU to use for the model (with split-mode = none),\n");
 | |
|         printf("                            or for intermediate results and KV (with split-mode = row)\n");
 | |
|         printf("  -nkvo, --no-kv-offload\n");
 | |
|         printf("                            disable KV offload\n");
 | |
|     }
 | |
|     printf("  -m FNAME, --model FNAME\n");
 | |
|     printf("                            model path (default: %s)\n", params.model.c_str());
 | |
|     printf("  -mu MODEL_URL, --model-url MODEL_URL\n");
 | |
|     printf("                            model download url (default: unused)\n");
 | |
|     printf("  -hfr REPO, --hf-repo REPO\n");
 | |
|     printf("                            Hugging Face model repository (default: unused)\n");
 | |
|     printf("  -hff FILE, --hf-file FILE\n");
 | |
|     printf("                            Hugging Face model file (default: unused)\n");
 | |
|     printf("  -a ALIAS, --alias ALIAS\n");
 | |
|     printf("                            set an alias for the model, will be added as `model` field in completion response\n");
 | |
|     printf("  --lora FNAME              apply LoRA adapter (implies --no-mmap)\n");
 | |
|     printf("  --lora-base FNAME         optional model to use as a base for the layers modified by the LoRA adapter\n");
 | |
|     printf("  --host                    ip address to listen (default  (default: %s)\n", sparams.hostname.c_str());
 | |
|     printf("  --port PORT               port to listen (default  (default: %d)\n", sparams.port);
 | |
|     printf("  --path PUBLIC_PATH        path from which to serve static files (default: disabled)\n");
 | |
|     printf("  --api-key API_KEY         optional api key to enhance server security. If set, requests must include this key for access.\n");
 | |
|     printf("  --api-key-file FNAME      path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
 | |
| #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
 | |
|     printf("  --ssl-key-file FNAME      path to file a PEM-encoded SSL private key\n");
 | |
|     printf("  --ssl-cert-file FNAME     path to file a PEM-encoded SSL certificate\n");
 | |
| #endif
 | |
|     printf("  -to N, --timeout N        server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
 | |
|     printf("  --embeddings              enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
 | |
|     printf("  -np N, --parallel N       number of slots for process requests (default: %d)\n", params.n_parallel);
 | |
|     printf("  -cb, --cont-batching      enable continuous batching (a.k.a dynamic batching) (default: enabled)\n");
 | |
|     printf("  -spf FNAME, --system-prompt-file FNAME\n");
 | |
|     printf("                            set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
 | |
|     printf("  -ctk TYPE, --cache-type-k TYPE\n");
 | |
|     printf("                            KV cache data type for K (default: f16)\n");
 | |
|     printf("  -ctv TYPE, --cache-type-v TYPE\n");
 | |
|     printf("                            KV cache data type for V (default: f16)\n");
 | |
|     printf("  --log-format              log output format: json or text (default: json)\n");
 | |
|     printf("  --log-disable             disables logging to a file.\n");
 | |
|     printf("  --slots-endpoint-disable  disables slots monitoring endpoint.\n");
 | |
|     printf("  --metrics                 enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
 | |
|     printf("  --slot-save-path PATH     path to save slot kv cache (default: disabled)\n");
 | |
|     printf("\n");
 | |
|     printf("  -n, --n-predict           maximum tokens to predict (default: %d)\n", params.n_predict);
 | |
|     printf("  --override-kv KEY=TYPE:VALUE\n");
 | |
|     printf("                            advanced option to override model metadata by key. may be specified multiple times.\n");
 | |
|     printf("                            types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
 | |
|     printf("  -gan N, --grp-attn-n N    set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
 | |
|     printf("  -gaw N, --grp-attn-w N    set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
 | |
|     printf("  --chat-template JINJA_TEMPLATE\n");
 | |
|     printf("                            set custom jinja chat template (default: template taken from model's metadata)\n");
 | |
|     printf("                            only commonly used templates are accepted:\n");
 | |
|     printf("                            https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template\n");
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| static void server_params_parse(int argc, char ** argv, server_params & sparams, gpt_params & params) {
 | |
|     gpt_params    default_params;
 | |
|     server_params default_sparams;
 | |
| 
 | |
|     std::string arg;
 | |
|     bool invalid_param = false;
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg == "--port") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.port = std::stoi(argv[i]);
 | |
|         } else if (arg == "--host") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.hostname = argv[i];
 | |
|         } else if (arg == "--path") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.public_path = argv[i];
 | |
|         } else if (arg == "--api-key") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.api_keys.push_back(argv[i]);
 | |
|         } else if (arg == "--api-key-file") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::ifstream key_file(argv[i]);
 | |
|             if (!key_file) {
 | |
|                 fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::string key;
 | |
|             while (std::getline(key_file, key)) {
 | |
|                if (key.size() > 0) {
 | |
|                    sparams.api_keys.push_back(key);
 | |
|                }
 | |
|             }
 | |
|             key_file.close();
 | |
| 
 | |
|         }
 | |
| #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
 | |
|         else if (arg == "--ssl-key-file") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.ssl_key_file = argv[i];
 | |
|         } else if (arg == "--ssl-cert-file") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.ssl_cert_file = argv[i];
 | |
|         }
 | |
| #endif
 | |
|         else if (arg == "--timeout" || arg == "-to") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.read_timeout = std::stoi(argv[i]);
 | |
|             sparams.write_timeout = std::stoi(argv[i]);
 | |
|         } else if (arg == "-m" || arg == "--model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model = argv[i];
 | |
|         } else if (arg == "-mu" || arg == "--model-url") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model_url = argv[i];
 | |
|         } else if (arg == "-hfr" || arg == "--hf-repo") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.hf_repo = argv[i];
 | |
|         } else if (arg == "-hff" || arg == "--hf-file") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.hf_file = argv[i];
 | |
|         } else if (arg == "-a" || arg == "--alias") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model_alias = argv[i];
 | |
|         } else if (arg == "-h" || arg == "--help") {
 | |
|             server_print_usage(argv[0], default_params, default_sparams);
 | |
|             exit(0);
 | |
|         } else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_ctx = std::stoi(argv[i]);
 | |
|         } else if (arg == "--rope-scaling") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::string value(argv[i]);
