mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* speculative : update default params * speculative : do not discard the last drafted token
		
			
				
	
	
		
			278 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "speculative.h"
 | 
						|
 | 
						|
#include "log.h"
 | 
						|
#include "common.h"
 | 
						|
#include "sampling.h"
 | 
						|
 | 
						|
#include <cstring>
 | 
						|
 | 
						|
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE  128
 | 
						|
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
 | 
						|
 | 
						|
struct common_speculative {
 | 
						|
    struct llama_context * ctx;
 | 
						|
    struct common_sampler * smpl;
 | 
						|
 | 
						|
    llama_batch batch;
 | 
						|
    llama_tokens prompt;
 | 
						|
};
 | 
						|
 | 
						|
struct common_speculative * common_speculative_init(
 | 
						|
        struct llama_context * ctx_dft) {
 | 
						|
    auto * result = new common_speculative {
 | 
						|
        /* .ctx    = */ ctx_dft,
 | 
						|
        /* .smpl   = */ nullptr,
 | 
						|
        /* .batch  = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
 | 
						|
        /* .prompt = */ {},
 | 
						|
    };
 | 
						|
 | 
						|
    // TODO: optimize or pass from outside?
 | 
						|
#if 0
 | 
						|
    {
 | 
						|
        common_params_sampling params;
 | 
						|
        params.no_perf = false;
 | 
						|
 | 
						|
        params.top_k = 40;
 | 
						|
        params.top_p = 0.9;
 | 
						|
 | 
						|
        params.samplers = {
 | 
						|
            COMMON_SAMPLER_TYPE_TOP_K,
 | 
						|
            COMMON_SAMPLER_TYPE_TOP_P,
 | 
						|
            COMMON_SAMPLER_TYPE_INFILL,
 | 
						|
        };
 | 
						|
 | 
						|
        result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    {
 | 
						|
        common_params_sampling params;
 | 
						|
        params.no_perf = false;
 | 
						|
 | 
						|
        params.top_k = 10;
 | 
						|
 | 
						|
        params.samplers = {
 | 
						|
            COMMON_SAMPLER_TYPE_TOP_K,
 | 
						|
        };
 | 
						|
 | 
						|
        result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
void common_speculative_free(struct common_speculative * spec) {
 | 
						|
    if (spec == nullptr) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    common_sampler_free(spec->smpl);
 | 
						|
 | 
						|
    llama_batch_free(spec->batch);
 | 
						|
 | 
						|
    delete spec;
 | 
						|
}
 | 
						|
 | 
						|
bool common_speculative_are_compatible(
 | 
						|
        const struct llama_context * ctx_tgt,
 | 
						|
        const struct llama_context * ctx_dft) {
 | 
						|
    const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
 | 
						|
    const struct llama_model * model_dft = llama_get_model(ctx_dft);
 | 
						|
 | 
						|
    const struct llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
 | 
						|
    const struct llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
 | 
						|
 | 
						|
    const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
 | 
						|
    LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
 | 
						|
 | 
						|
    const bool vocab_type_dft = llama_vocab_type(vocab_dft);
 | 
						|
    LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
 | 
						|
 | 
						|
    if (vocab_type_tgt != vocab_type_dft) {
 | 
						|
        LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
 | 
						|
                     "vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
 | 
						|
        llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
 | 
						|
        llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
 | 
						|
        llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) {
 | 
						|
        LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
 | 
						|
        LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt));
 | 
						|
        LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    {
 | 
						|
        const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
 | 
						|
        const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
 | 
						|
 | 
						|
        const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
 | 
						|
 | 
						|
        if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
 | 
						|
            LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
 | 
						|
                         "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
 | 
						|
                    __func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
 | 
						|
            const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
 | 
						|
            const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
 | 
						|
            if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
 | 
						|
                LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but "
 | 
						|
                             "token %d content differs - target '%s', draft '%s'\n", __func__, i,
 | 
						|
                        common_token_to_piece(ctx_tgt, i).c_str(),
 | 
						|
                        common_token_to_piece(ctx_dft, i).c_str());
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
llama_tokens common_speculative_gen_draft(
 | 
						|
        struct common_speculative * spec,
 | 
						|
