mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory * Improve debug log code * Add memory debug output option * Fix flake8 * Fix unnecessary high llama-3 VRAM use
		
			
				
	
	
		
			74 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#version 450
 | 
						|
 | 
						|
#include "mul_mat_vec_base.comp"
 | 
						|
 | 
						|
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
 | 
						|
 | 
						|
shared FLOAT_TYPE tmp[32];
 | 
						|
 | 
						|
void main() {
 | 
						|
    const uint row = gl_WorkGroupID.x;
 | 
						|
 | 
						|
    uint a_offset, b_offset, d_offset;
 | 
						|
    get_offsets(a_offset, b_offset, d_offset);
 | 
						|
 | 
						|
    const uint num_blocks_per_row = p.ncols / QUANT_K;
 | 
						|
    const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
 | 
						|
 | 
						|
    const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
 | 
						|
    const uint ix  = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
 | 
						|
 | 
						|
    const uint step = 16/K_QUANTS_PER_ITERATION;            // 16 or 8
 | 
						|
 | 
						|
    const uint v_im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | 
						|
    const uint v_in = tid - step*v_im;                      // 0...15 or 0...7
 | 
						|
 | 
						|
    const uint l0 = K_QUANTS_PER_ITERATION*v_in;            // 0...15
 | 
						|
    const uint q_offset = 32*v_im + l0;
 | 
						|
    const uint s_offset = 8*v_im;
 | 
						|
    const uint y_offset = 128*v_im + l0;
 | 
						|
 | 
						|
    tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
 | 
						|
 | 
						|
    [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | 
						|
        const uint y_idx = i * QUANT_K + y_offset;
 | 
						|
 | 
						|
        const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
 | 
						|
        const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
 | 
						|
 | 
						|
        FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
 | 
						|
        FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
 | 
						|
        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | 
						|
            sum1 += FLOAT_TYPE(data_b[b_offset + y_idx + l +  0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3);
 | 
						|
            sum2 += FLOAT_TYPE(data_b[b_offset + y_idx + l +  0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF)
 | 
						|
                  + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF);
 | 
						|
        }
 | 
						|
        tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
 | 
						|
    }
 | 
						|
 | 
						|
    // sum up partial sums and write back result
 | 
						|
    barrier();
 | 
						|
    [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
 | 
						|
        if (tid < s) {
 | 
						|
            tmp[tid] += tmp[tid + s];
 | 
						|
        }
 | 
						|
        barrier();
 | 
						|
    }
 | 
						|
    if (tid == 0) {
 | 
						|
        data_d[d_offset + row] = D_TYPE(tmp[0]);
 | 
						|
    }
 | 
						|
}
 |