 | |
|             /**/ if (value == "none")   { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
 | |
|             else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
 | |
|             else if (value == "yarn")   { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
 | |
|             else { invalid_param = true; break; }
 | |
|         } else if (arg == "--rope-freq-base") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.rope_freq_base = std::stof(argv[i]);
 | |
|         } else if (arg == "--rope-freq-scale") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.rope_freq_scale = std::stof(argv[i]);
 | |
|         } else if (arg == "--yarn-ext-factor") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.yarn_ext_factor = std::stof(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--yarn-attn-factor") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.yarn_attn_factor = std::stof(argv[i]);
 | |
|         } else if (arg == "--yarn-beta-fast") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.yarn_beta_fast = std::stof(argv[i]);
 | |
|         } else if (arg == "--yarn-beta-slow") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.yarn_beta_slow = std::stof(argv[i]);
 | |
|         } else if (arg == "--pooling") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::string value(argv[i]);
 | |
|             /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
 | |
|             else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
 | |
|             else if (value == "cls")  { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
 | |
|             else { invalid_param = true; break; }
 | |
|         } else if (arg == "--defrag-thold" || arg == "-dt") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.defrag_thold = std::stof(argv[i]);
 | |
|         } else if (arg == "--threads" || arg == "-t") {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_threads = std::stoi(argv[i]);
 | |
|         } else if (arg == "--grp-attn-n" || arg == "-gan") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             params.grp_attn_n = std::stoi(argv[i]);
 | |
|         } else if (arg == "--grp-attn-w" || arg == "-gaw") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             params.grp_attn_w = std::stoi(argv[i]);
 | |
|         } else if (arg == "--threads-batch" || arg == "-tb") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_threads_batch = std::stoi(argv[i]);
 | |
|         } else if (arg == "--threads-http") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.n_threads_http = std::stoi(argv[i]);
 | |
|         } else if (arg == "-b" || arg == "--batch-size") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_batch = std::stoi(argv[i]);
 | |
|         } else if (arg == "-ub" || arg == "--ubatch-size") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_ubatch = std::stoi(argv[i]);
 | |
|         } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             if (llama_supports_gpu_offload()) {
 | |
|                 params.n_gpu_layers = std::stoi(argv[i]);
 | |
|             } else {
 | |
|                 LOG_WARNING(
 | |
|                     "Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
 | |
|                     "See main README.md for information on enabling GPU BLAS support",
 | |
|                     {{"n_gpu_layers", params.n_gpu_layers}});
 | |
|             }
 | |
|         } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
 | |
|             params.no_kv_offload = true;
 | |
|         } else if (arg == "--split-mode" || arg == "-sm") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::string arg_next = argv[i];
 | |
|             if (arg_next == "none") {
 | |
|                 params.split_mode = LLAMA_SPLIT_MODE_NONE;
 | |
|             } else if (arg_next == "layer") {
 | |
|                 params.split_mode = LLAMA_SPLIT_MODE_LAYER;
 | |
|             } else if (arg_next == "row") {
 | |
|                 params.split_mode = LLAMA_SPLIT_MODE_ROW;
 | |
|             } else {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #ifndef GGML_USE_CUDA
 | |
|             fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
 | |
| #endif // GGML_USE_CUDA
 | |
|         } else if (arg == "--tensor-split" || arg == "-ts") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
 | |
|             std::string arg_next = argv[i];
 | |
| 
 | |
|             // split string by , and /
 | |
|             const std::regex regex{R"([,/]+)"};
 | |
|             std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
 | |
|             std::vector<std::string> split_arg{it, {}};
 | |
|             GGML_ASSERT(split_arg.size() <= llama_max_devices());
 | |
| 
 | |
|             for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) {
 | |
|                 if (i_device < split_arg.size()) {
 | |
|                     params.tensor_split[i_device] = std::stof(split_arg[i_device]);
 | |
|                 } else {
 | |
|                     params.tensor_split[i_device] = 0.0f;
 | |
|                 }
 | |
|             }
 | |
| #else
 | |
|             LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
 | |
| #endif // GGML_USE_CUDA
 | |
|         } else if (arg == "--main-gpu" || arg == "-mg") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
 | |
|             params.main_gpu = std::stoi(argv[i]);
 | |
| #else
 | |
|             LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a main GPU.", {});
 | |
| #endif
 | |
|         } else if (arg == "--lora") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.lora_adapter.emplace_back(argv[i], 1.0f);
 | |
|             params.use_mmap = false;
 | |
|         } else if (arg == "--lora-scaled") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             const char * lora_adapter = argv[i];
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
 | |
|             params.use_mmap = false;
 | |
|         } else if (arg == "--lora-base") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.lora_base = argv[i];
 | |
|         } else if (arg == "-v" || arg == "--verbose") {
 | |
| #if SERVER_VERBOSE != 1
 | |
|             LOG_WARNING("server.cpp is not built with verbose logging.", {});
 | |
| #else
 | |
|             server_verbose = true;
 | |
| #endif
 | |
|         } else if (arg == "--mlock") {
 | |
|             params.use_mlock = true;
 | |
|         } else if (arg == "--no-mmap") {
 | |
|             params.use_mmap = false;
 | |
|         } else if (arg == "--numa") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             } else {
 | |
|                 std::string value(argv[i]);
 | |
|                 /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
 | |
|                 else if (value == "isolate")                    { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
 | |
|                 else if (value == "numactl")                    { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
 | |
|                 else { invalid_param = true; break; }
 | |
|             }
 | |
|         } else if (arg == "--embedding" || arg == "--embeddings") {
 | |
|             params.embedding = true;
 | |
|         } else if (arg == "-cb" || arg == "--cont-batching") {
 | |
|             params.cont_batching = true;
 | |
|         } else if (arg == "-np" || arg == "--parallel") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_parallel = std::stoi(argv[i]);
 | |
|         } else if (arg == "-n" || arg == "--n-predict") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_predict = std::stoi(argv[i]);