        struct common_speculative_params params,
 | 
						|
        const llama_tokens & prompt_tgt,
 | 
						|
        llama_token id_last) {
 | 
						|
    auto & batch  = spec->batch;
 | 
						|
    auto & ctx    = spec->ctx;
 | 
						|
    auto & smpl   = spec->smpl;
 | 
						|
    auto & prompt = spec->prompt;
 | 
						|
 | 
						|
    int reuse_i = 0;
 | 
						|
    int reuse_n = 0;
 | 
						|
 | 
						|
    const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
 | 
						|
 | 
						|
    const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
 | 
						|
 | 
						|
    // reuse as much as possible from the old draft context
 | 
						|
    // ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
 | 
						|
    for (int i = 0; i < (int) prompt.size(); ++i) {
 | 
						|
        int cur = 0;
 | 
						|
        while (i_start + cur < (int) prompt_tgt.size() &&
 | 
						|
               i       + cur < (int) prompt.size() &&
 | 
						|
               prompt_tgt[i_start + cur] == prompt[i + cur]) {
 | 
						|
            cur++;
 | 
						|
        }
 | 
						|
 | 
						|
        if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
 | 
						|
            reuse_i = i;
 | 
						|
            reuse_n = cur;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
 | 
						|
 | 
						|
    llama_tokens result;
 | 
						|
    result.reserve(params.n_draft);
 | 
						|
 | 
						|
    if (reuse_n == 0) {
 | 
						|
        llama_kv_cache_clear(ctx);
 | 
						|
 | 
						|
        prompt.clear();
 | 
						|
    } else {
 | 
						|
        // this happens when a previous draft has been discarded (for example, due to being too small), but the
 | 
						|
        // target model agreed with it. in this case, we simply pass back the previous results to save compute
 | 
						|
        if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
 | 
						|
            for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
 | 
						|
                result.push_back(prompt[i]);
 | 
						|
 | 
						|
                if (params.n_draft <= (int) result.size()) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
 | 
						|
        if (reuse_i > 0) {
 | 
						|
            llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
 | 
						|
            llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
 | 
						|
 | 
						|
            prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
 | 
						|
        }
 | 
						|
 | 
						|
        if (reuse_n < (int) prompt.size()) {
 | 
						|
            llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
 | 
						|
 | 
						|
            prompt.erase(prompt.begin() + reuse_n, prompt.end());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // prepare a batch to evaluate any new tokens in the prompt
 | 
						|
    common_batch_clear(batch);
 | 
						|
 | 
						|
    for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
 | 
						|
        //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
 | 
						|
        common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
 | 
						|
 | 
						|
        prompt.push_back(prompt_tgt[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    // we should rarely end-up here during normal decoding
 | 
						|
    if (batch.n_tokens > 0) {
 | 
						|
        //LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
 | 
						|
 | 
						|
        llama_decode(ctx, batch);
 | 
						|
    }
 | 
						|
 | 
						|
    const llama_pos n_past = prompt.size();
 | 
						|
 | 
						|
    LOG_DBG("%s: n_past = %d\n", __func__, n_past);
 | 
						|
 | 
						|
    common_batch_clear(batch);
 | 
						|
    common_batch_add  (batch, id_last, n_past, { 0 }, true);
 | 
						|
 | 
						|
    prompt.push_back(id_last);
 | 
						|
 | 
						|
    //LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
 | 
						|
 | 
						|
    llama_decode(ctx, batch);
 | 
						|
 | 
						|
    common_sampler_reset(smpl);
 | 
						|
 | 
						|
    // sample n_draft tokens from the draft model
 | 
						|
    for (int i = 0; i < params.n_draft; ++i) {
 | 
						|
        common_batch_clear(batch);
 | 
						|
 | 
						|
        common_sampler_sample(smpl, ctx, 0, true);
 | 
						|
 | 
						|
        const auto * cur_p = common_sampler_get_candidates(smpl);
 | 
						|
 | 
						|
        for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
 | 
						|
            LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
 | 
						|
                    k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
 | 
						|
        }
 | 
						|
 | 
						|
        // add drafted token for each sequence
 | 
						|
        const llama_token id = cur_p->data[0].id;
 | 
						|
 | 
						|
        common_sampler_accept(smpl, id, true);
 | 
						|
 | 
						|
        result.push_back(id);
 | 
						|
 | 
						|
        if (params.n_draft <= (int) result.size()) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        // only collect very high-confidence draft tokens
 | 
						|
        if (cur_p->data[0].p < params.p_min) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
 | 
						|
 | 
						|
        // evaluate the drafted tokens on the draft model
 | 
						|
        llama_decode(ctx, batch);
 | 
						|
 | 
						|
        prompt.push_back(id);
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 |