 | |
|         } else if (arg == "-spf" || arg == "--system-prompt-file") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::ifstream file(argv[i]);
 | |
|             if (!file) {
 | |
|                 fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::string system_prompt;
 | |
|             std::copy(
 | |
|                 std::istreambuf_iterator<char>(file),
 | |
|                 std::istreambuf_iterator<char>(),
 | |
|                 std::back_inserter(system_prompt)
 | |
|             );
 | |
|             sparams.system_prompt = system_prompt;
 | |
|         } else if (arg == "-ctk" || arg == "--cache-type-k") {
 | |
|             params.cache_type_k = argv[++i];
 | |
|         } else if (arg == "-ctv" || arg == "--cache-type-v") {
 | |
|             params.cache_type_v = argv[++i];
 | |
|         } else if (arg == "--log-format") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             if (std::strcmp(argv[i], "json") == 0) {
 | |
|                 server_log_json = true;
 | |
|             } else if (std::strcmp(argv[i], "text") == 0) {
 | |
|                 server_log_json = false;
 | |
|             } else {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|         } else if (arg == "--log-disable") {
 | |
|             log_set_target(stdout);
 | |
|             LOG_INFO("logging to file is disabled.", {});
 | |
|         } else if (arg == "--slots-endpoint-disable") {
 | |
|             sparams.slots_endpoint = false;
 | |
|         } else if (arg == "--metrics") {
 | |
|             sparams.metrics_endpoint = true;
 | |
|         } else if (arg == "--slot-save-path") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.slot_save_path = argv[i];
 | |
|             // if doesn't end with DIRECTORY_SEPARATOR, add it
 | |
|             if (!sparams.slot_save_path.empty() && sparams.slot_save_path[sparams.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
 | |
|                 sparams.slot_save_path += DIRECTORY_SEPARATOR;
 | |
|             }
 | |
|         } else if (arg == "--chat-template") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             if (!verify_custom_template(argv[i])) {
 | |
|                 fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
 | |
|                 fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.chat_template = argv[i];
 | |
|         } else if (arg == "--override-kv") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             char * sep = strchr(argv[i], '=');
 | |
|             if (sep == nullptr || sep - argv[i] >= 128) {
 | |
|                 fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             struct llama_model_kv_override kvo;
 | |
|             std::strncpy(kvo.key, argv[i], sep - argv[i]);
 | |
|             kvo.key[sep - argv[i]] = 0;
 | |
|             sep++;
 | |
|             if (strncmp(sep, "int:", 4) == 0) {
 | |
|                 sep += 4;
 | |
|                 kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
 | |
|                 kvo.int_value = std::atol(sep);
 | |
|             } else if (strncmp(sep, "float:", 6) == 0) {
 | |
|                 sep += 6;
 | |
|                 kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
 | |
|                 kvo.float_value = std::atof(sep);
 | |
|             } else if (strncmp(sep, "bool:", 5) == 0) {
 | |
|                 sep += 5;
 | |
|                 kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
 | |
|                 if (std::strcmp(sep, "true") == 0) {
 | |
|                     kvo.bool_value = true;
 | |
|                 } else if (std::strcmp(sep, "false") == 0) {
 | |
|                     kvo.bool_value = false;
 | |
|                 } else {
 | |
|                     fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
 | |
|                     invalid_param = true;
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.kv_overrides.push_back(kvo);
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             server_print_usage(argv[0], default_params, default_sparams);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!params.kv_overrides.empty()) {
 | |
|         params.kv_overrides.emplace_back();
 | |
|         params.kv_overrides.back().key[0] = 0;
 | |
|     }
 | |
| 
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         server_print_usage(argv[0], default_params, default_sparams);
 | |
|         exit(1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
 | |
|     // skip GH copilot requests when using default port
 | |
|     if (req.path == "/v1/health" || req.path == "/v1/completions") {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     LOG_INFO("request", {
 | |
|         {"remote_addr", req.remote_addr},
 | |
|         {"remote_port", req.remote_port},
 | |
|         {"status",      res.status},
 | |
|         {"method",      req.method},
 | |
|         {"path",        req.path},
 | |
|         {"params",      req.params},
 | |
|     });
 | |
| 
 | |
|     LOG_VERBOSE("request", {
 | |
|         {"request",  req.body},
 | |
|         {"response", res.body},
 | |
|     });
 | |
| }
 | |
| 
 | |
| std::function<void(int)> shutdown_handler;
 | |
| std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
 | |
| 
 | |
| inline void signal_handler(int signal) {
 | |
|     if (is_terminating.test_and_set()) {
 | |
|         // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
 | |
|         // this is for better developer experience, we can remove when the server is stable enough
 | |
|         fprintf(stderr, "Received second interrupt, terminating immediately.\n");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     shutdown_handler(signal);
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
| #if SERVER_VERBOSE != 1
 | |
|     log_disable();
 | |
| #endif
 | |
|     // own arguments required by this example
 | |
|     gpt_params    params;
 | |
|     server_params sparams;
 | |
| 
 | |
|     // struct that contains llama context and inference
 | |
|     server_context ctx_server;
 | |
| 
 | |
|     server_params_parse(argc, argv, sparams, params);
 | |
| 
 | |
|     if (!sparams.system_prompt.empty()) {
 | |
|         ctx_server.system_prompt_set(json::parse(sparams.system_prompt));
 | |
|     }
 | |
| 
 | |
|     if (params.model_alias == "unknown") {
 | |
|         params.model_alias = params.model;
 | |
|     }
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     LOG_INFO("build info", {
 | |
|         {"build",  LLAMA_BUILD_NUMBER},
 | |
|         {"commit", LLAMA_COMMIT}
 | |
|     });
 | |
| 
 | |
|     LOG_INFO("system info", {
 | |
|         {"n_threads",       params.n_threads},
 | |
|         {"n_threads_batch", params.n_threads_batch},
 | |
|         {"total_threads",   std::thread::hardware_concurrency()},
 | |
|         {"system_info",     llama_print_system_info()},
 | |
|     });
 | |
| 
 | |
|     std::unique_ptr<httplib::Server> svr;
 | |
| #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
 | |
|     if (sparams.ssl_key_file != "" && sparams.ssl_cert_file != "") {
 | |
|         LOG_INFO("Running with SSL", {{"key", sparams.ssl_key_file}, {"cert", sparams.ssl_cert_file}});
 | |
|         svr.reset(
 | |
|             new httplib::SSLServer(sparams.ssl_cert_file.c_str(), sparams.ssl_key_file.c_str())
 | |
|         );
 | |
|     } else {
 | |
|         LOG_INFO("Running without SSL", {});
 | |
|         svr.reset(new httplib::Server());
 | |
|     }
 | |
| #else
 | |
|     svr.reset(new httplib::Server());
 | |
| #endif
 | |
| 
 | |
|     std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
 | |
| 
 | |
|     svr->set_default_headers({{"Server", "llama.cpp"}});
 | |
| 
 | |
|     // CORS preflight
 | |
|     svr->Options(R"(.*)", [](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin",      req.get_header_value("Origin"));
 | |
|         res.set_header("Access-Control-Allow-Credentials", "true");
 | |
|         res.set_header("Access-Control-Allow-Methods",     "POST");
 | |
|         res.set_header("Access-Control-Allow-Headers",     "*");
 | |
|         return res.set_content("", "application/json; charset=utf-8");
 | |
|     });
 | |
| 
 | |
|     svr->set_logger(log_server_request);
 | |
| 
 | |
|     auto res_error = [](httplib::Response & res, json error_data) {
 | |
|         json final_response {{"error", error_data}};
 | |
|         res.set_content(final_response.dump(), "application/json; charset=utf-8");
 | |
|         res.status = json_value(error_data, "code", 500);
 | |
|     };
 | |
| 
 | |
|     svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
 | |
|         std::string message;
 | |
|         try {
 | |
|             std::rethrow_exception(std::move(ep));
 | |
|         } catch (std::exception & e) {
 | |
|             message = e.what();
 | |
|         } catch (...) {
 | |
|             message = "Unknown Exception";
 | |
|         }
 | |
| 
 | |
|         json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
 | |
|         LOG_VERBOSE("Got exception", formatted_error);
 | |
|         res_error(res, formatted_error);
 | |
|     });
 | |
| 
 | |
|     svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
 | |
|         if (res.status == 404) {
 | |
|             res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
 | |
|         }
 | |
|         // for other error codes, we skip processing here because it's already done by res_error()
 | |
|     });
 | |
| 
 | |
|     // set timeouts and change hostname and port
 | |
|     svr->set_read_timeout (sparams.read_timeout);
 | |
|     svr->set_write_timeout(sparams.write_timeout);
 | |
| 
 | |
|     if (!svr->bind_to_port(sparams.hostname, sparams.port)) {
 | |
|         fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     std::unordered_map<std::string, std::string> log_data;
 | |
| 
 | |
|     log_data["hostname"] = sparams.hostname;
 | |
|     log_data["port"]     = std::to_string(sparams.port);
 | |
| 
 | |
|     if (sparams.api_keys.size() == 1) {
 | |
|         auto key = sparams.api_keys[0];
 | |
|         log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
 | |
|     } else if (sparams.api_keys.size() > 1) {
 | |
|         log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
 | |
|     }
 | |
| 
 | |
|     // load the model
 | |
|     if (!ctx_server.load_model(params)) {
 | |
|         state.store(SERVER_STATE_ERROR);
 | |
|         return 1;
 | |
|     } else {
 | |
|         ctx_server.init();
 | |
|         state.store(SERVER_STATE_READY);
 | |
|     }
 | |
| 
 | |
|     LOG_INFO("model loaded", {});
 | |
| 
 | |
|     const auto model_meta = ctx_server.model_meta();
 | |
| 
 | |
|     // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
 | |
|     if (sparams.chat_template.empty()) {
 | |
|         if (!ctx_server.validate_model_chat_template()) {
 | |
|             LOG_ERROR("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
 | |
|             sparams.chat_template = "chatml";
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // print sample chat example to make it clear which template is used
 | |
|     {
 | |
|         json chat;
 | |
|         chat.push_back({{"role", "system"},    {"content", "You are a helpful assistant"}});
 | |
|         chat.push_back({{"role", "user"},      {"content", "Hello"}});
 | |
|         chat.push_back({{"role", "assistant"}, {"content", "Hi there"}});
 | |
|         chat.push_back({{"role", "user"},      {"content", "How are you?"}});
 | |
| 
 | |
|         const std::string chat_example = format_chat(ctx_server.model, sparams.chat_template, chat);
 | |
| 
 | |
|         LOG_INFO("chat template", {
 | |
|             {"chat_example", chat_example},
 | |
|             {"built_in", sparams.chat_template.empty()},
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Middlewares
 | |
|     //
 | |
| 
 | |
|     auto middleware_validate_api_key = [&sparams, &res_error](const httplib::Request & req, httplib::Response & res) {
 | |
|         // TODO: should we apply API key to all endpoints, including "/health" and "/models"?
 | |
|         static const std::set<std::string> protected_endpoints = {
 | |
|             "/props",
 | |
|             "/completion",
 | |
|             "/completions",
 | |
|             "/v1/completions",
 | |
|             "/chat/completions",
 | |
|             "/v1/chat/completions",
 | |
|             "/infill",
 | |
|             "/tokenize",
 | |
|             "/detokenize",
 | |
|             "/embedding",
 | |
|             "/embeddings",
 | |
|             "/v1/embeddings",
 | |
|         };
 | |
| 
 | |
|         // If API key is not set, skip validation
 | |
|         if (sparams.api_keys.empty()) {
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // If path is not in protected_endpoints list, skip validation
 | |
|         if (protected_endpoints.find(req.path) == protected_endpoints.end()) {
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // Check for API key in the header
 | |
|         auto auth_header = req.get_header_value("Authorization");
 | |
| 
 | |
|         std::string prefix = "Bearer ";
 | |
|         if (auth_header.substr(0, prefix.size()) == prefix) {
 | |
|             std::string received_api_key = auth_header.substr(prefix.size());
 | |
|             if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
 | |
|                 return true; // API key is valid
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // API key is invalid or not provided
 | |
|         // TODO: make another middleware for CORS related logic
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
|         res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
 | |
| 
 | |
|         LOG_WARNING("Unauthorized: Invalid API Key", {});
 | |
| 
 | |
|         return false;
 | |
|     };
 | |
| 
 | |
|     // register server middlewares
 | |
|     svr->set_pre_routing_handler([&middleware_validate_api_key](const httplib::Request & req, httplib::Response & res) {
 | |
|         if (!middleware_validate_api_key(req, res)) {
 | |
|             return httplib::Server::HandlerResponse::Handled;
 | |
|         }
 | |
|         return httplib::Server::HandlerResponse::Unhandled;
 | |
|     });
 | |
| 
 | |
|     //
 | |
|     // Route handlers (or controllers)
 | |
|     //
 | |
| 
 | |
|     const auto handle_health = [&](const httplib::Request & req, httplib::Response & res) {
 | |
|         server_state current_state = state.load();
 | |
|         switch (current_state) {
 | |
|             case SERVER_STATE_READY:
 | |
|                 {
 | |
|                     // request slots data using task queue
 | |
|                     server_task task;
 | |
|                     task.id   = ctx_server.queue_tasks.get_new_id();
 | |
|                     task.type = SERVER_TASK_TYPE_METRICS;
 | |
|                     task.id_target = -1;
 | |
| 
 | |
|                     ctx_server.queue_results.add_waiting_task_id(task.id);
 | |
|                     ctx_server.queue_tasks.post(task);
 | |
| 
 | |
|                     // get the result
 | |
|                     server_task_result result = ctx_server.queue_results.recv(task.id);
 | |
|                     ctx_server.queue_results.remove_waiting_task_id(task.id);
 | |
| 
 | |
|                     const int n_idle_slots       = result.data["idle"];
 | |
|                     const int n_processing_slots = result.data["processing"];
 | |
| 
 | |
|                     json health = {
 | |
|                         {"status",           "ok"},
 | |
|                         {"slots_idle",       n_idle_slots},
 | |
|                         {"slots_processing", n_processing_slots}
 | |
|                     };
 | |
| 
 | |
|                     res.status = 200; // HTTP OK
 | |
|                     if (sparams.slots_endpoint && req.has_param("include_slots")) {
 | |
|                         health["slots"] = result.data["slots"];
 | |
|                     }
 | |
| 
 | |
|                     if (n_idle_slots == 0) {
 | |
|                         health["status"] = "no slot available";
 | |
|                         if (req.has_param("fail_on_no_slot")) {
 | |
|                             res.status = 503; // HTTP Service Unavailable
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     res.set_content(health.dump(), "application/json");
 | |
|                     break;
 | |
|                 }
 | |
|             case SERVER_STATE_LOADING_MODEL:
 | |
|                 {
 | |
|                     res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
 | |
|                 } break;
 | |
|             case SERVER_STATE_ERROR:
 | |
|                 {
 | |
|                     res_error(res, format_error_response("Model failed to load", ERROR_TYPE_SERVER));
 | |
|                 } break;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) {
 | |
|         if (!sparams.slots_endpoint) {
 | |
|             res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED));
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // request slots data using task queue
 | |
|         server_task task;
 | |
|         task.id = ctx_server.queue_tasks.get_new_id();
 | |
|         task.id_multi  = -1;
 | |
|         task.id_target = -1;
 | |
|         task.type = SERVER_TASK_TYPE_METRICS;
 | |
| 
 | |
|         ctx_server.queue_results.add_waiting_task_id(task.id);
 | |
|         ctx_server.queue_tasks.post(task);
 | |
| 
 | |
|         // get the result
 | |
|         server_task_result result = ctx_server.queue_results.recv(task.id);
 | |
|         ctx_server.queue_results.remove_waiting_task_id(task.id);
 | |
| 
 | |
|         res.set_content(result.data["slots"].dump(), "application/json");
 | |
|         res.status = 200; // HTTP OK
 | |
|     };
 | |
| 
 | |
|     const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
 | |
|         if (!sparams.metrics_endpoint) {
 | |
|             res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED));
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // request slots data using task queue
 | |
|         server_task task;
 | |
|         task.id = ctx_server.queue_tasks.get_new_id();
 | |
|         task.id_multi  = -1;
 | |
|         task.id_target = -1;
 | |
|         task.type = SERVER_TASK_TYPE_METRICS;
 | |
|         task.data.push_back({{"reset_bucket", true}});
 | |
| 
 | |
|         ctx_server.queue_results.add_waiting_task_id(task.id);
 | |
|         ctx_server.queue_tasks.post(task);
 | |
| 
 | |
|         // get the result
 | |
|         server_task_result result = ctx_server.queue_results.recv(task.id);
 | |
|         ctx_server.queue_results.remove_waiting_task_id(task.id);
 | |
| 
 | |
|         json data = result.data;
 | |
| 
 | |
|         const uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
 | |
|         const uint64_t t_prompt_processing       = data["t_prompt_processing"];
 | |
| 
 | |
|         const uint64_t n_tokens_predicted  = data["n_tokens_predicted"];
 | |
|         const uint64_t t_tokens_generation = data["t_tokens_generation"];
 | |
| 
 | |
|         const int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
 | |
| 
 | |
|         // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
 | |
|         json all_metrics_def = json {
 | |
|             {"counter", {{
 | |
|                     {"name",  "prompt_tokens_total"},
 | |
|                     {"help",  "Number of prompt tokens processed."},
 | |
|                     {"value",  (uint64_t) data["n_prompt_tokens_processed_total"]}
 | |
|             }, {
 | |
|                     {"name",  "prompt_seconds_total"},
 | |
|                     {"help",  "Prompt process time"},
 | |
|                     {"value",  (uint64_t) data["t_prompt_processing_total"] / 1.e3}
 | |
|             }, {
 | |
|                     {"name",  "tokens_predicted_total"},
 | |
|                     {"help",  "Number of generation tokens processed."},
 | |
|                     {"value",  (uint64_t) data["n_tokens_predicted_total"]}
 | |
|             }, {
 | |
|                     {"name",  "tokens_predicted_seconds_total"},
 | |
|                     {"help",  "Predict process time"},
 | |
|                     {"value",  (uint64_t) data["t_tokens_generation_total"] / 1.e3}
 | |
|             }}},
 | |
|             {"gauge", {{
 | |
|                     {"name",  "prompt_tokens_seconds"},
 | |
|                     {"help",  "Average prompt throughput in tokens/s."},
 | |
|                     {"value",  n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
 | |
|             },{
 | |
|                     {"name",  "predicted_tokens_seconds"},
 | |
|                     {"help",  "Average generation throughput in tokens/s."},
 | |
|                     {"value",  n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
 | |
|             },{
 | |
|                     {"name",  "kv_cache_usage_ratio"},
 | |
|                     {"help",  "KV-cache usage. 1 means 100 percent usage."},
 | |
|                     {"value",  1. * kv_cache_used_cells / params.n_ctx}
 | |
|             },{
 | |
|                     {"name",  "kv_cache_tokens"},
 | |
|                     {"help",  "KV-cache tokens."},
 | |
|                     {"value",  (uint64_t) data["kv_cache_tokens_count"]}
 | |
|             },{
 | |
|                     {"name",  "requests_processing"},
 | |
|                     {"help",  "Number of request processing."},
 | |
|                     {"value",  (uint64_t) data["processing"]}
 | |
|             },{
 | |
|                     {"name",  "requests_deferred"},
 | |
|                     {"help",  "Number of request deferred."},
 | |
|                     {"value",  (uint64_t) data["deferred"]}
 | |
|             }}}
 | |
|         };
 | |
| 
 | |
|         std::stringstream prometheus;
 | |
| 
 | |
|         for (const auto & el : all_metrics_def.items()) {
 | |
|             const auto & type        = el.key();
 | |
|             const auto & metrics_def = el.value();
 | |
| 
 | |
|             for (const auto & metric_def : metrics_def) {
 | |
|                 const std::string name = metric_def["name"];
 | |
|                 const std::string help = metric_def["help"];
 | |
| 
 | |
|                 auto value = json_value(metric_def, "value", 0.);
 | |
|                 prometheus << "# HELP llamacpp:" << name << " " << help  << "\n"
 | |
|                             << "# TYPE llamacpp:" << name << " " << type  << "\n"
 | |
|                             << "llamacpp:"        << name << " " << value << "\n";
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const int64_t t_start = data["t_start"];
 | |
|         res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
 | |
| 
 | |
|         res.set_content(prometheus.str(), "text/plain; version=0.0.4");
 | |
|         res.status = 200; // HTTP OK
 | |
|     };
 | |
| 
 | |
|     const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
 | |
|         json request_data = json::parse(req.body);
 | |
|         std::string filename = request_data["filename"];
 | |
|         if (!validate_file_name(filename)) {
 | |
|             res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
 | |
|             return;
 | |
|         }
 | |
|         std::string filepath = sparams.slot_save_path + filename;
 | |
| 
 | |
|         server_task task;
 | |
|         task.type = SERVER_TASK_TYPE_SLOT_SAVE;
 | |
|         task.data = {
 | |
|             { "id_slot", id_slot },
 | |
|             { "filename", filename },
 | |
|             { "filepath", filepath }
 | |
|         };
 | |
| 
 | |
|         const int id_task = ctx_server.queue_tasks.post(task);
 | |
|         ctx_server.queue_results.add_waiting_task_id(id_task);
 | |
| 
 | |
|         server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|         ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
| 
 | |
|         if (result.error) {
 | |
|             res_error(res, result.data);
 | |
|         } else {
 | |
|             res.set_content(result.data.dump(), "application/json");
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
 | |
|         json request_data = json::parse(req.body);
 | |
|         std::string filename = request_data["filename"];
 | |
|         if (!validate_file_name(filename)) {
 | |
|             res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
 | |
|             return;
 | |
|         }
 | |
|         std::string filepath = sparams.slot_save_path + filename;
 | |
| 
 | |
|         server_task task;
 | |
|         task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
 | |
|         task.data = {
 | |
|             { "id_slot", id_slot },
 | |
|             { "filename", filename },
 | |
|             { "filepath", filepath }
 | |
|         };
 | |
| 
 | |
|         const int id_task = ctx_server.queue_tasks.post(task);
 | |
|         ctx_server.queue_results.add_waiting_task_id(id_task);
 | |
| 
 | |
|         server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|         ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
| 
 | |
|         if (result.error) {
 | |
|             res_error(res, result.data);
 | |
|         } else {
 | |
|             res.set_content(result.data.dump(), "application/json");
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto handle_slots_erase = [&ctx_server, &res_error](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
 | |
|         server_task task;
 | |
|         task.type = SERVER_TASK_TYPE_SLOT_ERASE;
 | |
|         task.data = {
 | |
|             { "id_slot", id_slot },
 | |
|         };
 | |
| 
 | |
|         const int id_task = ctx_server.queue_tasks.post(task);
 | |
|         ctx_server.queue_results.add_waiting_task_id(id_task);
 | |
| 
 | |
|         server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|         ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
| 
 | |
|         if (result.error) {
 | |
|             res_error(res, result.data);
 | |
|         } else {
 | |
|             res.set_content(result.data.dump(), "application/json");
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto handle_slots_action = [&res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
| 
 | |
|         std::string id_slot_str = req.path_params.at("id_slot");
 | |
|         int id_slot;
 | |
| 
 | |
|         try {
 | |
|             id_slot = std::stoi(id_slot_str);
 | |
|         } catch (const std::exception &) {
 | |
|             res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         std::string action = req.get_param_value("action");
 | |
| 
 | |
|         if (action == "save") {
 | |
|             handle_slots_save(req, res, id_slot);
 | |
|         } else if (action == "restore") {
 | |
|             handle_slots_restore(req, res, id_slot);
 | |
|         } else if (action == "erase") {
 | |
|             handle_slots_erase(req, res, id_slot);
 | |
|         } else {
 | |
|             res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
|         json data = {
 | |
|             { "user_name",                   ctx_server.name_user.c_str() },
 | |
|             { "assistant_name",              ctx_server.name_assistant.c_str() },
 | |
|             { "default_generation_settings", ctx_server.default_generation_settings_for_props },
 | |
|             { "total_slots",                 ctx_server.params.n_parallel }
 | |
|         };
 | |
| 
 | |
|         res.set_content(data.dump(), "application/json; charset=utf-8");
 | |
|     };
 | |
| 
 | |
|     const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
| 
 | |
|         json data = json::parse(req.body);
 | |
| 
 | |
|         const int id_task = ctx_server.queue_tasks.get_new_id();
 | |
| 
 | |
|         ctx_server.queue_results.add_waiting_task_id(id_task);
 | |
|         ctx_server.request_completion(id_task, -1, data, false, false);
 | |
| 
 | |
|         if (!json_value(data, "stream", false)) {
 | |
|             server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|             if (!result.error && result.stop) {
 | |
|                 res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
 | |
|             } else {
 | |
|                 res_error(res, result.data);
 | |
|             }
 | |
| 
 | |
|             ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|         } else {
 | |
|             const auto chunked_content_provider = [id_task, &ctx_server](size_t, httplib::DataSink & sink) {
 | |
|                 while (true) {
 | |
|                     server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|                     if (!result.error) {
 | |
|                         const std::string str =
 | |
|                             "data: " +
 | |
|                             result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                             "\n\n";
 | |
| 
 | |
|                         LOG_VERBOSE("data stream", {
 | |
|                             { "to_send", str }
 | |
|                         });
 | |
| 
 | |
|                         if (!sink.write(str.c_str(), str.size())) {
 | |
|                             ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|                             return false;
 | |
|                         }
 | |
| 
 | |
|                         if (result.stop) {
 | |
|                             break;
 | |
|                         }
 | |
|                     } else {
 | |
|                         const std::string str =
 | |
|                             "error: " +
 | |
|                             result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                             "\n\n";
 | |
| 
 | |
|                         LOG_VERBOSE("data stream", {
 | |
|                             { "to_send", str }
 | |
|                         });
 | |
| 
 | |
|                         if (!sink.write(str.c_str(), str.size())) {
 | |
|                             ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|                             return false;
 | |
|                         }
 | |
| 
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|                 sink.done();
 | |
| 
 | |
|                 return true;
 | |
|             };
 | |
| 
 | |
|             auto on_complete = [id_task, &ctx_server] (bool) {
 | |
|                 // cancel
 | |
|                 ctx_server.request_cancel(id_task);
 | |
|                 ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|             };
 | |
| 
 | |
|             res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto handle_models = [¶ms, &model_meta](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
| 
 | |
|         json models = {
 | |
|             {"object", "list"},
 | |
|             {"data", {
 | |
|                  {
 | |
|                      {"id",       params.model_alias},
 | |
|                      {"object",   "model"},
 | |
|                      {"created",  std::time(0)},
 | |
|                      {"owned_by", "llamacpp"},
 | |
|                      {"meta",     model_meta}
 | |
|                  },
 | |
|              }}
 | |
|         };
 | |
| 
 | |
|         res.set_content(models.dump(), "application/json; charset=utf-8");
 | |
|     };
 | |
| 
 | |
|     const auto handle_chat_completions = [&ctx_server, &sparams, &res_error](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
|         json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), sparams.chat_template);
 | |
| 
 | |
|         const int id_task = ctx_server.queue_tasks.get_new_id();
 | |
| 
 | |
|         ctx_server.queue_results.add_waiting_task_id(id_task);
 | |
|         ctx_server.request_completion(id_task, -1, data, false, false);
 | |
| 
 | |
|         const auto completion_id = gen_chatcmplid();
 | |
|         if (!json_value(data, "stream", false)) {
 | |
|             server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
| 
 | |
|             if (!result.error && result.stop) {
 | |
|                 json result_oai = format_final_response_oaicompat(data, result.data, completion_id);
 | |
| 
 | |
|                 res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
 | |
|             } else {
 | |
|                 res_error(res, result.data);
 | |
|             }
 | |
|             ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|         } else {
 | |
|             const auto chunked_content_provider = [id_task, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
 | |
|                 while (true) {
 | |
|                     server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|                     if (!result.error) {
 | |
|                         std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
 | |
| 
 | |
|                         for (auto it = result_array.begin(); it != result_array.end(); ++it) {
 | |
|                             if (!it->empty()) {
 | |
|                                 const std::string str =
 | |
|                                     "data: " +
 | |
|                                     it->dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                                     "\n\n";
 | |
|                                 LOG_VERBOSE("data stream", {{"to_send", str}});
 | |
|                                 if (!sink.write(str.c_str(), str.size())) {
 | |
|                                     ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|                                     return false;
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                         if (result.stop) {
 | |
|                             break;
 | |
|                         }
 | |
|                     } else {
 | |
|                         const std::string str =
 | |
|                             "error: " +
 | |
|                             result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                             "\n\n";
 | |
|                         LOG_VERBOSE("data stream", {{"to_send", str}});
 | |
|                         if (!sink.write(str.c_str(), str.size())) {
 | |
|                             ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|                             return false;
 | |
|                         }
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 sink.done();
 | |
|                 ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|                 return true;
 | |
|             };
 | |
| 
 | |
|             auto on_complete = [id_task, &ctx_server](bool) {
 | |
|                 // cancel request
 | |
|                 ctx_server.request_cancel(id_task);
 | |
|                 ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|             };
 | |
| 
 | |
|             res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto handle_infill = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
| 
 | |
|         json data = json::parse(req.body);
 | |
| 
 | |
|         const int id_task = ctx_server.queue_tasks.get_new_id();
 | |
| 
 | |
|         ctx_server.queue_results.add_waiting_task_id(id_task);
 | |
|         ctx_server.request_completion(id_task, -1, data, true, false);
 | |
| 
 | |
|         if (!json_value(data, "stream", false)) {
 | |
|             server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|             if (!result.error && result.stop) {
 | |
|                 res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
 | |
|             } else {
 | |
|                 res_error(res, result.data);
 | |
|             }
 | |
| 
 | |
|             ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|         } else {
 | |
|             const auto chunked_content_provider = [id_task, &ctx_server](size_t, httplib::DataSink & sink) {
 | |
|                 while (true) {
 | |
|                     server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|                     if (!result.error) {
 | |
|                         const std::string str =
 | |
|                             "data: " +
 | |
|                             result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                             "\n\n";
 | |
| 
 | |
|                         LOG_VERBOSE("data stream", {
 | |
|                             { "to_send", str }
 | |
|                         });
 | |
| 
 | |
|                         if (!sink.write(str.c_str(), str.size())) {
 | |
|                             ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|                             return false;
 | |
|                         }
 | |
| 
 | |
|                         if (result.stop) {
 | |
|                             break;
 | |
|                         }
 | |
|                     } else {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|                 sink.done();
 | |
| 
 | |
|                 return true;
 | |
|             };
 | |
| 
 | |
|             auto on_complete = [id_task, &ctx_server] (bool) {
 | |
|                 ctx_server.request_cancel(id_task);
 | |
|             };
 | |
| 
 | |
|             res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
|         const json body = json::parse(req.body);
 | |
| 
 | |
|         std::vector<llama_token> tokens;
 | |
|         if (body.count("content") != 0) {
 | |
|             tokens = ctx_server.tokenize(body["content"], false);
 | |
|         }
 | |
|         const json data = format_tokenizer_response(tokens);
 | |
|         return res.set_content(data.dump(), "application/json; charset=utf-8");
 | |
|     };
 | |
| 
 | |
|     const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
|         const json body = json::parse(req.body);
 | |
| 
 | |
|         std::string content;
 | |
|         if (body.count("tokens") != 0) {
 | |
|             const std::vector<llama_token> tokens = body["tokens"];
 | |
|             content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
 | |
|         }
 | |
| 
 | |
|         const json data = format_detokenized_response(content);
 | |
|         return res.set_content(data.dump(), "application/json; charset=utf-8");
 | |
|     };
 | |
| 
 | |
|     const auto handle_embeddings = [¶ms, &ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
 | |
|         res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | |
|         if (!params.embedding) {
 | |
|             res.status = 501;
 | |
|             res.set_content("This server does not support embeddings. Start it with `--embeddings`", "text/plain; charset=utf-8");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const json body = json::parse(req.body);
 | |
|         bool is_openai = false;
 | |
| 
 | |
|         // an input prompt can be a string or a list of tokens (integer)
 | |
|         json prompt;
 | |
|         if (body.count("input") != 0) {
 | |
|             is_openai = true;
 | |
|             prompt = body["input"];
 | |
|         } else if (body.count("content") != 0) {
 | |
|             // with "content", we only support single prompt
 | |
|             prompt = std::vector<std::string>{body["content"]};
 | |
|         } else {
 | |
|             res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // create and queue the task
 | |
|         json responses;
 | |
|         {
 | |
|             const int id_task = ctx_server.queue_tasks.get_new_id();
 | |
|             ctx_server.queue_results.add_waiting_task_id(id_task);
 | |
|             ctx_server.request_completion(id_task, -1, {{"prompt", prompt}}, false, true);
 | |
| 
 | |
|             // get the result
 | |
|             server_task_result result = ctx_server.queue_results.recv(id_task);
 | |
|             ctx_server.queue_results.remove_waiting_task_id(id_task);
 | |
|             if (!result.error) {
 | |
|                 if (result.data.count("results")) {
 | |
|                     // result for multi-task
 | |
|                     responses = result.data["results"];
 | |
|                 } else {
 | |
|                     // result for single task
 | |
|                     responses = std::vector<json>{result.data};
 | |
|                 }
 | |
|             } else {
 | |
|                 // error received, ignore everything else
 | |
|                 res_error(res, result.data);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // write JSON response
 | |
|         json root = is_openai
 | |
|             ? format_embeddings_response_oaicompat(body, responses)
 | |
|             : responses[0];
 | |
|         return res.set_content(root.dump(), "application/json; charset=utf-8");
 | |
|     };
 | |
| 
 | |
|     auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
 | |
|         return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
 | |
|             res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
 | |
|             return false;
 | |
|         };
 | |
|     };
 | |
| 
 | |
|     //
 | |
|     // Router
 | |
|     //
 | |
| 
 | |
|     // register static assets routes
 | |
|     if (!sparams.public_path.empty()) {
 | |
|         // Set the base directory for serving static files
 | |
|         svr->set_base_dir(sparams.public_path);
 | |
|     }
 | |
| 
 | |
|     // using embedded static files
 | |
|     svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
 | |
|     svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
 | |
|     svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
 | |
|     svr->Get("/json-schema-to-grammar.mjs", handle_static_file(
 | |
|         json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
 | |
| 
 | |
|     // register API routes
 | |
|     svr->Get ("/health",              handle_health);
 | |
|     svr->Get ("/slots",               handle_slots);
 | |
|     svr->Get ("/metrics",             handle_metrics);
 | |
|     svr->Get ("/props",               handle_props);
 | |
|     svr->Get ("/v1/models",           handle_models);
 | |
|     svr->Post("/completion",          handle_completions); // legacy
 | |
|     svr->Post("/completions",         handle_completions);
 | |
|     svr->Post("/v1/completions",      handle_completions);
 | |
|     svr->Post("/chat/completions",    handle_chat_completions);
 | |
|     svr->Post("/v1/chat/completions", handle_chat_completions);
 | |
|     svr->Post("/infill",              handle_infill);
 | |
|     svr->Post("/embedding",           handle_embeddings); // legacy
 | |
|     svr->Post("/embeddings",          handle_embeddings);
 | |
|     svr->Post("/v1/embeddings",       handle_embeddings);
 | |
|     svr->Post("/tokenize",            handle_tokenize);
 | |
|     svr->Post("/detokenize",          handle_detokenize);
 | |
|     if (!sparams.slot_save_path.empty()) {
 | |
|         // only enable slot endpoints if slot_save_path is set
 | |
|         svr->Post("/slots/:id_slot",  handle_slots_action);
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Start the server
 | |
|     //
 | |
|     if (sparams.n_threads_http < 1) {
 | |
|         // +2 threads for monitoring endpoints
 | |
|         sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
 | |
|     }
 | |
|     log_data["n_threads_http"] =  std::to_string(sparams.n_threads_http);
 | |
|     svr->new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
 | |
| 
 | |
|     LOG_INFO("HTTP server listening", log_data);
 | |
| 
 | |
|     // run the HTTP server in a thread - see comment below
 | |
|     std::thread t([&]() {
 | |
|         if (!svr->listen_after_bind()) {
 | |
|             state.store(SERVER_STATE_ERROR);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|     });
 | |
| 
 | |
|     ctx_server.queue_tasks.on_new_task(std::bind(
 | |
|         &server_context::process_single_task, &ctx_server, std::placeholders::_1));
 | |
|     ctx_server.queue_tasks.on_finish_multitask(std::bind(
 | |
|         &server_context::on_finish_multitask, &ctx_server, std::placeholders::_1));
 | |
|     ctx_server.queue_tasks.on_update_slots(std::bind(
 | |
|         &server_context::update_slots, &ctx_server));
 | |
|     ctx_server.queue_results.on_multitask_update(std::bind(
 | |
|         &server_queue::update_multitask,
 | |
|         &ctx_server.queue_tasks,
 | |
|         std::placeholders::_1,
 | |
|         std::placeholders::_2,
 | |
|         std::placeholders::_3
 | |
|     ));
 | |
| 
 | |
|     shutdown_handler = [&](int) {
 | |
|         ctx_server.queue_tasks.terminate();
 | |
|     };
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
|     struct sigaction sigint_action;
 | |
|     sigint_action.sa_handler = signal_handler;
 | |
|     sigemptyset (&sigint_action.sa_mask);
 | |
|     sigint_action.sa_flags = 0;
 | |
|     sigaction(SIGINT, &sigint_action, NULL);
 | |
|     sigaction(SIGTERM, &sigint_action, NULL);
 | |
| #elif defined (_WIN32)
 | |
|     auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
 | |
|         return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
 | |
|     };
 | |
|     SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
 | |
| #endif
 | |
| 
 | |
|     ctx_server.queue_tasks.start_loop();
 | |
| 
 | |
|     svr->stop();
 | |
|     t.join();
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |