mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 98bab638fb
			
		
	
	98bab638fb
	
	
	
		
			
			* ggml : add ggml_scale_bias * ggml_vec_mad1_f32 * add more simd * add CUDA * sycl * vulkan * cann (placeholder) * opencl * will this fix cpu? * fix cuda * suggestions from coderabbit * fix cann compile error * vDSP_vsmsa * rm __ARM_FEATURE_SVE * use memcpy for op params * make code looks more consistent * use scalar for __ARM_FEATURE_SVE * add x param to ggml_vec_mad1_f32
		
			
				
	
	
		
			6949 lines
		
	
	
		
			217 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6949 lines
		
	
	
		
			217 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
 | ||
| #define _USE_MATH_DEFINES // For M_PI on MSVC
 | ||
| 
 | ||
| #include "ggml-backend.h"
 | ||
| #include "ggml-impl.h"
 | ||
| #include "ggml-threading.h"
 | ||
| #include "ggml-cpu.h"
 | ||
| #include "ggml.h"
 | ||
| 
 | ||
| // FIXME: required here for quantization functions
 | ||
| #include "ggml-quants.h"
 | ||
| 
 | ||
| #ifdef GGML_USE_CPU_HBM
 | ||
| #include <hbwmalloc.h>
 | ||
| #endif
 | ||
| 
 | ||
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | ||
| #include <malloc.h> // using malloc.h with MSC/MINGW
 | ||
| #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
 | ||
| #include <alloca.h>
 | ||
| #endif
 | ||
| 
 | ||
| #include <assert.h>
 | ||
| #include <errno.h>
 | ||
| #include <time.h>
 | ||
| #include <math.h>
 | ||
| #include <stdlib.h>
 | ||
| #include <string.h>
 | ||
| #include <stdint.h>
 | ||
| #include <inttypes.h>
 | ||
| #include <stdio.h>
 | ||
| #include <float.h>
 | ||
| #include <limits.h>
 | ||
| #include <stdarg.h>
 | ||
| #include <signal.h>
 | ||
| #if defined(__gnu_linux__)
 | ||
| #include <syscall.h>
 | ||
| #endif
 | ||
| 
 | ||
| #if defined(__APPLE__)
 | ||
| #include <unistd.h>
 | ||
| #include <mach/mach.h>
 | ||
| #include <TargetConditionals.h>
 | ||
| #endif
 | ||
| 
 | ||
| #if defined(_WIN32)
 | ||
| #define WIN32_LEAN_AND_MEAN
 | ||
| #ifndef NOMINMAX
 | ||
|     #define NOMINMAX
 | ||
| #endif
 | ||
| #include <windows.h>
 | ||
| #endif
 | ||
| 
 | ||
| #define UNUSED GGML_UNUSED
 | ||
| 
 | ||
| #if defined(_MSC_VER)
 | ||
| #define m512bh(p) p
 | ||
| #define m512i(p) p
 | ||
| #else
 | ||
| #define m512bh(p) (__m512bh)(p)
 | ||
| #define m512i(p) (__m512i)(p)
 | ||
| #endif
 | ||
| 
 | ||
| #if defined(__linux__) || \
 | ||
|     defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \
 | ||
|     (defined(__APPLE__) && !TARGET_OS_TV && !TARGET_OS_WATCH)
 | ||
| 
 | ||
| #include <unistd.h>
 | ||
| #include <sys/types.h>
 | ||
| #include <sys/stat.h>
 | ||
| #include <sys/wait.h>
 | ||
| #if defined(__linux__)
 | ||
| #include <sys/prctl.h>
 | ||
| #endif
 | ||
| 
 | ||
| #if defined(__ANDROID__)
 | ||
| #include <unwind.h>
 | ||
| #include <dlfcn.h>
 | ||
| #include <stdio.h>
 | ||
| 
 | ||
| struct backtrace_state {
 | ||
|     void ** current;
 | ||
|     void ** end;
 | ||
| };
 | ||
| 
 | ||
| static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
 | ||
|     struct backtrace_state * state = (struct backtrace_state *)arg;
 | ||
|     uintptr_t pc = _Unwind_GetIP(context);
 | ||
|     if (pc) {
 | ||
|         if (state->current == state->end) {
 | ||
|             return _URC_END_OF_STACK;
 | ||
|         } else {
 | ||
|             *state->current++ = (void*)pc;
 | ||
|         }
 | ||
|     }
 | ||
|     return _URC_NO_REASON;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_print_backtrace_symbols(void) {
 | ||
|     const int max = 100;
 | ||
|     void* buffer[max];
 | ||
| 
 | ||
|     struct backtrace_state state = {buffer, buffer + max};
 | ||
|     _Unwind_Backtrace(unwind_callback, &state);
 | ||
| 
 | ||
|     int count = state.current - buffer;
 | ||
| 
 | ||
|     for (int idx = 0; idx < count; ++idx) {
 | ||
|         const void * addr = buffer[idx];
 | ||
|         const char * symbol = "";
 | ||
| 
 | ||
|         Dl_info info;
 | ||
|         if (dladdr(addr, &info) && info.dli_sname) {
 | ||
|             symbol = info.dli_sname;
 | ||
|         }
 | ||
| 
 | ||
|         fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
 | ||
|     }
 | ||
| }
 | ||
| #elif defined(__linux__) && defined(__GLIBC__)
 | ||
| #include <execinfo.h>
 | ||
| static void ggml_print_backtrace_symbols(void) {
 | ||
|     void * trace[100];
 | ||
|     int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
 | ||
|     backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
 | ||
| }
 | ||
| #else
 | ||
| static void ggml_print_backtrace_symbols(void) {
 | ||
|     // platform not supported
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| void ggml_print_backtrace(void) {
 | ||
|     const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE");
 | ||
|     if (GGML_NO_BACKTRACE) {
 | ||
|         return;
 | ||
|     }
 | ||
| #if defined(__linux__)
 | ||
|     FILE * f = fopen("/proc/self/status", "r");
 | ||
|     size_t size = 0;
 | ||
|     char * line = NULL;
 | ||
|     ssize_t length = 0;
 | ||
|     while ((length = getline(&line, &size, f)) > 0) {
 | ||
|         if (!strncmp(line, "TracerPid:", sizeof("TracerPid:") - 1) &&
 | ||
|             (length != sizeof("TracerPid:\t0\n") - 1 || line[length - 2] != '0')) {
 | ||
|             // Already being debugged, and the breakpoint is the later abort()
 | ||
|             free(line);
 | ||
|             fclose(f);
 | ||
|             return;
 | ||
|         }
 | ||
|     }
 | ||
|     free(line);
 | ||
|     fclose(f);
 | ||
|     int lock[2] = { -1, -1 };
 | ||
|     (void) !pipe(lock); // Don't start gdb until after PR_SET_PTRACER
 | ||
| #endif
 | ||
|     const int parent_pid = getpid();
 | ||
|     const int child_pid = fork();
 | ||
|     if (child_pid < 0) { // error
 | ||
| #if defined(__linux__)
 | ||
|         close(lock[1]);
 | ||
|         close(lock[0]);
 | ||
| #endif
 | ||
|         return;
 | ||
|     } else if (child_pid == 0) { // child
 | ||
|         char attach[32];
 | ||
|         snprintf(attach, sizeof(attach), "attach %d", parent_pid);
 | ||
| #if defined(__linux__)
 | ||
|         close(lock[1]);
 | ||
|         (void) !read(lock[0], lock, 1);
 | ||
|         close(lock[0]);
 | ||
| #endif
 | ||
|         // try gdb
 | ||
|         execlp("gdb", "gdb", "--batch",
 | ||
|             "-ex", "set style enabled on",
 | ||
|             "-ex", attach,
 | ||
|             "-ex", "bt -frame-info source-and-location",
 | ||
|             "-ex", "detach",
 | ||
|             "-ex", "quit",
 | ||
|             (char *) NULL);
 | ||
|         // try lldb
 | ||
|         execlp("lldb", "lldb", "--batch",
 | ||
|             "-o", "bt",
 | ||
|             "-o", "quit",
 | ||
|             "-p", &attach[sizeof("attach ") - 1],
 | ||
|             (char *) NULL);
 | ||
|         // gdb failed, fallback to backtrace_symbols
 | ||
|         ggml_print_backtrace_symbols();
 | ||
|         _Exit(0);
 | ||
|     } else { // parent
 | ||
| #if defined(__linux__)
 | ||
|         prctl(PR_SET_PTRACER, child_pid);
 | ||
|         close(lock[1]);
 | ||
|         close(lock[0]);
 | ||
| #endif
 | ||
|         waitpid(child_pid, NULL, 0);
 | ||
|     }
 | ||
| }
 | ||
| #else
 | ||
| void ggml_print_backtrace(void) {
 | ||
|     // platform not supported
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| static ggml_abort_callback_t g_abort_callback = NULL;
 | ||
| 
 | ||
| // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
 | ||
| GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback) {
 | ||
|     ggml_abort_callback_t ret_val = g_abort_callback;
 | ||
|     g_abort_callback = callback;
 | ||
|     return ret_val;
 | ||
| }
 | ||
| 
 | ||
| void ggml_abort(const char * file, int line, const char * fmt, ...) {
 | ||
|     fflush(stdout);
 | ||
| 
 | ||
|     char message[2048];
 | ||
|     int offset = snprintf(message, sizeof(message), "%s:%d: ", file, line);
 | ||
| 
 | ||
|     va_list args;
 | ||
|     va_start(args, fmt);
 | ||
|     vsnprintf(message + offset, sizeof(message) - offset, fmt, args);
 | ||
|     va_end(args);
 | ||
| 
 | ||
|     if (g_abort_callback) {
 | ||
|         g_abort_callback(message);
 | ||
|     } else {
 | ||
|         // default: print error and backtrace to stderr
 | ||
|         fprintf(stderr, "%s\n", message);
 | ||
|         ggml_print_backtrace();
 | ||
|     }
 | ||
| 
 | ||
|     abort();
 | ||
| }
 | ||
| 
 | ||
| // ggml_print_backtrace is registered with std::set_terminate by ggml.cpp
 | ||
| 
 | ||
| //
 | ||
| // logging
 | ||
| //
 | ||
| 
 | ||
| struct ggml_logger_state {
 | ||
|     ggml_log_callback log_callback;
 | ||
|     void * log_callback_user_data;
 | ||
| };
 | ||
| static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL};
 | ||
| 
 | ||
| static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
 | ||
|     if (format == NULL) {
 | ||
|         return;
 | ||
|     }
 | ||
|     va_list args_copy;
 | ||
|     va_copy(args_copy, args);
 | ||
|     char buffer[128];
 | ||
|     int len = vsnprintf(buffer, 128, format, args);
 | ||
|     if (len < 128) {
 | ||
|         g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
 | ||
|     } else {
 | ||
|         char * buffer2 = (char *) calloc(len + 1, sizeof(char));
 | ||
|         vsnprintf(buffer2, len + 1, format, args_copy);
 | ||
|         buffer2[len] = 0;
 | ||
|         g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
 | ||
|         free(buffer2);
 | ||
|     }
 | ||
|     va_end(args_copy);
 | ||
| }
 | ||
| 
 | ||
| void ggml_log_internal(enum ggml_log_level level, const char * format, ...) {
 | ||
|     va_list args;
 | ||
|     va_start(args, format);
 | ||
|     ggml_log_internal_v(level, format, args);
 | ||
|     va_end(args);
 | ||
| }
 | ||
| 
 | ||
| void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
 | ||
|     (void) level;
 | ||
|     (void) user_data;
 | ||
|     fputs(text, stderr);
 | ||
|     fflush(stderr);
 | ||
| }
 | ||
| 
 | ||
| //
 | ||
| // end of logging block
 | ||
| //
 | ||
| 
 | ||
| #ifdef GGML_USE_ACCELERATE
 | ||
| // uncomment to use vDSP for soft max computation
 | ||
| // note: not sure if it is actually faster
 | ||
| //#define GGML_SOFT_MAX_ACCELERATE
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| void * ggml_aligned_malloc(size_t size) {
 | ||
| #if defined(__s390x__)
 | ||
|     const int alignment = 256;
 | ||
| #else
 | ||
|     const int alignment = 64;
 | ||
| #endif
 | ||
| 
 | ||
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | ||
|     return _aligned_malloc(size, alignment);
 | ||
| #else
 | ||
|     if (size == 0) {
 | ||
|         GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     void * aligned_memory = NULL;
 | ||
|   #ifdef GGML_USE_CPU_HBM
 | ||
|     int result = hbw_posix_memalign(&aligned_memory, alignment, size);
 | ||
|   #elif TARGET_OS_OSX
 | ||
|     GGML_UNUSED(alignment);
 | ||
|     kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE);
 | ||
|     int result = EFAULT;
 | ||
|     switch (alloc_status) {
 | ||
|         case KERN_SUCCESS:
 | ||
|             result = 0;
 | ||
|             break;
 | ||
|         case KERN_INVALID_ADDRESS:
 | ||
|             result = EINVAL;
 | ||
|             break;
 | ||
|         case KERN_NO_SPACE:
 | ||
|             result = ENOMEM;
 | ||
|             break;
 | ||
|         default:
 | ||
|             result = EFAULT;
 | ||
|             break;
 | ||
|     }
 | ||
|   #else
 | ||
|     int result = posix_memalign(&aligned_memory, alignment, size);
 | ||
|   #endif
 | ||
|     if (result != 0) {
 | ||
|         // Handle allocation failure
 | ||
|         const char *error_desc = "unknown allocation error";
 | ||
|         switch (result) {
 | ||
|             case EINVAL:
 | ||
|                 error_desc = "invalid alignment value";
 | ||
|                 break;
 | ||
|             case ENOMEM:
 | ||
|                 error_desc = "insufficient memory";
 | ||
|                 break;
 | ||
|         }
 | ||
|         GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     return aligned_memory;
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| void ggml_aligned_free(void * ptr, size_t size) {
 | ||
|     GGML_UNUSED(size);
 | ||
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | ||
|     _aligned_free(ptr);
 | ||
| #elif GGML_USE_CPU_HBM
 | ||
|     if (ptr != NULL) {
 | ||
|         hbw_free(ptr);
 | ||
|     }
 | ||
| #elif TARGET_OS_OSX
 | ||
|     if (ptr != NULL) {
 | ||
|         vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size);
 | ||
|     }
 | ||
| #else
 | ||
|     free(ptr);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| inline static void * ggml_malloc(size_t size) {
 | ||
|     if (size == 0) {
 | ||
|         GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     void * result = malloc(size);
 | ||
|     if (result == NULL) {
 | ||
|         GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
 | ||
|         GGML_ABORT("fatal error");
 | ||
|     }
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // calloc
 | ||
| inline static void * ggml_calloc(size_t num, size_t size) {
 | ||
|     if (num == 0 || size == 0) {
 | ||
|         GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     void * result = calloc(num, size);
 | ||
|     if (result == NULL) {
 | ||
|         GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
 | ||
|         GGML_ABORT("fatal error");
 | ||
|     }
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| #define GGML_MALLOC(size)      ggml_malloc(size)
 | ||
| #define GGML_CALLOC(num, size) ggml_calloc(num, size)
 | ||
| 
 | ||
| #define GGML_FREE(ptr) free(ptr)
 | ||
| 
 | ||
| const char * ggml_status_to_string(enum ggml_status status) {
 | ||
|     switch (status) {
 | ||
|         case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
 | ||
|         case GGML_STATUS_FAILED:       return "GGML status: error (operation failed)";
 | ||
|         case GGML_STATUS_SUCCESS:      return "GGML status: success";
 | ||
|         case GGML_STATUS_ABORTED:      return "GGML status: warning (operation aborted)";
 | ||
|     }
 | ||
| 
 | ||
|     return "GGML status: unknown";
 | ||
| }
 | ||
| 
 | ||
| float ggml_fp16_to_fp32(ggml_fp16_t x) {
 | ||
| #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
 | ||
|     return GGML_FP16_TO_FP32(x);
 | ||
| }
 | ||
| 
 | ||
| ggml_fp16_t ggml_fp32_to_fp16(float x) {
 | ||
| #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
 | ||
|     return GGML_FP32_TO_FP16(x);
 | ||
| }
 | ||
| 
 | ||
| float ggml_bf16_to_fp32(ggml_bf16_t x) {
 | ||
| #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
 | ||
|     return GGML_BF16_TO_FP32(x);  // it just left shifts
 | ||
| }
 | ||
| 
 | ||
| ggml_bf16_t ggml_fp32_to_bf16(float x) {
 | ||
| #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
 | ||
|     return GGML_FP32_TO_BF16(x);
 | ||
| }
 | ||
| 
 | ||
| void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
 | ||
|     for (int64_t i = 0; i < n; i++) {
 | ||
|         y[i] = GGML_FP16_TO_FP32(x[i]);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
 | ||
|     int i = 0;
 | ||
|     for (; i < n; ++i) {
 | ||
|         y[i] = GGML_FP32_TO_FP16(x[i]);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
 | ||
|     int i = 0;
 | ||
|     for (; i < n; ++i) {
 | ||
|         y[i] = GGML_BF16_TO_FP32(x[i]);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
 | ||
|     for (int i = 0; i < n; i++) {
 | ||
|         y[i] = ggml_compute_fp32_to_bf16(x[i]);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
 | ||
|   int i = 0;
 | ||
| #if defined(__AVX512BF16__)
 | ||
|   // subnormals are flushed to zero on this platform
 | ||
|   for (; i + 32 <= n; i += 32) {
 | ||
|         _mm512_storeu_si512(
 | ||
|             (__m512i *)(y + i),
 | ||
|             m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
 | ||
|                                 _mm512_loadu_ps(x + i))));
 | ||
|   }
 | ||
| #endif
 | ||
|     for (; i < n; i++) {
 | ||
|         y[i] = GGML_FP32_TO_BF16(x[i]);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
 | ||
|     return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_version(void) {
 | ||
|     return GGML_VERSION;
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_commit(void) {
 | ||
|     return GGML_COMMIT;
 | ||
| }
 | ||
| 
 | ||
| //
 | ||
| // timing
 | ||
| //
 | ||
| 
 | ||
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | ||
| static int64_t timer_freq, timer_start;
 | ||
| void ggml_time_init(void) {
 | ||
|     LARGE_INTEGER t;
 | ||
|     QueryPerformanceFrequency(&t);
 | ||
|     timer_freq = t.QuadPart;
 | ||
| 
 | ||
|     // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
 | ||
|     // and the uptime is high enough.
 | ||
|     // We subtract the program start time to reduce the likelihood of that happening.
 | ||
|     QueryPerformanceCounter(&t);
 | ||
|     timer_start = t.QuadPart;
 | ||
| }
 | ||
| int64_t ggml_time_ms(void) {
 | ||
|     LARGE_INTEGER t;
 | ||
|     QueryPerformanceCounter(&t);
 | ||
|     return ((t.QuadPart-timer_start) * 1000) / timer_freq;
 | ||
| }
 | ||
| int64_t ggml_time_us(void) {
 | ||
|     LARGE_INTEGER t;
 | ||
|     QueryPerformanceCounter(&t);
 | ||
|     return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
 | ||
| }
 | ||
| #else
 | ||
| void ggml_time_init(void) {}
 | ||
| int64_t ggml_time_ms(void) {
 | ||
|     struct timespec ts;
 | ||
|     clock_gettime(CLOCK_MONOTONIC, &ts);
 | ||
|     return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
 | ||
| }
 | ||
| 
 | ||
| int64_t ggml_time_us(void) {
 | ||
|     struct timespec ts;
 | ||
|     clock_gettime(CLOCK_MONOTONIC, &ts);
 | ||
|     return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| int64_t ggml_cycles(void) {
 | ||
|     return clock();
 | ||
| }
 | ||
| 
 | ||
| int64_t ggml_cycles_per_ms(void) {
 | ||
|     return CLOCKS_PER_SEC/1000;
 | ||
| }
 | ||
| 
 | ||
| //
 | ||
| // cross-platform UTF-8 file paths
 | ||
| //
 | ||
| 
 | ||
| #ifdef _WIN32
 | ||
| static wchar_t * ggml_mbstowcs(const char * mbs) {
 | ||
|     int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
 | ||
|     if (!wlen) {
 | ||
|         errno = EINVAL;
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
 | ||
|     wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
 | ||
|     if (!wlen) {
 | ||
|         GGML_FREE(wbuf);
 | ||
|         errno = EINVAL;
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     return wbuf;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| FILE * ggml_fopen(const char * fname, const char * mode) {
 | ||
| #ifdef _WIN32
 | ||
|     FILE * file = NULL;
 | ||
| 
 | ||
|     // convert fname (UTF-8)
 | ||
|     wchar_t * wfname = ggml_mbstowcs(fname);
 | ||
|     if (wfname) {
 | ||
|         // convert mode (ANSI)
 | ||
|         wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
 | ||
|         wchar_t * wmode_p = wmode;
 | ||
|         do {
 | ||
|             *wmode_p++ = (wchar_t)*mode;
 | ||
|         } while (*mode++);
 | ||
| 
 | ||
|         // open file
 | ||
|         file = _wfopen(wfname, wmode);
 | ||
| 
 | ||
|         GGML_FREE(wfname);
 | ||
|         GGML_FREE(wmode);
 | ||
|     }
 | ||
| 
 | ||
|     return file;
 | ||
| #else
 | ||
|     return fopen(fname, mode);
 | ||
| #endif
 | ||
| 
 | ||
| }
 | ||
| static void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc);
 | ||
| static void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc);
 | ||
| static void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc);
 | ||
| 
 | ||
| static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
 | ||
|     [GGML_TYPE_I8] = {
 | ||
|         .type_name                = "i8",
 | ||
|         .blck_size                = 1,
 | ||
|         .type_size                = sizeof(int8_t),
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [GGML_TYPE_I16] = {
 | ||
|         .type_name                = "i16",
 | ||
|         .blck_size                = 1,
 | ||
|         .type_size                = sizeof(int16_t),
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [GGML_TYPE_I32] = {
 | ||
|         .type_name                = "i32",
 | ||
|         .blck_size                = 1,
 | ||
|         .type_size                = sizeof(int32_t),
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [GGML_TYPE_I64] = {
 | ||
|         .type_name                = "i64",
 | ||
|         .blck_size                = 1,
 | ||
|         .type_size                = sizeof(int64_t),
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [GGML_TYPE_F64] = {
 | ||
|         .type_name                = "f64",
 | ||
|         .blck_size                = 1,
 | ||
|         .type_size                = sizeof(double),
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [GGML_TYPE_F32] = {
 | ||
|         .type_name                = "f32",
 | ||
|         .blck_size                = 1,
 | ||
|         .type_size                = sizeof(float),
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [GGML_TYPE_F16] = {
 | ||
|         .type_name                = "f16",
 | ||
|         .blck_size                = 1,
 | ||
|         .type_size                = sizeof(ggml_fp16_t),
 | ||
|         .is_quantized             = false,
 | ||
|         .to_float                 = (ggml_to_float_t) ggml_fp16_to_fp32_row,
 | ||
|         .from_float_ref           = (ggml_from_float_t) ggml_fp32_to_fp16_row,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q4_0] = {
 | ||
|         .type_name                = "q4_0",
 | ||
|         .blck_size                = QK4_0,
 | ||
|         .type_size                = sizeof(block_q4_0),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q4_0,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q4_0_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q4_1] = {
 | ||
|         .type_name                = "q4_1",
 | ||
|         .blck_size                = QK4_1,
 | ||
|         .type_size                = sizeof(block_q4_1),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q4_1,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q4_1_ref,
 | ||
|     },
 | ||
|     [4] = { // GGML_TYPE_Q4_2
 | ||
|         .type_name                = "DEPRECATED",
 | ||
|         .blck_size                = 0,
 | ||
|         .type_size                = 0,
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [5] = { // GGML_TYPE_Q4_3
 | ||
|         .type_name                = "DEPRECATED",
 | ||
|         .blck_size                = 0,
 | ||
|         .type_size                = 0,
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q5_0] = {
 | ||
|         .type_name                = "q5_0",
 | ||
|         .blck_size                = QK5_0,
 | ||
|         .type_size                = sizeof(block_q5_0),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q5_0,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q5_0_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q5_1] = {
 | ||
|         .type_name                = "q5_1",
 | ||
|         .blck_size                = QK5_1,
 | ||
|         .type_size                = sizeof(block_q5_1),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q5_1,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q5_1_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q8_0] = {
 | ||
|         .type_name                = "q8_0",
 | ||
|         .blck_size                = QK8_0,
 | ||
|         .type_size                = sizeof(block_q8_0),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q8_0,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q8_0_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q8_1] = {
 | ||
|         .type_name                = "q8_1",
 | ||
|         .blck_size                = QK8_1,
 | ||
|         .type_size                = sizeof(block_q8_1),
 | ||
|         .is_quantized             = true,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q8_1_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q2_K] = {
 | ||
|         .type_name                = "q2_K",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_q2_K),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q2_K,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q2_K_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q3_K] = {
 | ||
|         .type_name                = "q3_K",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_q3_K),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q3_K,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q3_K_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q4_K] = {
 | ||
|         .type_name                = "q4_K",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_q4_K),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q4_K,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q4_K_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q5_K] = {
 | ||
|         .type_name                = "q5_K",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_q5_K),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q5_K,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q5_K_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q6_K] = {
 | ||
|         .type_name                = "q6_K",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_q6_K),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_q6_K,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_q6_K_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ2_XXS] = {
 | ||
|         .type_name                = "iq2_xxs",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_iq2_xxs),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq2_xxs,
 | ||
|         .from_float_ref           = NULL,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ2_XS] = {
 | ||
|         .type_name                = "iq2_xs",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_iq2_xs),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq2_xs,
 | ||
|         .from_float_ref           = NULL,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ3_XXS] = {
 | ||
|         .type_name                = "iq3_xxs",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_iq3_xxs),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq3_xxs,
 | ||
|         .from_float_ref           = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ3_S] = {
 | ||
|         .type_name                = "iq3_s",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_iq3_s),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq3_s,
 | ||
|         .from_float_ref           = (ggml_from_float_t)quantize_row_iq3_s_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ2_S] = {
 | ||
|         .type_name                = "iq2_s",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_iq2_s),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq2_s,
 | ||
|         .from_float_ref           = (ggml_from_float_t)quantize_row_iq2_s_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ1_S] = {
 | ||
|         .type_name                = "iq1_s",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_iq1_s),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq1_s,
 | ||
|         .from_float_ref           = NULL,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ1_M] = {
 | ||
|         .type_name                = "iq1_m",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_iq1_m),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq1_m,
 | ||
|         .from_float_ref           = NULL,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ4_NL] = {
 | ||
|         .type_name                = "iq4_nl",
 | ||
|         .blck_size                = QK4_NL,
 | ||
|         .type_size                = sizeof(block_iq4_nl),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq4_nl,
 | ||
|         .from_float_ref           = (ggml_from_float_t)quantize_row_iq4_nl_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_IQ4_XS] = {
 | ||
|         .type_name                = "iq4_xs",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_iq4_xs),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_iq4_xs,
 | ||
|         .from_float_ref           = (ggml_from_float_t)quantize_row_iq4_xs_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_Q8_K] = {
 | ||
|         .type_name                = "q8_K",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_q8_K),
 | ||
|         .is_quantized             = true,
 | ||
|     },
 | ||
|     [GGML_TYPE_BF16] = {
 | ||
|         .type_name                = "bf16",
 | ||
|         .blck_size                = 1,
 | ||
|         .type_size                = sizeof(ggml_bf16_t),
 | ||
|         .is_quantized             = false,
 | ||
|         .to_float                 = (ggml_to_float_t) ggml_bf16_to_fp32_row,
 | ||
|         .from_float_ref           = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
 | ||
|     },
 | ||
|     [31] = { // GGML_TYPE_Q4_0_4_4
 | ||
|         .type_name                = "TYPE_Q4_0_4_4 REMOVED, use Q4_0 with runtime repacking",
 | ||
|         .blck_size                = 0,
 | ||
|         .type_size                = 0,
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [32] = { // GGML_TYPE_Q4_0_4_8
 | ||
|         .type_name                = "TYPE_Q4_0_4_8 REMOVED, use Q4_0 with runtime repacking",
 | ||
|         .blck_size                = 0,
 | ||
|         .type_size                = 0,
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [33] = { // GGML_TYPE_Q4_0_8_8
 | ||
|         .type_name                = "TYPE_Q4_0_8_8 REMOVED, use Q4_0 with runtime repacking",
 | ||
|         .blck_size                = 0,
 | ||
|         .type_size                = 0,
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [GGML_TYPE_TQ1_0] = {
 | ||
|         .type_name                = "tq1_0",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_tq1_0),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_tq1_0,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_tq1_0_ref,
 | ||
|     },
 | ||
|     [GGML_TYPE_TQ2_0] = {
 | ||
|         .type_name                = "tq2_0",
 | ||
|         .blck_size                = QK_K,
 | ||
|         .type_size                = sizeof(block_tq2_0),
 | ||
|         .is_quantized             = true,
 | ||
|         .to_float                 = (ggml_to_float_t) dequantize_row_tq2_0,
 | ||
|         .from_float_ref           = (ggml_from_float_t) quantize_row_tq2_0_ref,
 | ||
|     },
 | ||
|     [36] = { // GGML_TYPE_IQ4_NL_4_4
 | ||
|         .type_name                = "TYPE_IQ4_NL_4_4 REMOVED, use IQ4_NL with runtime repacking",
 | ||
|         .blck_size                = 0,
 | ||
|         .type_size                = 0,
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [37] = { // GGML_TYPE_IQ4_NL_4_8
 | ||
|         .type_name                = "TYPE_IQ4_NL_4_8 REMOVED, use IQ4_NL with runtime repacking",
 | ||
|         .blck_size                = 0,
 | ||
|         .type_size                = 0,
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
|     [38] = { // GGML_TYPE_IQ4_NL_8_8
 | ||
|         .type_name                = "TYPE_IQ4_NL_8_8 REMOVED, use IQ4_NL with runtime repacking",
 | ||
|         .blck_size                = 0,
 | ||
|         .type_size                = 0,
 | ||
|         .is_quantized             = false,
 | ||
|     },
 | ||
| };
 | ||
| 
 | ||
| const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) {
 | ||
|     GGML_ASSERT(type < GGML_TYPE_COUNT);
 | ||
|     return &type_traits[type];
 | ||
| }
 | ||
| 
 | ||
| //
 | ||
| // ggml object
 | ||
| //
 | ||
| 
 | ||
| struct ggml_object {
 | ||
|     size_t offs;
 | ||
|     size_t size;
 | ||
| 
 | ||
|     struct ggml_object * next;
 | ||
| 
 | ||
|     enum ggml_object_type type;
 | ||
| 
 | ||
|     char padding[4];
 | ||
| };
 | ||
| 
 | ||
| static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
 | ||
| 
 | ||
| //
 | ||
| // ggml context
 | ||
| //
 | ||
| 
 | ||
| struct ggml_context {
 | ||
|     size_t mem_size;
 | ||
|     void * mem_buffer;
 | ||
|     bool   mem_buffer_owned;
 | ||
|     bool   no_alloc;
 | ||
| 
 | ||
|     int    n_objects;
 | ||
| 
 | ||
|     struct ggml_object * objects_begin;
 | ||
|     struct ggml_object * objects_end;
 | ||
| };
 | ||
| 
 | ||
| //
 | ||
| // data types
 | ||
| //
 | ||
| 
 | ||
| static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
 | ||
|     "NONE",
 | ||
| 
 | ||
|     "DUP",
 | ||
|     "ADD",
 | ||
|     "ADD1",
 | ||
|     "ACC",
 | ||
|     "SUB",
 | ||
|     "MUL",
 | ||
|     "DIV",
 | ||
|     "SQR",
 | ||
|     "SQRT",
 | ||
|     "LOG",
 | ||
|     "SIN",
 | ||
|     "COS",
 | ||
|     "SUM",
 | ||
|     "SUM_ROWS",
 | ||
|     "MEAN",
 | ||
|     "ARGMAX",
 | ||
|     "COUNT_EQUAL",
 | ||
|     "REPEAT",
 | ||
|     "REPEAT_BACK",
 | ||
|     "CONCAT",
 | ||
|     "SILU_BACK",
 | ||
|     "NORM",
 | ||
|     "RMS_NORM",
 | ||
|     "RMS_NORM_BACK",
 | ||
|     "GROUP_NORM",
 | ||
|     "L2_NORM",
 | ||
| 
 | ||
|     "MUL_MAT",
 | ||
|     "MUL_MAT_ID",
 | ||
|     "OUT_PROD",
 | ||
| 
 | ||
|     "SCALE",
 | ||
|     "SET",
 | ||
|     "CPY",
 | ||
|     "CONT",
 | ||
|     "RESHAPE",
 | ||
|     "VIEW",
 | ||
|     "PERMUTE",
 | ||
|     "TRANSPOSE",
 | ||
|     "GET_ROWS",
 | ||
|     "GET_ROWS_BACK",
 | ||
|     "SET_ROWS",
 | ||
|     "DIAG",
 | ||
|     "DIAG_MASK_INF",
 | ||
|     "DIAG_MASK_ZERO",
 | ||
|     "SOFT_MAX",
 | ||
|     "SOFT_MAX_BACK",
 | ||
|     "ROPE",
 | ||
|     "ROPE_BACK",
 | ||
|     "CLAMP",
 | ||
|     "CONV_TRANSPOSE_1D",
 | ||
|     "IM2COL",
 | ||
|     "IM2COL_BACK",
 | ||
|     "CONV_2D",
 | ||
|     "CONV_2D_DW",
 | ||
|     "CONV_TRANSPOSE_2D",
 | ||
|     "POOL_1D",
 | ||
|     "POOL_2D",
 | ||
|     "POOL_2D_BACK",
 | ||
|     "UPSCALE",
 | ||
|     "PAD",
 | ||
|     "PAD_REFLECT_1D",
 | ||
|     "ROLL",
 | ||
|     "ARANGE",
 | ||
|     "TIMESTEP_EMBEDDING",
 | ||
|     "ARGSORT",
 | ||
|     "LEAKY_RELU",
 | ||
| 
 | ||
|     "FLASH_ATTN_EXT",
 | ||
|     "FLASH_ATTN_BACK",
 | ||
|     "SSM_CONV",
 | ||
|     "SSM_SCAN",
 | ||
|     "WIN_PART",
 | ||
|     "WIN_UNPART",
 | ||
|     "GET_REL_POS",
 | ||
|     "ADD_REL_POS",
 | ||
|     "RWKV_WKV6",
 | ||
|     "GATED_LINEAR_ATTN",
 | ||
|     "RWKV_WKV7",
 | ||
| 
 | ||
|     "UNARY",
 | ||
| 
 | ||
|     "MAP_CUSTOM1",
 | ||
|     "MAP_CUSTOM2",
 | ||
|     "MAP_CUSTOM3",
 | ||
| 
 | ||
|     "CUSTOM",
 | ||
| 
 | ||
|     "CROSS_ENTROPY_LOSS",
 | ||
|     "CROSS_ENTROPY_LOSS_BACK",
 | ||
|     "OPT_STEP_ADAMW",
 | ||
| 
 | ||
|     "GLU",
 | ||
| };
 | ||
| 
 | ||
| static_assert(GGML_OP_COUNT == 86, "GGML_OP_COUNT != 86");
 | ||
| 
 | ||
| static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
 | ||
|     "none",
 | ||
| 
 | ||
|     "x",
 | ||
|     "x+y",
 | ||
|     "x+y",
 | ||
|     "view(x,nb,offset)+=y->x",
 | ||
|     "x-y",
 | ||
|     "x*y",
 | ||
|     "x/y",
 | ||
|     "x^2",
 | ||
|     "√x",
 | ||
|     "log(x)",
 | ||
|     "sin(x)",
 | ||
|     "cos(x)",
 | ||
|     "Σx",
 | ||
|     "Σx_k",
 | ||
|     "Σx/n",
 | ||
|     "argmax(x)",
 | ||
|     "count_equal(x)",
 | ||
|     "repeat(x)",
 | ||
|     "repeat_back(x)",
 | ||
|     "concat(x, y)",
 | ||
|     "silu_back(x)",
 | ||
|     "norm(x)",
 | ||
|     "rms_norm(x)",
 | ||
|     "rms_norm_back(x)",
 | ||
|     "group_norm(x)",
 | ||
|     "l2_norm(x)",
 | ||
| 
 | ||
|     "X*Y",
 | ||
|     "X[i]*Y",
 | ||
|     "X*Y",
 | ||
| 
 | ||
|     "x*v",
 | ||
|     "y-\\>view(x)",
 | ||
|     "x-\\>y",
 | ||
|     "cont(x)",
 | ||
|     "reshape(x)",
 | ||
|     "view(x)",
 | ||
|     "permute(x)",
 | ||
|     "transpose(x)",
 | ||
|     "get_rows(x)",
 | ||
|     "get_rows_back(x)",
 | ||
|     "set_rows(x)",
 | ||
|     "diag(x)",
 | ||
|     "diag_mask_inf(x)",
 | ||
|     "diag_mask_zero(x)",
 | ||
|     "soft_max(x)",
 | ||
|     "soft_max_back(x)",
 | ||
|     "rope(x)",
 | ||
|     "rope_back(x)",
 | ||
|     "clamp(x)",
 | ||
|     "conv_transpose_1d(x)",
 | ||
|     "im2col(x)",
 | ||
|     "im2col_back(x)",
 | ||
|     "conv_2d(x)",
 | ||
|     "conv_2d_dw(x)",
 | ||
|     "conv_transpose_2d(x)",
 | ||
|     "pool_1d(x)",
 | ||
|     "pool_2d(x)",
 | ||
|     "pool_2d_back(x)",
 | ||
|     "upscale(x)",
 | ||
|     "pad(x)",
 | ||
|     "pad_reflect_1d(x)",
 | ||
|     "roll(x)",
 | ||
|     "arange(start, stop, step)",
 | ||
|     "timestep_embedding(timesteps, dim, max_period)",
 | ||
|     "argsort(x)",
 | ||
|     "leaky_relu(x)",
 | ||
| 
 | ||
|     "flash_attn_ext(x)",
 | ||
|     "flash_attn_back(x)",
 | ||
|     "ssm_conv(x)",
 | ||
|     "ssm_scan(x)",
 | ||
|     "win_part(x)",
 | ||
|     "win_unpart(x)",
 | ||
|     "get_rel_pos(x)",
 | ||
|     "add_rel_pos(x)",
 | ||
|     "rwkv_wkv6(k, v, r, tf, td, s)",
 | ||
|     "gated_linear_attn(k, v, q, gate, s)",
 | ||
|     "rwkv_wkv7(r, w, k, v, a, b, s)",
 | ||
| 
 | ||
|     "unary(x)",
 | ||
| 
 | ||
|     "map_custom(x)",
 | ||
|     "map_custom(x,y)",
 | ||
|     "map_custom(x,y,z)",
 | ||
| 
 | ||
|     "custom(x)",
 | ||
| 
 | ||
|     "cross_entropy_loss(x,y)",
 | ||
|     "cross_entropy_loss_back(x,y)",
 | ||
|     "adamw(x)",
 | ||
| 
 | ||
|     "glu(x)",
 | ||
| };
 | ||
| 
 | ||
| static_assert(GGML_OP_COUNT == 86, "GGML_OP_COUNT != 86");
 | ||
| 
 | ||
| static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
 | ||
| 
 | ||
| 
 | ||
| static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
 | ||
|     "ABS",
 | ||
|     "SGN",
 | ||
|     "NEG",
 | ||
|     "STEP",
 | ||
|     "TANH",
 | ||
|     "ELU",
 | ||
|     "RELU",
 | ||
|     "SIGMOID",
 | ||
|     "GELU",
 | ||
|     "GELU_QUICK",
 | ||
|     "SILU",
 | ||
|     "HARDSWISH",
 | ||
|     "HARDSIGMOID",
 | ||
|     "EXP",
 | ||
|     "GELU_ERF",
 | ||
| };
 | ||
| 
 | ||
| static_assert(GGML_UNARY_OP_COUNT == 15, "GGML_UNARY_OP_COUNT != 15");
 | ||
| 
 | ||
| 
 | ||
| static const char * GGML_GLU_OP_NAME[GGML_GLU_OP_COUNT] = {
 | ||
|     "REGLU",
 | ||
|     "GEGLU",
 | ||
|     "SWIGLU",
 | ||
|     "GEGLU_ERF",
 | ||
|     "GEGLU_QUICK",
 | ||
| };
 | ||
| 
 | ||
| static_assert(GGML_GLU_OP_COUNT == 5, "GGML_GLU_OP_COUNT != 5");
 | ||
| 
 | ||
| 
 | ||
| static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
 | ||
| static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
 | ||
| 
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| void ggml_print_object(const struct ggml_object * obj) {
 | ||
|     GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
 | ||
|             obj->type, obj->offs, obj->size, (const void *) obj->next);
 | ||
| }
 | ||
| 
 | ||
| void ggml_print_objects(const struct ggml_context * ctx) {
 | ||
|     struct ggml_object * obj = ctx->objects_begin;
 | ||
| 
 | ||
|     GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx);
 | ||
| 
 | ||
|     while (obj != NULL) {
 | ||
|         ggml_print_object(obj);
 | ||
|         obj = obj->next;
 | ||
|     }
 | ||
| 
 | ||
|     GGML_LOG_INFO("%s: --- end ---\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| int64_t ggml_nelements(const struct ggml_tensor * tensor) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
 | ||
| }
 | ||
| 
 | ||
| int64_t ggml_nrows(const struct ggml_tensor * tensor) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_nbytes(const struct ggml_tensor * tensor) {
 | ||
|     for (int i = 0; i < GGML_MAX_DIMS; ++i) {
 | ||
|         if (tensor->ne[i] <= 0) {
 | ||
|             return 0;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     size_t nbytes;
 | ||
|     const size_t blck_size = ggml_blck_size(tensor->type);
 | ||
|     if (blck_size == 1) {
 | ||
|         nbytes = ggml_type_size(tensor->type);
 | ||
|         for (int i = 0; i < GGML_MAX_DIMS; ++i) {
 | ||
|             nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
 | ||
|         }
 | ||
|     }
 | ||
|     else {
 | ||
|         nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
 | ||
|         for (int i = 1; i < GGML_MAX_DIMS; ++i) {
 | ||
|             nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return nbytes;
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
 | ||
|     return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
 | ||
| }
 | ||
| 
 | ||
| int64_t ggml_blck_size(enum ggml_type type) {
 | ||
|     return type_traits[type].blck_size;
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_type_size(enum ggml_type type) {
 | ||
|     return type_traits[type].type_size;
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_row_size(enum ggml_type type, int64_t ne) {
 | ||
|     assert(ne % ggml_blck_size(type) == 0);
 | ||
|     return ggml_type_size(type)*ne/ggml_blck_size(type);
 | ||
| }
 | ||
| 
 | ||
| double ggml_type_sizef(enum ggml_type type) {
 | ||
|     return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_type_name(enum ggml_type type) {
 | ||
|     return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_quantized(enum ggml_type type) {
 | ||
|     return type_traits[type].is_quantized;
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_op_name(enum ggml_op op) {
 | ||
|     return GGML_OP_NAME[op];
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_op_symbol(enum ggml_op op) {
 | ||
|     return GGML_OP_SYMBOL[op];
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_unary_op_name(enum ggml_unary_op op) {
 | ||
|     return GGML_UNARY_OP_NAME[op];
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_glu_op_name(enum ggml_glu_op op) {
 | ||
|     return GGML_GLU_OP_NAME[op];
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_op_desc(const struct ggml_tensor * t) {
 | ||
|     if (t->op == GGML_OP_UNARY) {
 | ||
|         enum ggml_unary_op uop = ggml_get_unary_op(t);
 | ||
|         return ggml_unary_op_name(uop);
 | ||
|     }
 | ||
|     if (t->op == GGML_OP_GLU) {
 | ||
|         enum ggml_glu_op gop = ggml_get_glu_op(t);
 | ||
|         return ggml_glu_op_name(gop);
 | ||
|     }
 | ||
|     return ggml_op_name(t->op);
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_element_size(const struct ggml_tensor * tensor) {
 | ||
|     return ggml_type_size(tensor->type);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_scalar(const struct ggml_tensor * tensor) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_vector(const struct ggml_tensor * tensor) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_matrix(const struct ggml_tensor * tensor) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return tensor->ne[2] == 1 && tensor->ne[3] == 1;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_3d(const struct ggml_tensor * tensor) {
 | ||
|     return tensor->ne[3] == 1;
 | ||
| }
 | ||
| 
 | ||
| int ggml_n_dims(const struct ggml_tensor * tensor) {
 | ||
|     for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
 | ||
|         if (tensor->ne[i] > 1) {
 | ||
|             return i + 1;
 | ||
|         }
 | ||
|     }
 | ||
|     return 1;
 | ||
| }
 | ||
| 
 | ||
| enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
 | ||
|     enum ggml_type wtype = GGML_TYPE_COUNT;
 | ||
| 
 | ||
|     switch (ftype) {
 | ||
|         case GGML_FTYPE_ALL_F32:              wtype = GGML_TYPE_F32;   break;
 | ||
|         case GGML_FTYPE_MOSTLY_F16:           wtype = GGML_TYPE_F16;   break;
 | ||
|         case GGML_FTYPE_MOSTLY_BF16:          wtype = GGML_TYPE_BF16;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q4_0:          wtype = GGML_TYPE_Q4_0;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q4_1:          wtype = GGML_TYPE_Q4_1;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q5_0:          wtype = GGML_TYPE_Q5_0;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q5_1:          wtype = GGML_TYPE_Q5_1;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q8_0:          wtype = GGML_TYPE_Q8_0;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q2_K:          wtype = GGML_TYPE_Q2_K;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q3_K:          wtype = GGML_TYPE_Q3_K;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q4_K:          wtype = GGML_TYPE_Q4_K;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q5_K:          wtype = GGML_TYPE_Q5_K;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q6_K:          wtype = GGML_TYPE_Q6_K;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ2_XXS:       wtype = GGML_TYPE_IQ2_XXS;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ2_XS:        wtype = GGML_TYPE_IQ2_XS;   break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ3_XXS:       wtype = GGML_TYPE_IQ3_XXS;  break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ1_S:         wtype = GGML_TYPE_IQ1_S;    break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ1_M:         wtype = GGML_TYPE_IQ1_M;    break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ4_NL:        wtype = GGML_TYPE_IQ4_NL;   break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ4_XS:        wtype = GGML_TYPE_IQ4_XS;   break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ3_S:         wtype = GGML_TYPE_IQ3_S;    break;
 | ||
|         case GGML_FTYPE_MOSTLY_IQ2_S:         wtype = GGML_TYPE_IQ2_S;    break;
 | ||
|         case GGML_FTYPE_UNKNOWN:              wtype = GGML_TYPE_COUNT; break;
 | ||
|         case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
 | ||
|     }
 | ||
| 
 | ||
|     GGML_ASSERT(wtype != GGML_TYPE_COUNT);
 | ||
| 
 | ||
|     return wtype;
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_tensor_overhead(void) {
 | ||
|     return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_transposed(const struct ggml_tensor * tensor) {
 | ||
|     return tensor->nb[0] > tensor->nb[1];
 | ||
| }
 | ||
| 
 | ||
| static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
 | ||
|     size_t next_nb = ggml_type_size(tensor->type);
 | ||
|     if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
 | ||
|         return false;
 | ||
|     }
 | ||
|     next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
 | ||
|     for (int i = 1; i < GGML_MAX_DIMS; i++) {
 | ||
|         if (tensor->ne[i] != 1) {
 | ||
|             if (i > n) {
 | ||
|                 if (tensor->nb[i] != next_nb) {
 | ||
|                     return false;
 | ||
|                 }
 | ||
|                 next_nb *= tensor->ne[i];
 | ||
|             } else {
 | ||
|                 // this dimension does not need to be contiguous
 | ||
|                 next_nb = tensor->ne[i]*tensor->nb[i];
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|     return true;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
 | ||
|     return ggml_is_contiguous_0(tensor);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
 | ||
|     return ggml_is_contiguous_n(tensor, 0);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
 | ||
|     return ggml_is_contiguous_n(tensor, 1);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
 | ||
|     return ggml_is_contiguous_n(tensor, 2);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor) {
 | ||
|     return ggml_nbytes(tensor) == ggml_nelements(tensor) * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_permuted(const struct ggml_tensor * tensor) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor) {
 | ||
|     return
 | ||
|         tensor->nb[0] > tensor->nb[2] &&
 | ||
|         tensor->nb[1] > tensor->nb[0] &&
 | ||
|         tensor->nb[2] == ggml_type_size(tensor->type);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor) {
 | ||
|     return
 | ||
|         tensor->ne[0] == ggml_blck_size(tensor->type) ||
 | ||
|         tensor->nb[0] == ggml_type_size(tensor->type);
 | ||
| }
 | ||
| 
 | ||
| static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return
 | ||
|         tensor->nb[0] == ggml_type_size(tensor->type) &&
 | ||
|         tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
 | ||
|         tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
 | ||
| }
 | ||
| 
 | ||
| bool ggml_is_empty(const struct ggml_tensor * tensor) {
 | ||
|     for (int i = 0; i < GGML_MAX_DIMS; ++i) {
 | ||
|         if (tensor->ne[i] == 0) {
 | ||
|             // empty if any dimension has no elements
 | ||
|             return true;
 | ||
|         }
 | ||
|     }
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return
 | ||
|         (t0->ne[0] == t1->ne[0]) &&
 | ||
|         (t0->ne[1] == t1->ne[1]) &&
 | ||
|         (t0->ne[2] == t1->ne[2]) &&
 | ||
|         (t0->ne[3] == t1->ne[3]);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return
 | ||
|         (t0->nb[0] == t1->nb[0]) &&
 | ||
|         (t0->nb[1] == t1->nb[1]) &&
 | ||
|         (t0->nb[2] == t1->nb[2]) &&
 | ||
|         (t0->nb[3] == t1->nb[3]);
 | ||
| }
 | ||
| 
 | ||
| // check if t1 can be represented as a repetition of t0
 | ||
| bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return ggml_is_empty(t0) ? ggml_is_empty(t1) :
 | ||
|         (t1->ne[0]%t0->ne[0] == 0) &&
 | ||
|         (t1->ne[1]%t0->ne[1] == 0) &&
 | ||
|         (t1->ne[2]%t0->ne[2] == 0) &&
 | ||
|         (t1->ne[3]%t0->ne[3] == 0);
 | ||
| }
 | ||
| 
 | ||
| static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
 | ||
| }
 | ||
| 
 | ||
| // assert that pointer is aligned to GGML_MEM_ALIGN
 | ||
| #define GGML_ASSERT_ALIGNED(ptr) \
 | ||
|     GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| struct ggml_context * ggml_init(struct ggml_init_params params) {
 | ||
|     static bool is_first_call = true;
 | ||
| 
 | ||
|     ggml_critical_section_start();
 | ||
| 
 | ||
|     if (is_first_call) {
 | ||
|         // initialize time system (required on Windows)
 | ||
|         ggml_time_init();
 | ||
| 
 | ||
|         is_first_call = false;
 | ||
|     }
 | ||
| 
 | ||
|     ggml_critical_section_end();
 | ||
| 
 | ||
|     struct ggml_context * ctx = GGML_MALLOC(sizeof(struct ggml_context));
 | ||
| 
 | ||
|     // allow to call ggml_init with 0 size
 | ||
|     if (params.mem_size == 0) {
 | ||
|         params.mem_size = GGML_MEM_ALIGN;
 | ||
|     }
 | ||
| 
 | ||
|     const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
 | ||
| 
 | ||
|     *ctx = (struct ggml_context) {
 | ||
|         /*.mem_size           =*/ mem_size,
 | ||
|         /*.mem_buffer         =*/ params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size),
 | ||
|         /*.mem_buffer_owned   =*/ params.mem_buffer ? false : true,
 | ||
|         /*.no_alloc           =*/ params.no_alloc,
 | ||
|         /*.n_objects          =*/ 0,
 | ||
|         /*.objects_begin      =*/ NULL,
 | ||
|         /*.objects_end        =*/ NULL,
 | ||
|     };
 | ||
| 
 | ||
|     GGML_ASSERT(ctx->mem_buffer != NULL);
 | ||
| 
 | ||
|     GGML_ASSERT_ALIGNED(ctx->mem_buffer);
 | ||
| 
 | ||
|     GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
 | ||
| 
 | ||
|     return ctx;
 | ||
| }
 | ||
| 
 | ||
| void ggml_reset(struct ggml_context * ctx) {
 | ||
|     if (ctx == NULL) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     ctx->n_objects     = 0;
 | ||
|     ctx->objects_begin = NULL;
 | ||
|     ctx->objects_end   = NULL;
 | ||
| }
 | ||
| 
 | ||
| void ggml_free(struct ggml_context * ctx) {
 | ||
|     if (ctx == NULL) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     if (ctx->mem_buffer_owned) {
 | ||
|         ggml_aligned_free(ctx->mem_buffer, ctx->mem_size);
 | ||
|     }
 | ||
| 
 | ||
|     GGML_FREE(ctx);
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_used_mem(const struct ggml_context * ctx) {
 | ||
|     return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_get_no_alloc(struct ggml_context * ctx) {
 | ||
|     return ctx->no_alloc;
 | ||
| }
 | ||
| 
 | ||
| void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
 | ||
|     ctx->no_alloc = no_alloc;
 | ||
| }
 | ||
| 
 | ||
| void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
 | ||
|     return ctx->mem_buffer;
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_get_mem_size(const struct ggml_context * ctx) {
 | ||
|     return ctx->mem_size;
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
 | ||
|     size_t max_size = 0;
 | ||
| 
 | ||
|     for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
 | ||
|         size_t bytes = ggml_nbytes(tensor);
 | ||
|         max_size = MAX(max_size, bytes);
 | ||
|     }
 | ||
| 
 | ||
|     return max_size;
 | ||
| }
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
 | ||
|     // always insert objects at the end of the context's memory pool
 | ||
|     struct ggml_object * obj_cur = ctx->objects_end;
 | ||
| 
 | ||
|     const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
 | ||
|     const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
 | ||
|     const size_t cur_end  = cur_offs + cur_size;
 | ||
| 
 | ||
|     // align to GGML_MEM_ALIGN
 | ||
|     size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
 | ||
| 
 | ||
|     char * const mem_buffer = ctx->mem_buffer;
 | ||
|     struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
 | ||
| 
 | ||
|     if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
 | ||
|         GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
 | ||
|                 __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
 | ||
| #ifndef NDEBUG
 | ||
|         GGML_ABORT("not enough space in the context's memory pool");
 | ||
| #endif
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     *obj_new = (struct ggml_object) {
 | ||
|         .offs = cur_end + GGML_OBJECT_SIZE,
 | ||
|         .size = size_needed,
 | ||
|         .next = NULL,
 | ||
|         .type = type,
 | ||
|     };
 | ||
| 
 | ||
|     GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
 | ||
| 
 | ||
|     if (obj_cur != NULL) {
 | ||
|         obj_cur->next = obj_new;
 | ||
|     } else {
 | ||
|         // this is the first object in this context
 | ||
|         ctx->objects_begin = obj_new;
 | ||
|     }
 | ||
| 
 | ||
|     ctx->objects_end = obj_new;
 | ||
| 
 | ||
|     //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
 | ||
| 
 | ||
|     return obj_new;
 | ||
| }
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_new_tensor_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         enum   ggml_type      type,
 | ||
|         int                   n_dims,
 | ||
|         const int64_t       * ne,
 | ||
|         struct ggml_tensor  * view_src,
 | ||
|         size_t                view_offs) {
 | ||
| 
 | ||
|     GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
 | ||
|     GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
 | ||
| 
 | ||
|     // find the base tensor and absolute offset
 | ||
|     if (view_src != NULL && view_src->view_src != NULL) {
 | ||
|         view_offs += view_src->view_offs;
 | ||
|         view_src   = view_src->view_src;
 | ||
|     }
 | ||
| 
 | ||
|     size_t data_size = ggml_row_size(type, ne[0]);
 | ||
|     for (int i = 1; i < n_dims; i++) {
 | ||
|         data_size *= ne[i];
 | ||
|     }
 | ||
| 
 | ||
|     GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
 | ||
| 
 | ||
|     void * data = view_src != NULL ? view_src->data : NULL;
 | ||
|     if (data != NULL) {
 | ||
|         data = (char *) data + view_offs;
 | ||
|     }
 | ||
| 
 | ||
|     size_t obj_alloc_size = 0;
 | ||
| 
 | ||
|     if (view_src == NULL && !ctx->no_alloc) {
 | ||
|         // allocate tensor data in the context's memory pool
 | ||
|         obj_alloc_size = data_size;
 | ||
|     }
 | ||
| 
 | ||
|     struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
 | ||
|     GGML_ASSERT(obj_new);
 | ||
| 
 | ||
|     struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
 | ||
| 
 | ||
|     *result = (struct ggml_tensor) {
 | ||
|         /*.type         =*/ type,
 | ||
|         /*.buffer       =*/ NULL,
 | ||
|         /*.ne           =*/ { 1, 1, 1, 1 },
 | ||
|         /*.nb           =*/ { 0, 0, 0, 0 },
 | ||
|         /*.op           =*/ GGML_OP_NONE,
 | ||
|         /*.op_params    =*/ { 0 },
 | ||
|         /*.flags        =*/ 0,
 | ||
|         /*.src          =*/ { NULL },
 | ||
|         /*.view_src     =*/ view_src,
 | ||
|         /*.view_offs    =*/ view_offs,
 | ||
|         /*.data         =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
 | ||
|         /*.name         =*/ { 0 },
 | ||
|         /*.extra        =*/ NULL,
 | ||
|         /*.padding      =*/ { 0 },
 | ||
|     };
 | ||
| 
 | ||
|     // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
 | ||
|     //GGML_ASSERT_ALIGNED(result->data);
 | ||
| 
 | ||
|     for (int i = 0; i < n_dims; i++) {
 | ||
|         result->ne[i] = ne[i];
 | ||
|     }
 | ||
| 
 | ||
|     result->nb[0] = ggml_type_size(type);
 | ||
|     result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
 | ||
|     for (int i = 2; i < GGML_MAX_DIMS; i++) {
 | ||
|         result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
 | ||
|     }
 | ||
| 
 | ||
|     ctx->n_objects++;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_new_tensor(
 | ||
|         struct ggml_context * ctx,
 | ||
|         enum   ggml_type      type,
 | ||
|         int                   n_dims,
 | ||
|         const int64_t       * ne) {
 | ||
|     return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_new_tensor_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         enum   ggml_type      type,
 | ||
|         int64_t ne0) {
 | ||
|     return ggml_new_tensor(ctx, type, 1, &ne0);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_new_tensor_2d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         enum   ggml_type      type,
 | ||
|         int64_t ne0,
 | ||
|         int64_t ne1) {
 | ||
|     const int64_t ne[2] = { ne0, ne1 };
 | ||
|     return ggml_new_tensor(ctx, type, 2, ne);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_new_tensor_3d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         enum   ggml_type      type,
 | ||
|         int64_t ne0,
 | ||
|         int64_t ne1,
 | ||
|         int64_t ne2) {
 | ||
|     const int64_t ne[3] = { ne0, ne1, ne2 };
 | ||
|     return ggml_new_tensor(ctx, type, 3, ne);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_new_tensor_4d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         enum   ggml_type type,
 | ||
|         int64_t ne0,
 | ||
|         int64_t ne1,
 | ||
|         int64_t ne2,
 | ||
|         int64_t ne3) {
 | ||
|     const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
 | ||
|     return ggml_new_tensor(ctx, type, 4, ne);
 | ||
| }
 | ||
| 
 | ||
| void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes) {
 | ||
|     struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, nbytes);
 | ||
| 
 | ||
|     return (uint8_t *)ctx->mem_buffer + obj->offs;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
 | ||
|     return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
 | ||
| }
 | ||
| 
 | ||
| void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
 | ||
|     const int64_t ne2 = tensor->ne[2];
 | ||
|     const int64_t ne1 = tensor->ne[1];
 | ||
|     const int64_t ne0 = tensor->ne[0];
 | ||
| 
 | ||
|     const int64_t i3_ = (i/(ne2*ne1*ne0));
 | ||
|     const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
 | ||
|     const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
 | ||
|     const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
 | ||
| 
 | ||
|     if (i0) {
 | ||
|         * i0 = i0_;
 | ||
|     }
 | ||
|     if (i1) {
 | ||
|         * i1 = i1_;
 | ||
|     }
 | ||
|     if (i2) {
 | ||
|         * i2 = i2_;
 | ||
|     }
 | ||
|     if (i3) {
 | ||
|         * i3 = i3_;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void * ggml_get_data(const struct ggml_tensor * tensor) {
 | ||
|     return tensor->data;
 | ||
| }
 | ||
| 
 | ||
| float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
 | ||
|     assert(tensor->type == GGML_TYPE_F32);
 | ||
|     return (float *)(tensor->data);
 | ||
| }
 | ||
| 
 | ||
| enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
 | ||
|     GGML_ASSERT(tensor->op == GGML_OP_UNARY);
 | ||
|     return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
 | ||
| }
 | ||
| 
 | ||
| enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor) {
 | ||
|     GGML_ASSERT(tensor->op == GGML_OP_GLU);
 | ||
|     return (enum ggml_glu_op) ggml_get_op_params_i32(tensor, 0);
 | ||
| }
 | ||
| 
 | ||
| const char * ggml_get_name(const struct ggml_tensor * tensor) {
 | ||
|     return tensor->name;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
 | ||
|     size_t i;
 | ||
|     for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
 | ||
|         tensor->name[i] = name[i];
 | ||
|     }
 | ||
|     tensor->name[i] = '\0';
 | ||
|     return tensor;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
 | ||
|     va_list args;
 | ||
|     va_start(args, fmt);
 | ||
|     vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
 | ||
|     va_end(args);
 | ||
|     return tensor;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_view_tensor(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * src) {
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
 | ||
|     ggml_format_name(result, "%s (view)", src->name);
 | ||
| 
 | ||
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | ||
|         result->nb[i] = src->nb[i];
 | ||
|     }
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
 | ||
|     struct ggml_object * obj = ctx->objects_begin;
 | ||
| 
 | ||
|     char * const mem_buffer = ctx->mem_buffer;
 | ||
| 
 | ||
|     while (obj != NULL) {
 | ||
|         if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
 | ||
|             return (struct ggml_tensor *)(mem_buffer + obj->offs);
 | ||
|         }
 | ||
| 
 | ||
|         obj = obj->next;
 | ||
|     }
 | ||
| 
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
 | ||
|     struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
 | ||
|     obj = obj->next;
 | ||
| 
 | ||
|     char * const mem_buffer = ctx->mem_buffer;
 | ||
| 
 | ||
|     while (obj != NULL) {
 | ||
|         if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
 | ||
|             return (struct ggml_tensor *)(mem_buffer + obj->offs);
 | ||
|         }
 | ||
| 
 | ||
|         obj = obj->next;
 | ||
|     }
 | ||
| 
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
 | ||
|     struct ggml_object * obj = ctx->objects_begin;
 | ||
| 
 | ||
|     char * const mem_buffer = ctx->mem_buffer;
 | ||
| 
 | ||
|     while (obj != NULL) {
 | ||
|         if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
 | ||
|             struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
 | ||
|             if (strcmp(cur->name, name) == 0) {
 | ||
|                 return cur;
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         obj = obj->next;
 | ||
|     }
 | ||
| 
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| // ggml_dup
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_dup_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_DUP;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_dup(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_dup_impl(ctx, a, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_dup_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_dup_impl(ctx, a, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_add
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_add_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_can_repeat(b, a));
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_ADD;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_add(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_add_impl(ctx, a, b, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_add_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_add_impl(ctx, a, b, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_add_cast
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_add_cast_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         enum   ggml_type      type) {
 | ||
|     // TODO: support less-strict constraint
 | ||
|     //       GGML_ASSERT(ggml_can_repeat(b, a));
 | ||
|     GGML_ASSERT(ggml_can_repeat_rows(b, a));
 | ||
| 
 | ||
|     // currently only supported for quantized input and f16
 | ||
|     GGML_ASSERT(ggml_is_quantized(a->type) ||
 | ||
|                 a->type == GGML_TYPE_F16 ||
 | ||
|                 a->type == GGML_TYPE_BF16);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_ADD;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_add_cast(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         enum   ggml_type      type) {
 | ||
|     return ggml_add_cast_impl(ctx, a, b, type);
 | ||
| }
 | ||
| 
 | ||
| // ggml_add1
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_add1_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_is_scalar(b));
 | ||
|     GGML_ASSERT(ggml_is_padded_1d(a));
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_ADD1;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_add1(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_add1_impl(ctx, a, b, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_add1_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_add1_impl(ctx, a, b, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_acc
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_acc_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                nb1,
 | ||
|         size_t                nb2,
 | ||
|         size_t                nb3,
 | ||
|         size_t                offset,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     GGML_ASSERT(a->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(b->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_ACC;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_acc(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                nb1,
 | ||
|         size_t                nb2,
 | ||
|         size_t                nb3,
 | ||
|         size_t                offset) {
 | ||
|     return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_acc_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                nb1,
 | ||
|         size_t                nb2,
 | ||
|         size_t                nb3,
 | ||
|         size_t                offset) {
 | ||
|     return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_sub
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_sub_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_can_repeat(b, a));
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SUB;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sub(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_sub_impl(ctx, a, b, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sub_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_sub_impl(ctx, a, b, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_mul
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_mul_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_can_repeat(b, a));
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_MUL;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_mul(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_mul_impl(ctx, a, b, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_mul_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_mul_impl(ctx, a, b, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_div
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_div_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_can_repeat(b, a));
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_DIV;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_div(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_div_impl(ctx, a, b, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_div_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_div_impl(ctx, a, b, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_sqr
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_sqr_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SQR;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sqr(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_sqr_impl(ctx, a, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sqr_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_sqr_impl(ctx, a, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_sqrt
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_sqrt_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SQRT;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sqrt(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_sqrt_impl(ctx, a, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sqrt_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_sqrt_impl(ctx, a, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_log
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_log_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_LOG;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_log(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_log_impl(ctx, a, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_log_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_log_impl(ctx, a, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_sin
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_sin_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SIN;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sin(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_sin_impl(ctx, a, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sin_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_sin_impl(ctx, a, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_cos
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_cos_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_COS;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_cos(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_cos_impl(ctx, a, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_cos_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_cos_impl(ctx, a, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_sum
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sum(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SUM;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_sum_rows
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sum_rows(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     int64_t ne[GGML_MAX_DIMS] = { 1 };
 | ||
|     for (int i = 1; i < GGML_MAX_DIMS; ++i) {
 | ||
|         ne[i] = a->ne[i];
 | ||
|     }
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SUM_ROWS;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_mean
 | ||
| 
 | ||
| struct ggml_tensor * ggml_mean(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_MEAN;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_argmax
 | ||
| 
 | ||
| struct ggml_tensor * ggml_argmax(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     GGML_ASSERT(ggml_is_matrix(a));
 | ||
|     GGML_ASSERT(a->ne[0] <= INT32_MAX);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
 | ||
| 
 | ||
|     result->op     = GGML_OP_ARGMAX;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_count_equal
 | ||
| 
 | ||
| struct ggml_tensor * ggml_count_equal(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     GGML_ASSERT(ggml_are_same_shape(a, b));
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1);
 | ||
| 
 | ||
|     result->op     = GGML_OP_COUNT_EQUAL;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_repeat
 | ||
| 
 | ||
| struct ggml_tensor * ggml_repeat(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     GGML_ASSERT(ggml_can_repeat(a, b));
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_REPEAT;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_repeat_4d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor * a,
 | ||
|         int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
 | ||
|     const bool can_repeat = ggml_is_empty(a) || (
 | ||
|         (ne0 % a->ne[0] == 0) &&
 | ||
|         (ne1 % a->ne[1] == 0) &&
 | ||
|         (ne2 % a->ne[2] == 0) &&
 | ||
|         (ne3 % a->ne[3] == 0)
 | ||
|     );
 | ||
|     GGML_ASSERT(can_repeat);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
 | ||
| 
 | ||
|     result->op     = GGML_OP_REPEAT;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_repeat_back
 | ||
| 
 | ||
| struct ggml_tensor * ggml_repeat_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     GGML_ASSERT(ggml_can_repeat(b, a));
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_REPEAT_BACK;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_concat
 | ||
| 
 | ||
| struct ggml_tensor * ggml_concat(
 | ||
|     struct ggml_context * ctx,
 | ||
|     struct ggml_tensor  * a,
 | ||
|     struct ggml_tensor  * b,
 | ||
|     int                   dim) {
 | ||
|     GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
 | ||
|     GGML_ASSERT(a->type == b->type);
 | ||
| 
 | ||
|     int64_t ne[GGML_MAX_DIMS];
 | ||
|     for (int d = 0; d < GGML_MAX_DIMS; ++d) {
 | ||
|         if (d == dim) {
 | ||
|             ne[d] = a->ne[d] + b->ne[d];
 | ||
|             continue;
 | ||
|         }
 | ||
|         GGML_ASSERT(a->ne[d] == b->ne[d]);
 | ||
|         ne[d] = a->ne[d];
 | ||
|     }
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, dim);
 | ||
| 
 | ||
|     result->op     = GGML_OP_CONCAT;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_abs
 | ||
| 
 | ||
| struct ggml_tensor * ggml_abs(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_abs_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
 | ||
| }
 | ||
| 
 | ||
| // ggml_sgn
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sgn(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sgn_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
 | ||
| }
 | ||
| 
 | ||
| // ggml_neg
 | ||
| 
 | ||
| struct ggml_tensor * ggml_neg(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_neg_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
 | ||
| }
 | ||
| 
 | ||
| // ggml_step
 | ||
| 
 | ||
| struct ggml_tensor * ggml_step(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_step_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
 | ||
| }
 | ||
| 
 | ||
| // ggml_tanh
 | ||
| 
 | ||
| struct ggml_tensor * ggml_tanh(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_tanh_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
 | ||
| }
 | ||
| 
 | ||
| // ggml_elu
 | ||
| 
 | ||
| struct ggml_tensor * ggml_elu(
 | ||
|     struct ggml_context * ctx,
 | ||
|     struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_elu_inplace(
 | ||
|     struct ggml_context * ctx,
 | ||
|     struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
 | ||
| }
 | ||
| 
 | ||
| // ggml_relu
 | ||
| 
 | ||
| struct ggml_tensor * ggml_relu(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_relu_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
 | ||
| }
 | ||
| 
 | ||
| // ggml_leaky_relu
 | ||
| 
 | ||
| struct ggml_tensor * ggml_leaky_relu(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 negative_slope,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
 | ||
| 
 | ||
|     result->op     = GGML_OP_LEAKY_RELU;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_sigmoid
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sigmoid(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_sigmoid_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
 | ||
| }
 | ||
| 
 | ||
| // ggml_gelu
 | ||
| 
 | ||
| struct ggml_tensor * ggml_gelu(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_gelu_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
 | ||
| }
 | ||
| 
 | ||
| // ggml_gelu_erf
 | ||
| 
 | ||
| struct ggml_tensor * ggml_gelu_erf(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_ERF);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_gelu_erf_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_ERF);
 | ||
| }
 | ||
| 
 | ||
| // ggml_gelu_quick
 | ||
| 
 | ||
| struct ggml_tensor * ggml_gelu_quick(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_gelu_quick_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
 | ||
| }
 | ||
| 
 | ||
| // ggml_silu
 | ||
| 
 | ||
| struct ggml_tensor * ggml_silu(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_silu_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
 | ||
| }
 | ||
| 
 | ||
| // ggml_silu_back
 | ||
| 
 | ||
| struct ggml_tensor * ggml_silu_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SILU_BACK;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml hardswish
 | ||
| 
 | ||
| struct ggml_tensor * ggml_hardswish(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
 | ||
| }
 | ||
| 
 | ||
| // ggml hardsigmoid
 | ||
| 
 | ||
| struct ggml_tensor * ggml_hardsigmoid(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
 | ||
| }
 | ||
| 
 | ||
| // ggml exp
 | ||
| 
 | ||
| struct ggml_tensor * ggml_exp(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_exp_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
 | ||
| }
 | ||
| 
 | ||
| // ggml_glu
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_glu_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         enum ggml_glu_op      op,
 | ||
|         bool                  swapped) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous_1(a));
 | ||
| 
 | ||
|     if (b) {
 | ||
|         GGML_ASSERT(ggml_is_contiguous_1(b));
 | ||
|         GGML_ASSERT(ggml_are_same_shape(a, b));
 | ||
|         GGML_ASSERT(a->type == b->type);
 | ||
|     }
 | ||
| 
 | ||
|     int64_t ne[GGML_MAX_DIMS] = { a->ne[0] / 2 }; for (int i = 1; i < GGML_MAX_DIMS; i++) ne[i] = a->ne[i];
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b ? a->ne : ne, NULL, 0);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, (int32_t) op);
 | ||
|     ggml_set_op_params_i32(result, 1, (int32_t) swapped);
 | ||
| 
 | ||
|     result->op     = GGML_OP_GLU;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_glu(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         enum ggml_glu_op      op,
 | ||
|         bool                  swapped) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, op, swapped);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_glu_split(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         enum ggml_glu_op      op) {
 | ||
|     return ggml_glu_impl(ctx, a, b, op, false);
 | ||
| }
 | ||
| 
 | ||
| // ggml_reglu
 | ||
| 
 | ||
| struct ggml_tensor * ggml_reglu(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_REGLU, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_reglu_swapped(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_REGLU, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_reglu_split(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_REGLU, false);
 | ||
| }
 | ||
| 
 | ||
| // ggml_geglu
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu_swapped(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu_split(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU, false);
 | ||
| }
 | ||
| 
 | ||
| // ggml_swiglu
 | ||
| 
 | ||
| struct ggml_tensor * ggml_swiglu(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_SWIGLU, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_swiglu_swapped(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_SWIGLU, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_swiglu_split(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_SWIGLU, false);
 | ||
| }
 | ||
| 
 | ||
| // ggml_geglu_erf
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu_erf(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_ERF, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu_erf_swapped(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_ERF, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu_erf_split(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU_ERF, false);
 | ||
| }
 | ||
| 
 | ||
| // ggml_geglu_quick
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu_quick(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_QUICK, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu_quick_swapped(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_QUICK, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_geglu_quick_split(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU_QUICK, false);
 | ||
| }
 | ||
| 
 | ||
| // ggml_norm
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_norm_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     ggml_set_op_params(result, &eps, sizeof(eps));
 | ||
| 
 | ||
|     result->op     = GGML_OP_NORM;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_norm(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps) {
 | ||
|     return ggml_norm_impl(ctx, a, eps, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_norm_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps) {
 | ||
|     return ggml_norm_impl(ctx, a, eps, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_rms_norm
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_rms_norm_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     ggml_set_op_params(result, &eps, sizeof(eps));
 | ||
| 
 | ||
|     result->op     = GGML_OP_RMS_NORM;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rms_norm(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps) {
 | ||
|     return ggml_rms_norm_impl(ctx, a, eps, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rms_norm_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps) {
 | ||
|     return ggml_rms_norm_impl(ctx, a, eps, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_rms_norm_back
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rms_norm_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         float                 eps) {
 | ||
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     ggml_set_op_params(result, &eps, sizeof(eps));
 | ||
| 
 | ||
|     result->op     = GGML_OP_RMS_NORM_BACK;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_group_norm
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_group_norm_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_groups,
 | ||
|         float                 eps,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, n_groups);
 | ||
|     ggml_set_op_params_f32(result, 1, eps);
 | ||
| 
 | ||
|     result->op     = GGML_OP_GROUP_NORM;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_group_norm(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_groups,
 | ||
|         float                 eps) {
 | ||
|     return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_group_norm_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_groups,
 | ||
|         float                 eps) {
 | ||
|     return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_l2_norm
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_l2_norm_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     ggml_set_op_params_f32(result, 0, eps);
 | ||
| 
 | ||
|     result->op     = GGML_OP_L2_NORM;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_l2_norm(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps) {
 | ||
|     return ggml_l2_norm_impl(ctx, a, eps, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_l2_norm_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 eps) {
 | ||
|     return ggml_l2_norm_impl(ctx, a, eps, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_mul_mat
 | ||
| 
 | ||
| static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return (t0->ne[0]           == t1->ne[0])  &&
 | ||
|            (t1->ne[2]%t0->ne[2] == 0)          && // verify t0 is broadcastable
 | ||
|            (t1->ne[3]%t0->ne[3] == 0);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_mul_mat(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     GGML_ASSERT(ggml_can_mul_mat(a, b));
 | ||
|     GGML_ASSERT(!ggml_is_transposed(a));
 | ||
| 
 | ||
|     const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_MUL_MAT;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| void ggml_mul_mat_set_prec(
 | ||
|         struct ggml_tensor * a,
 | ||
|         enum ggml_prec       prec) {
 | ||
|     GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
 | ||
| 
 | ||
|     const int32_t prec_i32 = (int32_t) prec;
 | ||
| 
 | ||
|     ggml_set_op_params_i32(a, 0, prec_i32);
 | ||
| }
 | ||
| 
 | ||
| // ggml_mul_mat_id
 | ||
| 
 | ||
| /*
 | ||
|     c = ggml_mul_mat_id(ctx, as, b, ids);
 | ||
| 
 | ||
|     as  -> [cols, rows, n_expert]
 | ||
|     b   -> [cols, n_expert_used, n_tokens]
 | ||
|     ids -> [n_expert_used, n_tokens] (i32)
 | ||
|     c   -> [rows, n_expert_used, n_tokens]
 | ||
| 
 | ||
|     in b, n_expert_used can be broadcasted to match the n_expert_used of ids
 | ||
| 
 | ||
|     c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
 | ||
| */
 | ||
| struct ggml_tensor * ggml_mul_mat_id(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * as,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * ids) {
 | ||
|     GGML_ASSERT(!ggml_is_transposed(as));
 | ||
|     GGML_ASSERT(ids->type == GGML_TYPE_I32);
 | ||
| 
 | ||
|     GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
 | ||
|     GGML_ASSERT(b->ne[3] == 1); // b is 3d
 | ||
|     GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
 | ||
|     GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
 | ||
|     GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
 | ||
|     GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
 | ||
| 
 | ||
|     const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_MUL_MAT_ID;
 | ||
|     result->src[0] = as;
 | ||
|     result->src[1] = b;
 | ||
|     result->src[2] = ids;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_out_prod
 | ||
| 
 | ||
| static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return (t0->ne[1] == t1->ne[1])   &&
 | ||
|            (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
 | ||
|            (t1->ne[3]%t0->ne[3] == 0);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_out_prod(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     GGML_ASSERT(ggml_can_out_prod(a, b));
 | ||
|     GGML_ASSERT(!ggml_is_transposed(a));
 | ||
| 
 | ||
|     // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
 | ||
|     const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_OUT_PROD;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_scale
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_scale_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 s,
 | ||
|         float                 b,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_is_padded_1d(a));
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     float params[2] = { s, b };
 | ||
|     ggml_set_op_params(result, ¶ms, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_SCALE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_scale(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 s) {
 | ||
|     return ggml_scale_impl(ctx, a, s, 0.0, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_scale_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 s) {
 | ||
|     return ggml_scale_impl(ctx, a, s, 0.0, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_scale_bias(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 s,
 | ||
|         float                 b) {
 | ||
|     return ggml_scale_impl(ctx, a, s, b, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_scale_bias_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 s,
 | ||
|         float                 b) {
 | ||
|     return ggml_scale_impl(ctx, a, s, b, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_set
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_set_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                nb1,
 | ||
|         size_t                nb2,
 | ||
|         size_t                nb3,
 | ||
|         size_t                offset,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
 | ||
| 
 | ||
|     // make a view of the destination
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     GGML_ASSERT(offset < (size_t)(1 << 30));
 | ||
|     int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_SET;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                nb1,
 | ||
|         size_t                nb2,
 | ||
|         size_t                nb3,
 | ||
|         size_t                offset) {
 | ||
|     return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                nb1,
 | ||
|         size_t                nb2,
 | ||
|         size_t                nb3,
 | ||
|         size_t                offset) {
 | ||
|     return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                offset) {
 | ||
|     return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set_1d_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                offset) {
 | ||
|     return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set_2d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                nb1,
 | ||
|         size_t                offset) {
 | ||
|     return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set_2d_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         size_t                nb1,
 | ||
|         size_t                offset) {
 | ||
|     return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_cpy
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_cpy_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
 | ||
| 
 | ||
|     // make a view of the destination
 | ||
|     struct ggml_tensor * result = ggml_view_tensor(ctx, b);
 | ||
|     if (strlen(b->name) > 0) {
 | ||
|         ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
 | ||
|     } else {
 | ||
|         ggml_format_name(result, "%s (copy)", a->name);
 | ||
|     }
 | ||
| 
 | ||
|     result->op     = GGML_OP_CPY;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_cpy(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor * a,
 | ||
|         struct ggml_tensor * b) {
 | ||
|     return ggml_cpy_impl(ctx, a, b);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_cast(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         enum   ggml_type      type) {
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
 | ||
|     ggml_format_name(result, "%s (copy)", a->name);
 | ||
| 
 | ||
|     result->op     = GGML_OP_CPY;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = result;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_cont
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_cont_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | ||
|     ggml_format_name(result, "%s (cont)", a->name);
 | ||
| 
 | ||
|     result->op     = GGML_OP_CONT;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_cont(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor * a) {
 | ||
|     return ggml_cont_impl(ctx, a);
 | ||
| }
 | ||
| 
 | ||
| // make contiguous, with new shape
 | ||
| GGML_API struct ggml_tensor * ggml_cont_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0) {
 | ||
|     return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
 | ||
| }
 | ||
| 
 | ||
| GGML_API struct ggml_tensor * ggml_cont_2d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1) {
 | ||
|     return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
 | ||
| }
 | ||
| 
 | ||
| GGML_API struct ggml_tensor * ggml_cont_3d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2) {
 | ||
|     return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_cont_4d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2,
 | ||
|         int64_t               ne3) {
 | ||
|     GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
 | ||
|     ggml_format_name(result, "%s (cont)", a->name);
 | ||
| 
 | ||
|     result->op     = GGML_OP_CONT;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_reshape
 | ||
| 
 | ||
| struct ggml_tensor * ggml_reshape(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor * a,
 | ||
|         struct ggml_tensor * b) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
 | ||
|     GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
 | ||
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | ||
| 
 | ||
|     result->op     = GGML_OP_RESHAPE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_reshape_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     GGML_ASSERT(ggml_nelements(a) == ne0);
 | ||
| 
 | ||
|     const int64_t ne[1] = { ne0 };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
 | ||
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | ||
| 
 | ||
|     result->op     = GGML_OP_RESHAPE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_reshape_2d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
 | ||
| 
 | ||
|     const int64_t ne[2] = { ne0, ne1 };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
 | ||
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | ||
| 
 | ||
|     result->op     = GGML_OP_RESHAPE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_reshape_3d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
 | ||
| 
 | ||
|     const int64_t ne[3] = { ne0, ne1, ne2 };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
 | ||
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | ||
| 
 | ||
|     result->op     = GGML_OP_RESHAPE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_reshape_4d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2,
 | ||
|         int64_t               ne3) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
 | ||
| 
 | ||
|     const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
 | ||
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | ||
| 
 | ||
|     result->op     = GGML_OP_RESHAPE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_view_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_dims,
 | ||
|         const int64_t       * ne,
 | ||
|         size_t                offset) {
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
 | ||
|     ggml_format_name(result, "%s (view)", a->name);
 | ||
| 
 | ||
|     ggml_set_op_params(result, &offset, sizeof(offset));
 | ||
| 
 | ||
|     result->op     = GGML_OP_VIEW;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_view_1d
 | ||
| 
 | ||
| struct ggml_tensor * ggml_view_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         size_t                offset) {
 | ||
|     struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_view_2d
 | ||
| 
 | ||
| struct ggml_tensor * ggml_view_2d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         size_t                nb1,
 | ||
|         size_t                offset) {
 | ||
|     const int64_t ne[2] = { ne0, ne1 };
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
 | ||
| 
 | ||
|     result->nb[1] = nb1;
 | ||
|     result->nb[2] = result->nb[1]*ne1;
 | ||
|     result->nb[3] = result->nb[2];
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_view_3d
 | ||
| 
 | ||
| struct ggml_tensor * ggml_view_3d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2,
 | ||
|         size_t                nb1,
 | ||
|         size_t                nb2,
 | ||
|         size_t                offset) {
 | ||
|     const int64_t ne[3] = { ne0, ne1, ne2 };
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
 | ||
| 
 | ||
|     result->nb[1] = nb1;
 | ||
|     result->nb[2] = nb2;
 | ||
|     result->nb[3] = result->nb[2]*ne2;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_view_4d
 | ||
| 
 | ||
| struct ggml_tensor * ggml_view_4d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2,
 | ||
|         int64_t               ne3,
 | ||
|         size_t                nb1,
 | ||
|         size_t                nb2,
 | ||
|         size_t                nb3,
 | ||
|         size_t                offset) {
 | ||
|     const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
 | ||
| 
 | ||
|     result->nb[1] = nb1;
 | ||
|     result->nb[2] = nb2;
 | ||
|     result->nb[3] = nb3;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_permute
 | ||
| 
 | ||
| struct ggml_tensor * ggml_permute(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   axis0,
 | ||
|         int                   axis1,
 | ||
|         int                   axis2,
 | ||
|         int                   axis3) {
 | ||
|     GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
 | ||
|     GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
 | ||
|     GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
 | ||
|     GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
 | ||
| 
 | ||
|     GGML_ASSERT(axis0 != axis1);
 | ||
|     GGML_ASSERT(axis0 != axis2);
 | ||
|     GGML_ASSERT(axis0 != axis3);
 | ||
|     GGML_ASSERT(axis1 != axis2);
 | ||
|     GGML_ASSERT(axis1 != axis3);
 | ||
|     GGML_ASSERT(axis2 != axis3);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | ||
|     ggml_format_name(result, "%s (permuted)", a->name);
 | ||
| 
 | ||
|     int ne[GGML_MAX_DIMS];
 | ||
|     int nb[GGML_MAX_DIMS];
 | ||
| 
 | ||
|     ne[axis0] = a->ne[0];
 | ||
|     ne[axis1] = a->ne[1];
 | ||
|     ne[axis2] = a->ne[2];
 | ||
|     ne[axis3] = a->ne[3];
 | ||
| 
 | ||
|     nb[axis0] = a->nb[0];
 | ||
|     nb[axis1] = a->nb[1];
 | ||
|     nb[axis2] = a->nb[2];
 | ||
|     nb[axis3] = a->nb[3];
 | ||
| 
 | ||
|     result->ne[0] = ne[0];
 | ||
|     result->ne[1] = ne[1];
 | ||
|     result->ne[2] = ne[2];
 | ||
|     result->ne[3] = ne[3];
 | ||
| 
 | ||
|     result->nb[0] = nb[0];
 | ||
|     result->nb[1] = nb[1];
 | ||
|     result->nb[2] = nb[2];
 | ||
|     result->nb[3] = nb[3];
 | ||
| 
 | ||
|     result->op     = GGML_OP_PERMUTE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     int32_t params[] = { axis0, axis1, axis2, axis3 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_transpose
 | ||
| 
 | ||
| struct ggml_tensor * ggml_transpose(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | ||
|     ggml_format_name(result, "%s (transposed)", a->name);
 | ||
| 
 | ||
|     result->ne[0] = a->ne[1];
 | ||
|     result->ne[1] = a->ne[0];
 | ||
| 
 | ||
|     result->nb[0] = a->nb[1];
 | ||
|     result->nb[1] = a->nb[0];
 | ||
| 
 | ||
|     result->op     = GGML_OP_TRANSPOSE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_get_rows
 | ||
| 
 | ||
| struct ggml_tensor * ggml_get_rows(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     GGML_ASSERT(a->ne[2] == b->ne[1]);
 | ||
|     GGML_ASSERT(b->ne[3] == 1);
 | ||
|     GGML_ASSERT(b->type == GGML_TYPE_I32);
 | ||
| 
 | ||
|     // TODO: implement non F32 return
 | ||
|     enum ggml_type type = GGML_TYPE_F32;
 | ||
|     if (a->type == GGML_TYPE_I32) {
 | ||
|         type = a->type;
 | ||
|     }
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
 | ||
| 
 | ||
|     result->op     = GGML_OP_GET_ROWS;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_get_rows_back
 | ||
| 
 | ||
| struct ggml_tensor * ggml_get_rows_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c) {
 | ||
|     GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
 | ||
|     GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
 | ||
| 
 | ||
|     // TODO: implement non F32 return
 | ||
|     //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
 | ||
| 
 | ||
|     result->op     = GGML_OP_GET_ROWS_BACK;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_set_rows
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set_rows(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c) {
 | ||
|     GGML_ASSERT(a->ne[0] == b->ne[0]);
 | ||
|     GGML_ASSERT(a->ne[2] == b->ne[2]);
 | ||
|     GGML_ASSERT(a->ne[3] == b->ne[3]);
 | ||
|     GGML_ASSERT(b->ne[1] == c->ne[0]);
 | ||
|     GGML_ASSERT(b->ne[2] % c->ne[1] == 0);
 | ||
|     GGML_ASSERT(b->ne[3] % c->ne[2] == 0);
 | ||
|     GGML_ASSERT(c->ne[3] == 1);
 | ||
|     GGML_ASSERT(b->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(c->type == GGML_TYPE_I64);
 | ||
| 
 | ||
|     GGML_ASSERT(ggml_is_contiguous_rows(a));
 | ||
|     GGML_ASSERT(ggml_is_contiguous_rows(b));
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SET_ROWS;
 | ||
|     result->src[0] = b;
 | ||
|     result->src[1] = c;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_diag
 | ||
| 
 | ||
| struct ggml_tensor * ggml_diag(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     GGML_ASSERT(a->ne[1] == 1);
 | ||
| 
 | ||
|     const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_DIAG;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_diag_mask_inf
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_diag_mask_inf_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_past,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     int32_t params[] = { n_past };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_DIAG_MASK_INF;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_diag_mask_inf(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_past) {
 | ||
|     return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_diag_mask_inf_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_past) {
 | ||
|     return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_diag_mask_zero
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_diag_mask_zero_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_past,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     int32_t params[] = { n_past };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_DIAG_MASK_ZERO;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_diag_mask_zero(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_past) {
 | ||
|     return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_diag_mask_zero_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   n_past) {
 | ||
|     return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_soft_max
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_soft_max_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * mask,
 | ||
|         float                 scale,
 | ||
|         float                 max_bias,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
| 
 | ||
|     if (mask) {
 | ||
|         GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
 | ||
|         GGML_ASSERT(ggml_is_contiguous(mask));
 | ||
|         GGML_ASSERT(mask->ne[0] == a->ne[0]);
 | ||
|         GGML_ASSERT(mask->ne[1] >= a->ne[1]);
 | ||
|         GGML_ASSERT(a->ne[2]%mask->ne[2] == 0);
 | ||
|         GGML_ASSERT(a->ne[3]%mask->ne[3] == 0);
 | ||
|     }
 | ||
| 
 | ||
|     if (max_bias > 0.0f) {
 | ||
|         GGML_ASSERT(mask);
 | ||
|     }
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     float params[] = { scale, max_bias };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_SOFT_MAX;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = mask;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_soft_max(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_soft_max_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a) {
 | ||
|     return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_soft_max_ext(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * mask,
 | ||
|         float                 scale,
 | ||
|         float                 max_bias) {
 | ||
|     return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
 | ||
| }
 | ||
| 
 | ||
| // ggml_soft_max_ext_back
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_soft_max_ext_back_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         float                 scale,
 | ||
|         float                 max_bias,
 | ||
|         bool                  inplace) {
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SOFT_MAX_BACK;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     memcpy((float *) result->op_params + 0, &scale,    sizeof(float));
 | ||
|     memcpy((float *) result->op_params + 1, &max_bias, sizeof(float));
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_soft_max_ext_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         float                 scale,
 | ||
|         float                 max_bias) {
 | ||
|     return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_soft_max_ext_back_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         float                 scale,
 | ||
|         float                 max_bias) {
 | ||
|     return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_rope
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_rope_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c,
 | ||
|         int                   n_dims,
 | ||
|         int                   mode,
 | ||
|         int                   n_ctx_orig,
 | ||
|         float                 freq_base,
 | ||
|         float                 freq_scale,
 | ||
|         float                 ext_factor,
 | ||
|         float                 attn_factor,
 | ||
|         float                 beta_fast,
 | ||
|         float                 beta_slow,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
 | ||
| 
 | ||
|     GGML_ASSERT(ggml_is_vector(b));
 | ||
|     GGML_ASSERT(b->type == GGML_TYPE_I32);
 | ||
|     GGML_ASSERT(a->ne[2] == b->ne[0]);
 | ||
| 
 | ||
|     if (c) {
 | ||
|         GGML_ASSERT(c->type == GGML_TYPE_F32);
 | ||
|         GGML_ASSERT(c->ne[0] >= n_dims / 2);
 | ||
|     }
 | ||
| 
 | ||
|     int sections[4] = {0, 0, 0, 0};
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     int32_t params[15] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
 | ||
|     memcpy(params +  5, &freq_base,    sizeof(float));
 | ||
|     memcpy(params +  6, &freq_scale,   sizeof(float));
 | ||
|     memcpy(params +  7, &ext_factor,   sizeof(float));
 | ||
|     memcpy(params +  8, &attn_factor,  sizeof(float));
 | ||
|     memcpy(params +  9, &beta_fast,    sizeof(float));
 | ||
|     memcpy(params + 10, &beta_slow,    sizeof(float));
 | ||
|     memcpy(params + 11, §ions,     sizeof(int)*4);
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_ROPE;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
|     result->src[2] = c;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   n_dims,
 | ||
|         int                   mode) {
 | ||
|     return ggml_rope_impl(
 | ||
|         ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
 | ||
|     );
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope_multi(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c,
 | ||
|         int                   n_dims,
 | ||
|         int                   sections[4],
 | ||
|         int                   mode,
 | ||
|         int                   n_ctx_orig,
 | ||
|         float                 freq_base,
 | ||
|         float                 freq_scale,
 | ||
|         float                 ext_factor,
 | ||
|         float                 attn_factor,
 | ||
|         float                 beta_fast,
 | ||
|         float                 beta_slow) {
 | ||
|     // Multimodal Rotary Position Embedding
 | ||
|     GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
 | ||
| 
 | ||
|     GGML_ASSERT(ggml_is_vector(b));
 | ||
|     GGML_ASSERT(b->type == GGML_TYPE_I32);
 | ||
|     GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); // mrope expecting 4 position ids per token
 | ||
| 
 | ||
|     if (c) {
 | ||
|         GGML_ASSERT(c->type == GGML_TYPE_F32);
 | ||
|         GGML_ASSERT(c->ne[0] >= n_dims / 2);
 | ||
|     }
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     int32_t params[11 + 4] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
 | ||
|     memcpy(params +  5, &freq_base,    sizeof(float));
 | ||
|     memcpy(params +  6, &freq_scale,   sizeof(float));
 | ||
|     memcpy(params +  7, &ext_factor,   sizeof(float));
 | ||
|     memcpy(params +  8, &attn_factor,  sizeof(float));
 | ||
|     memcpy(params +  9, &beta_fast,    sizeof(float));
 | ||
|     memcpy(params + 10, &beta_slow,    sizeof(float));
 | ||
|     memcpy(¶ms[11], sections,      sizeof(int)*4);
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op   = GGML_OP_ROPE;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
|     result->src[2] = c;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   n_dims,
 | ||
|         int                   mode) {
 | ||
|     return ggml_rope_impl(
 | ||
|         ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
 | ||
|     );
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope_ext(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c,
 | ||
|         int                   n_dims,
 | ||
|         int                   mode,
 | ||
|         int                   n_ctx_orig,
 | ||
|         float                 freq_base,
 | ||
|         float                 freq_scale,
 | ||
|         float                 ext_factor,
 | ||
|         float                 attn_factor,
 | ||
|         float                 beta_fast,
 | ||
|         float                 beta_slow) {
 | ||
|     return ggml_rope_impl(
 | ||
|         ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
 | ||
|         ext_factor, attn_factor, beta_fast, beta_slow, false
 | ||
|     );
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope_ext_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c,
 | ||
|         int                   n_dims,
 | ||
|         int                   mode,
 | ||
|         int                   n_ctx_orig,
 | ||
|         float                 freq_base,
 | ||
|         float                 freq_scale,
 | ||
|         float                 ext_factor,
 | ||
|         float                 attn_factor,
 | ||
|         float                 beta_fast,
 | ||
|         float                 beta_slow) {
 | ||
|     return ggml_rope_impl(
 | ||
|         ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
 | ||
|         ext_factor, attn_factor, beta_fast, beta_slow, true
 | ||
|     );
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope_custom(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   n_dims,
 | ||
|         int                   mode,
 | ||
|         int                   n_ctx_orig,
 | ||
|         float                 freq_base,
 | ||
|         float                 freq_scale,
 | ||
|         float                 ext_factor,
 | ||
|         float                 attn_factor,
 | ||
|         float                 beta_fast,
 | ||
|         float                 beta_slow) {
 | ||
|     return ggml_rope_impl(
 | ||
|         ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
 | ||
|         ext_factor, attn_factor, beta_fast, beta_slow, false
 | ||
|     );
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope_custom_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   n_dims,
 | ||
|         int                   mode,
 | ||
|         int                   n_ctx_orig,
 | ||
|         float                 freq_base,
 | ||
|         float                 freq_scale,
 | ||
|         float                 ext_factor,
 | ||
|         float                 attn_factor,
 | ||
|         float                 beta_fast,
 | ||
|         float                 beta_slow) {
 | ||
|     return ggml_rope_impl(
 | ||
|         ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
 | ||
|         ext_factor, attn_factor, beta_fast, beta_slow, true
 | ||
|     );
 | ||
| }
 | ||
| 
 | ||
| // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
 | ||
| // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
 | ||
| static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
 | ||
|     return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
 | ||
| }
 | ||
| 
 | ||
| void ggml_rope_yarn_corr_dims(
 | ||
|     int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
 | ||
| ) {
 | ||
|     // start and end correction dims
 | ||
|     float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
 | ||
|     float end   =  ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
 | ||
|     dims[0] = MAX(0, start);
 | ||
|     dims[1] = MIN(n_dims - 1, end);
 | ||
| }
 | ||
| 
 | ||
| // ggml_rope_back
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope_ext_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c,
 | ||
|         int                   n_dims,
 | ||
|         int                   mode,
 | ||
|         int                   n_ctx_orig,
 | ||
|         float                 freq_base,
 | ||
|         float                 freq_scale,
 | ||
|         float                 ext_factor,
 | ||
|         float                 attn_factor,
 | ||
|         float                 beta_fast,
 | ||
|         float                 beta_slow) {
 | ||
|     struct ggml_tensor * result = ggml_rope_ext(
 | ||
|         ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
 | ||
|     result->op = GGML_OP_ROPE_BACK;
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rope_multi_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c,
 | ||
|         int                   n_dims,
 | ||
|         int                   sections[4],
 | ||
|         int                   mode,
 | ||
|         int                   n_ctx_orig,
 | ||
|         float                 freq_base,
 | ||
|         float                 freq_scale,
 | ||
|         float                 ext_factor,
 | ||
|         float                 attn_factor,
 | ||
|         float                 beta_fast,
 | ||
|         float                 beta_slow) {
 | ||
|     struct ggml_tensor * result = ggml_rope_multi(
 | ||
|         ctx, a, b, c, n_dims, sections, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
 | ||
|     result->op = GGML_OP_ROPE_BACK;
 | ||
|     return result;
 | ||
| }
 | ||
| // ggml_clamp
 | ||
| 
 | ||
| struct ggml_tensor * ggml_clamp(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         float                 min,
 | ||
|         float                 max) {
 | ||
|     // TODO: when implement backward, fix this:
 | ||
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | ||
| 
 | ||
|     float params[] = { min, max };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_CLAMP;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
 | ||
|     return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
 | ||
| }
 | ||
| 
 | ||
| // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
 | ||
| // a: [OC,IC, KH, KW]
 | ||
| // b: [N, IC, IH, IW]
 | ||
| // result: [N, OH, OW, IC*KH*KW]
 | ||
| struct ggml_tensor * ggml_im2col(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   s0,
 | ||
|         int                   s1,
 | ||
|         int                   p0,
 | ||
|         int                   p1,
 | ||
|         int                   d0,
 | ||
|         int                   d1,
 | ||
|         bool                  is_2D,
 | ||
|         enum ggml_type        dst_type) {
 | ||
|     if (is_2D) {
 | ||
|         GGML_ASSERT(a->ne[2] == b->ne[2]);
 | ||
|     } else {
 | ||
|         //GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
 | ||
|         GGML_ASSERT(b->ne[1] == a->ne[1]);
 | ||
|         GGML_ASSERT(b->ne[3] == 1);
 | ||
|     }
 | ||
| 
 | ||
|     const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
 | ||
|     const int64_t OW =         ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
 | ||
| 
 | ||
|     GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
 | ||
|     GGML_ASSERT((OW > 0)           && "b too small compared to a");
 | ||
| 
 | ||
|     const int64_t ne[4] = {
 | ||
|         is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
 | ||
|         OW,
 | ||
|         is_2D ? OH : b->ne[2],
 | ||
|         is_2D ?      b->ne[3] : 1,
 | ||
|     };
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
 | ||
|     int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_IM2COL;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_im2col_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int64_t             * ne,
 | ||
|         int                   s0,
 | ||
|         int                   s1,
 | ||
|         int                   p0,
 | ||
|         int                   p1,
 | ||
|         int                   d0,
 | ||
|         int                   d1,
 | ||
|         bool                  is_2D) {
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
|     int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_IM2COL_BACK;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_1d
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   s0,
 | ||
|         int                   p0,
 | ||
|         int                   d0) {
 | ||
|     struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
 | ||
| 
 | ||
|     struct ggml_tensor * result =
 | ||
|         ggml_mul_mat(ctx,
 | ||
|                 ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
 | ||
|                 ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2]));                    // [OC,IC, K] => [OC, IC * K]
 | ||
| 
 | ||
|     result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_1d_ph
 | ||
| 
 | ||
| struct ggml_tensor* ggml_conv_1d_ph(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   s,
 | ||
|         int                   d) {
 | ||
|     return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_1d_dw
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_1d_dw(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   s0,
 | ||
|         int                   p0,
 | ||
|         int                   d0) {
 | ||
|     struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]);
 | ||
|     struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]);
 | ||
| 
 | ||
|     struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a);
 | ||
| 
 | ||
|     result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1);
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_1d_dw_ph
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_1d_dw_ph(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   s0,
 | ||
|         int                   d0) {
 | ||
|     return ggml_conv_1d_dw(ctx, a, b, s0, a->ne[0] / 2, d0);
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_transpose_1d
 | ||
| 
 | ||
| static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
 | ||
|     return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
 | ||
| }
 | ||
| 
 | ||
| GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   s0,
 | ||
|         int                   p0,
 | ||
|         int                   d0) {
 | ||
|     GGML_ASSERT(ggml_is_matrix(b));
 | ||
|     GGML_ASSERT(a->ne[2] == b->ne[1]);
 | ||
|     GGML_ASSERT(a->ne[3] == 1);
 | ||
| 
 | ||
|     GGML_ASSERT(p0 == 0);
 | ||
|     GGML_ASSERT(d0 == 1);
 | ||
| 
 | ||
|     const int64_t ne[4] = {
 | ||
|         ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
 | ||
|         a->ne[1], b->ne[2], 1,
 | ||
|     };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     int32_t params[] = { s0, p0, d0 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_CONV_TRANSPOSE_1D;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_2d
 | ||
| 
 | ||
| // a: [OC,IC, KH, KW]
 | ||
| // b: [N, IC, IH, IW]
 | ||
| // result: [N, OC, OH, OW]
 | ||
| struct ggml_tensor * ggml_conv_2d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   s0,
 | ||
|         int                   s1,
 | ||
|         int                   p0,
 | ||
|         int                   p1,
 | ||
|         int                   d0,
 | ||
|         int                   d1) {
 | ||
|     struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
 | ||
| 
 | ||
|     struct ggml_tensor * result =
 | ||
|         ggml_mul_mat(ctx,
 | ||
|                 ggml_reshape_2d(ctx, im2col, im2col->ne[0],  im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
 | ||
|                 ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]),  a->ne[3]));                       // [OC,IC, KH, KW] => [OC, IC * KH * KW]
 | ||
| 
 | ||
|     result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
 | ||
|     result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
 | ||
| 
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_2d_sk_p0
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_2d_sk_p0(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_2d_s1_ph
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_2d_s1_ph(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_2d_dw
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_2d_dw(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   s0,
 | ||
|         int                   s1,
 | ||
|         int                   p0,
 | ||
|         int                   p1,
 | ||
|         int                   d0,
 | ||
|         int                   d1) {
 | ||
|     struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
 | ||
|     struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
 | ||
|                                         ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
 | ||
|                                         s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
 | ||
|     struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
 | ||
| 
 | ||
|     new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2],  new_a->ne[3], 1);                       // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
 | ||
|     struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
 | ||
|     result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_2d_dw_direct
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_2d_dw_direct(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   stride0,
 | ||
|         int                   stride1,
 | ||
|         int                   pad0,
 | ||
|         int                   pad1,
 | ||
|         int                   dilation0,
 | ||
|         int                   dilation1) {
 | ||
|     GGML_ASSERT(a->ne[2] == 1);
 | ||
|     GGML_ASSERT(a->ne[3] == b->ne[2]);
 | ||
|     int64_t ne[4];
 | ||
|     ne[0] = ggml_calc_conv_output_size(b->ne[0], a->ne[0], stride0, pad0, dilation0);
 | ||
|     ne[1] = ggml_calc_conv_output_size(b->ne[1], a->ne[1], stride1, pad1, dilation1);
 | ||
|     ne[2] = b->ne[2];
 | ||
|     ne[3] = b->ne[3];
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, b->type, 4, ne);
 | ||
| 
 | ||
|     if (ggml_is_contiguous_channels(b)) {
 | ||
|         // Result will be permuted the same way as input (CWHN order)
 | ||
|         const int64_t type_size = ggml_type_size(result->type);
 | ||
|         GGML_ASSERT(ggml_blck_size(result->type) == 1);
 | ||
|         result->nb[0] = result->ne[2] * type_size;
 | ||
|         result->nb[1] = result->ne[0] * result->nb[0];
 | ||
|         result->nb[2] = type_size;
 | ||
|     }
 | ||
| 
 | ||
|     int32_t params[] = { stride0, stride1, pad0, pad1, dilation0, dilation1 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_CONV_2D_DW;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_2d_direct
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_2d_direct(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,   // convolution kernel [KW, KH, IC, OC]
 | ||
|         struct ggml_tensor  * b,   // input data [W, H, C, N]
 | ||
|         int                   s0,  // stride dimension 0
 | ||
|         int                   s1,  // stride dimension 1
 | ||
|         int                   p0,  // padding dimension 0
 | ||
|         int                   p1,  // padding dimension 1
 | ||
|         int                   d0,  // dilation dimension 0
 | ||
|         int                   d1) {// dilation dimension 1
 | ||
| 
 | ||
|     GGML_ASSERT(a->ne[2] == b->ne[2]);
 | ||
|     //GGML_ASSERT(a->type == b->type);
 | ||
| 
 | ||
|     int64_t ne[4];
 | ||
|     ne[0] = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
 | ||
|     ne[1] = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
 | ||
|     ne[2] = a->ne[3];
 | ||
|     ne[3] = b->ne[3];
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, b->type, 4, ne);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, s0);
 | ||
|     ggml_set_op_params_i32(result, 1, s1);
 | ||
|     ggml_set_op_params_i32(result, 2, p0);
 | ||
|     ggml_set_op_params_i32(result, 3, p1);
 | ||
|     ggml_set_op_params_i32(result, 4, d0);
 | ||
|     ggml_set_op_params_i32(result, 5, d1);
 | ||
| 
 | ||
|     result->op = GGML_OP_CONV_2D;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_conv_transpose_2d_p0
 | ||
| 
 | ||
| static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
 | ||
|     return (ins - 1) * s - 2 * p + ks;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_conv_transpose_2d_p0(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         int                   stride) {
 | ||
|     GGML_ASSERT(a->ne[3] == b->ne[2]);
 | ||
| 
 | ||
|     const int64_t ne[4] = {
 | ||
|         ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
 | ||
|         ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
 | ||
|         a->ne[2], b->ne[3],
 | ||
|     };
 | ||
| 
 | ||
|     struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, stride);
 | ||
| 
 | ||
|     result->op     = GGML_OP_CONV_TRANSPOSE_2D;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_pool_*
 | ||
| 
 | ||
| static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
 | ||
|     return (ins + 2 * p - ks) / s + 1;
 | ||
| }
 | ||
| 
 | ||
| // ggml_pool_1d
 | ||
| 
 | ||
| struct ggml_tensor * ggml_pool_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         enum ggml_op_pool     op,
 | ||
|         int                   k0,
 | ||
|         int                   s0,
 | ||
|         int                   p0) {
 | ||
|     const int64_t ne[4] = {
 | ||
|         ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
 | ||
|         a->ne[1],
 | ||
|         a->ne[2],
 | ||
|         a->ne[3],
 | ||
|     };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     int32_t params[] = { op, k0, s0, p0 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_POOL_1D;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_pool_2d
 | ||
| 
 | ||
| struct ggml_tensor * ggml_pool_2d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         enum ggml_op_pool     op,
 | ||
|         int                   k0,
 | ||
|         int                   k1,
 | ||
|         int                   s0,
 | ||
|         int                   s1,
 | ||
|         float                 p0,
 | ||
|         float                 p1) {
 | ||
|     struct ggml_tensor * result;
 | ||
|     const int64_t ne[4] = {
 | ||
|         ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
 | ||
|         ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
 | ||
|         a->ne[2],
 | ||
|         a->ne[3],
 | ||
|     };
 | ||
|     result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_POOL_2D;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_pool_2d_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * af,
 | ||
|         enum ggml_op_pool     op,
 | ||
|         int                   k0,
 | ||
|         int                   k1,
 | ||
|         int                   s0,
 | ||
|         int                   s1,
 | ||
|         float                 p0,
 | ||
|         float                 p1) {
 | ||
|     struct ggml_tensor * result;
 | ||
|     result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
 | ||
| 
 | ||
|     int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_POOL_2D_BACK;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = af;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_upscale / ggml_interpolate
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_interpolate_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2,
 | ||
|         int64_t               ne3,
 | ||
|         uint32_t              mode) {
 | ||
|     GGML_ASSERT((mode & 0xFF) < GGML_SCALE_MODE_COUNT);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, (int32_t)mode);
 | ||
| 
 | ||
|     result->op     = GGML_OP_UPSCALE;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_upscale(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   scale_factor,
 | ||
|         enum ggml_scale_mode  mode) {
 | ||
|     GGML_ASSERT(scale_factor > 1);
 | ||
|     return ggml_interpolate_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3], mode);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_upscale_ext(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   ne0,
 | ||
|         int                   ne1,
 | ||
|         int                   ne2,
 | ||
|         int                   ne3,
 | ||
|         enum ggml_scale_mode  mode) {
 | ||
|     return ggml_interpolate_impl(ctx, a, ne0, ne1, ne2, ne3, mode);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_interpolate(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2,
 | ||
|         int64_t               ne3,
 | ||
|         uint32_t              mode) {
 | ||
|     return ggml_interpolate_impl(ctx, a, ne0, ne1, ne2, ne3, mode);
 | ||
| }
 | ||
| 
 | ||
| // ggml_pad
 | ||
| 
 | ||
| struct ggml_tensor * ggml_pad(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   p0,
 | ||
|         int                   p1,
 | ||
|         int                   p2,
 | ||
|         int                   p3) {
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
 | ||
|             a->ne[0] + p0,
 | ||
|             a->ne[1] + p1,
 | ||
|             a->ne[2] + p2,
 | ||
|             a->ne[3] + p3);
 | ||
| 
 | ||
|     result->op     = GGML_OP_PAD;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_pad_reflect_1d
 | ||
| 
 | ||
| struct ggml_tensor * ggml_pad_reflect_1d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   p0,
 | ||
|         int                   p1) {
 | ||
|     GGML_ASSERT(p0 >= 0);
 | ||
|     GGML_ASSERT(p1 >= 0);
 | ||
| 
 | ||
|     GGML_ASSERT(p0 < a->ne[0]); // padding length on each size must be less than the
 | ||
|     GGML_ASSERT(p1 < a->ne[0]); // existing length of the dimension being padded
 | ||
| 
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     GGML_ASSERT(a->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
 | ||
|             a->ne[0] + p0 + p1,
 | ||
|             a->ne[1],
 | ||
|             a->ne[2],
 | ||
|             a->ne[3]);
 | ||
| 
 | ||
|     int32_t params[] = { p0, p1 };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_PAD_REFLECT_1D;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_roll
 | ||
| 
 | ||
| struct ggml_tensor * ggml_roll(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   shift0,
 | ||
|         int                   shift1,
 | ||
|         int                   shift2,
 | ||
|         int                   shift3) {
 | ||
|     GGML_ASSERT(a->nb[0] == ggml_type_size(a->type));
 | ||
|     GGML_ASSERT(abs(shift0) < a->ne[0]);
 | ||
|     GGML_ASSERT(abs(shift1) < a->ne[1]);
 | ||
|     GGML_ASSERT(abs(shift2) < a->ne[2]);
 | ||
|     GGML_ASSERT(abs(shift3) < a->ne[3]);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, shift0);
 | ||
|     ggml_set_op_params_i32(result, 1, shift1);
 | ||
|     ggml_set_op_params_i32(result, 2, shift2);
 | ||
|     ggml_set_op_params_i32(result, 3, shift3);
 | ||
| 
 | ||
|     result->op     = GGML_OP_ROLL;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_arange
 | ||
| 
 | ||
| struct ggml_tensor * ggml_arange(
 | ||
|         struct ggml_context * ctx,
 | ||
|         float                 start,
 | ||
|         float                 stop,
 | ||
|         float                 step) {
 | ||
|     GGML_ASSERT(stop > start);
 | ||
| 
 | ||
|     const int64_t steps = (int64_t) ceilf((stop - start) / step);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
 | ||
| 
 | ||
|     ggml_set_op_params_f32(result, 0, start);
 | ||
|     ggml_set_op_params_f32(result, 1, stop);
 | ||
|     ggml_set_op_params_f32(result, 2, step);
 | ||
| 
 | ||
|     result->op = GGML_OP_ARANGE;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_timestep_embedding
 | ||
| 
 | ||
| struct ggml_tensor * ggml_timestep_embedding(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * timesteps,
 | ||
|         int                   dim,
 | ||
|         int                   max_period) {
 | ||
|     int actual_dim = dim;
 | ||
|     if (dim % 2 != 0) {
 | ||
|         actual_dim = dim + 1;
 | ||
|     }
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, dim);
 | ||
|     ggml_set_op_params_i32(result, 1, max_period);
 | ||
| 
 | ||
|     result->op     = GGML_OP_TIMESTEP_EMBEDDING;
 | ||
|     result->src[0] = timesteps;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_argsort
 | ||
| 
 | ||
| struct ggml_tensor * ggml_argsort(
 | ||
|         struct ggml_context  * ctx,
 | ||
|         struct ggml_tensor   * a,
 | ||
|         enum ggml_sort_order   order) {
 | ||
|     GGML_ASSERT(a->ne[0] <= INT32_MAX);
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, (int32_t) order);
 | ||
| 
 | ||
|     result->op     = GGML_OP_ARGSORT;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_top_k
 | ||
| 
 | ||
| struct ggml_tensor * ggml_top_k(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   k) {
 | ||
|     GGML_ASSERT(a->ne[0] >= k);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
 | ||
| 
 | ||
|     result = ggml_view_4d(ctx, result,
 | ||
|                 k, result->ne[1], result->ne[2], result->ne[3],
 | ||
|                    result->nb[1], result->nb[2], result->nb[3],
 | ||
|                 0);
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_flash_attn_ext
 | ||
| 
 | ||
| struct ggml_tensor * ggml_flash_attn_ext(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * q,
 | ||
|         struct ggml_tensor  * k,
 | ||
|         struct ggml_tensor  * v,
 | ||
|         struct ggml_tensor  * mask,
 | ||
|         float                 scale,
 | ||
|         float                 max_bias,
 | ||
|         float                 logit_softcap) {
 | ||
|     GGML_ASSERT(ggml_can_mul_mat(k, q));
 | ||
|     // TODO: check if vT can be multiplied by (k*qT)
 | ||
| 
 | ||
|     GGML_ASSERT(q->ne[3] == k->ne[3]);
 | ||
|     GGML_ASSERT(q->ne[3] == v->ne[3]);
 | ||
| 
 | ||
|     if (mask) {
 | ||
|         GGML_ASSERT(ggml_is_contiguous(mask));
 | ||
|         GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
 | ||
|                 "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
 | ||
|         //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
 | ||
| 
 | ||
|         GGML_ASSERT(q->ne[2] % mask->ne[2] == 0);
 | ||
|         GGML_ASSERT(q->ne[3] % mask->ne[3] == 0);
 | ||
|     }
 | ||
| 
 | ||
|     if (max_bias > 0.0f) {
 | ||
|         GGML_ASSERT(mask);
 | ||
|     }
 | ||
| 
 | ||
|     // permute(0, 2, 1, 3)
 | ||
|     int64_t ne[4] = { v->ne[0], q->ne[2], q->ne[1], q->ne[3] };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     float params[] = { scale, max_bias, logit_softcap };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_FLASH_ATTN_EXT;
 | ||
|     result->src[0] = q;
 | ||
|     result->src[1] = k;
 | ||
|     result->src[2] = v;
 | ||
|     result->src[3] = mask;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| void ggml_flash_attn_ext_set_prec(
 | ||
|         struct ggml_tensor * a,
 | ||
|         enum ggml_prec       prec) {
 | ||
|     GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
 | ||
| 
 | ||
|     const int32_t prec_i32 = (int32_t) prec;
 | ||
| 
 | ||
|     ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
 | ||
| }
 | ||
| 
 | ||
| enum ggml_prec ggml_flash_attn_ext_get_prec(
 | ||
|         const struct ggml_tensor * a) {
 | ||
|     GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
 | ||
| 
 | ||
|     const int32_t prec_i32 = ggml_get_op_params_i32(a, 3);
 | ||
| 
 | ||
|     return (enum ggml_prec) prec_i32;
 | ||
| }
 | ||
| 
 | ||
| // ggml_flash_attn_back
 | ||
| 
 | ||
| struct ggml_tensor * ggml_flash_attn_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * q,
 | ||
|         struct ggml_tensor  * k,
 | ||
|         struct ggml_tensor  * v,
 | ||
|         struct ggml_tensor  * d,
 | ||
|         bool                  masked) {
 | ||
|     GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
 | ||
| 
 | ||
|     GGML_ASSERT(ggml_can_mul_mat(k, q));
 | ||
|     // TODO: check if vT can be multiplied by (k*qT)
 | ||
| 
 | ||
|     // d shape [D,N,ne2,ne3]
 | ||
|     // q shape [D,N,ne2,ne3]
 | ||
|     // k shape [D,M,kvne2,ne3]
 | ||
|     // v shape [M,D,kvne2,ne3]
 | ||
| 
 | ||
|     const int64_t     D = q->ne[0];
 | ||
|     const int64_t     N = q->ne[1];
 | ||
|     const int64_t     M = k->ne[1];
 | ||
|     const int64_t   ne2 = q->ne[2];
 | ||
|     const int64_t   ne3 = q->ne[3];
 | ||
|     const int64_t kvne2 = k->ne[2];
 | ||
| 
 | ||
|     GGML_ASSERT(k->ne[0] == D);
 | ||
|     GGML_ASSERT(v->ne[0] == M);
 | ||
|     GGML_ASSERT(v->ne[1] == D);
 | ||
|     GGML_ASSERT(d->ne[0] == D);
 | ||
|     GGML_ASSERT(d->ne[1] == N);
 | ||
|     GGML_ASSERT(k->ne[2] == kvne2);
 | ||
|     GGML_ASSERT(k->ne[3] == ne3);
 | ||
|     GGML_ASSERT(v->ne[2] == kvne2);
 | ||
|     GGML_ASSERT(v->ne[3] == ne3);
 | ||
|     GGML_ASSERT(d->ne[2] == ne2);
 | ||
|     GGML_ASSERT(d->ne[3] == ne3);
 | ||
| 
 | ||
|     GGML_ASSERT(ne2 % kvne2 == 0);
 | ||
| 
 | ||
|     // store gradients of q, k and v as continuous tensors concatenated in result.
 | ||
|     // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
 | ||
|     const int64_t elem_q = ggml_nelements(q);
 | ||
|     const int64_t elem_k = ggml_nelements(k);
 | ||
|     const int64_t elem_v = ggml_nelements(v);
 | ||
| 
 | ||
|     enum ggml_type result_type = GGML_TYPE_F32;
 | ||
|     GGML_ASSERT(ggml_blck_size(result_type) == 1);
 | ||
|     const size_t tsize = ggml_type_size(result_type);
 | ||
| 
 | ||
|     const size_t offs_q = 0;
 | ||
|     const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
 | ||
|     const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
 | ||
|     const size_t end    = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
 | ||
| 
 | ||
|     const size_t nelements = (end + tsize - 1)/tsize;
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
 | ||
| 
 | ||
|     int32_t masked_i = masked ? 1 : 0;
 | ||
|     ggml_set_op_params(result, &masked_i, sizeof(masked_i));
 | ||
| 
 | ||
|     result->op     = GGML_OP_FLASH_ATTN_BACK;
 | ||
|     result->src[0] = q;
 | ||
|     result->src[1] = k;
 | ||
|     result->src[2] = v;
 | ||
|     result->src[3] = d;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_ssm_conv
 | ||
| 
 | ||
| struct ggml_tensor * ggml_ssm_conv(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * sx,
 | ||
|         struct ggml_tensor  * c) {
 | ||
|     GGML_ASSERT(ggml_is_3d(sx));
 | ||
|     GGML_ASSERT(ggml_is_matrix(c));
 | ||
| 
 | ||
|     const int64_t d_conv  = c->ne[0];
 | ||
|     const int64_t d_inner = c->ne[1];
 | ||
|     const int64_t n_t     = sx->ne[0] - d_conv + 1; // tokens per sequence
 | ||
|     const int64_t n_s     = sx->ne[2];
 | ||
| 
 | ||
|     // TODO: maybe support other strides than 1?
 | ||
|     GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
 | ||
|     GGML_ASSERT(sx->ne[1] == d_inner);
 | ||
|     GGML_ASSERT(n_t >= 0);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
 | ||
| 
 | ||
|     result->op     = GGML_OP_SSM_CONV;
 | ||
|     result->src[0] = sx;
 | ||
|     result->src[1] = c;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_ssm_scan
 | ||
| 
 | ||
| struct ggml_tensor * ggml_ssm_scan(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * s,
 | ||
|         struct ggml_tensor  * x,
 | ||
|         struct ggml_tensor  * dt,
 | ||
|         struct ggml_tensor  * A,
 | ||
|         struct ggml_tensor  * B,
 | ||
|         struct ggml_tensor  * C,
 | ||
|         struct ggml_tensor  * ids) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(s));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(dt));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(A));
 | ||
|     GGML_ASSERT(x->nb[0] == ggml_type_size(x->type));
 | ||
|     GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
 | ||
|     GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
 | ||
|     GGML_ASSERT(x->nb[1] == x->ne[0]*x->nb[0]);
 | ||
|     GGML_ASSERT(B->nb[1] == B->ne[0]*B->nb[0]);
 | ||
|     GGML_ASSERT(C->nb[1] == C->ne[0]*C->nb[0]);
 | ||
|     GGML_ASSERT(ggml_are_same_shape(B, C));
 | ||
|     GGML_ASSERT(ids->type == GGML_TYPE_I32);
 | ||
| 
 | ||
|     {
 | ||
|         const int64_t d_state      = s->ne[0];
 | ||
|         const int64_t head_dim     = x->ne[0];
 | ||
|         const int64_t n_head       = x->ne[1];
 | ||
|         const int64_t n_seq_tokens = x->ne[2];
 | ||
|         const int64_t n_seqs       = x->ne[3];
 | ||
| 
 | ||
|         GGML_ASSERT(dt->ne[0] == n_head);
 | ||
|         GGML_ASSERT(dt->ne[1] == n_seq_tokens);
 | ||
|         GGML_ASSERT(dt->ne[2] == n_seqs);
 | ||
|         GGML_ASSERT(ggml_is_3d(dt));
 | ||
|         GGML_ASSERT(s->ne[1] == head_dim);
 | ||
|         GGML_ASSERT(s->ne[2] == n_head);
 | ||
|         GGML_ASSERT(B->ne[0] == d_state);
 | ||
|         GGML_ASSERT(B->ne[2] == n_seq_tokens);
 | ||
|         GGML_ASSERT(B->ne[3] == n_seqs);
 | ||
|         GGML_ASSERT(ids->ne[0] == n_seqs);
 | ||
|         GGML_ASSERT(ggml_is_vector(ids));
 | ||
|         GGML_ASSERT(A->ne[1] == n_head);
 | ||
|         GGML_ASSERT(ggml_is_matrix(A));
 | ||
| 
 | ||
|         if (A->ne[0] != 1) {
 | ||
|             // Mamba-1 has more granular decay factors
 | ||
|             GGML_ASSERT(A->ne[0] == d_state);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // concatenated y + ssm_states
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + s->ne[0]*s->ne[1]*s->ne[2]*ids->ne[0]);
 | ||
| 
 | ||
|     result->op   = GGML_OP_SSM_SCAN;
 | ||
|     result->src[0] = s;
 | ||
|     result->src[1] = x;
 | ||
|     result->src[2] = dt;
 | ||
|     result->src[3] = A;
 | ||
|     result->src[4] = B;
 | ||
|     result->src[5] = C;
 | ||
|     result->src[6] = ids;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_win_part
 | ||
| 
 | ||
| struct ggml_tensor * ggml_win_part(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   w) {
 | ||
|     GGML_ASSERT(a->ne[3] == 1);
 | ||
|     GGML_ASSERT(a->type  == GGML_TYPE_F32);
 | ||
| 
 | ||
|     // padding
 | ||
|     const int px = (w - a->ne[1]%w)%w;
 | ||
|     const int py = (w - a->ne[2]%w)%w;
 | ||
| 
 | ||
|     const int npx = (px + a->ne[1])/w;
 | ||
|     const int npy = (py + a->ne[2])/w;
 | ||
|     const int np  = npx*npy;
 | ||
| 
 | ||
|     const int64_t ne[4] = { a->ne[0], w, w, np, };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     int32_t params[] = { npx, npy, w };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_WIN_PART;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_win_unpart
 | ||
| 
 | ||
| struct ggml_tensor * ggml_win_unpart(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   w0,
 | ||
|         int                   h0,
 | ||
|         int                   w) {
 | ||
|     GGML_ASSERT(a->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
 | ||
| 
 | ||
|     int32_t params[] = { w };
 | ||
|     ggml_set_op_params(result, params, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_WIN_UNPART;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_get_rel_pos
 | ||
| 
 | ||
| struct ggml_tensor * ggml_get_rel_pos(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         int                   qh,
 | ||
|         int                   kh) {
 | ||
|     GGML_ASSERT(qh == kh);
 | ||
|     GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
 | ||
| 
 | ||
|     const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_GET_REL_POS;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_add_rel_pos
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_add_rel_pos_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * pw,
 | ||
|         struct ggml_tensor  * ph,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_are_same_shape(pw, ph));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(pw));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(ph));
 | ||
|     GGML_ASSERT(ph->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(pw->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(pw->ne[3] == a->ne[2]);
 | ||
|     GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
 | ||
|     GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
|     ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
 | ||
| 
 | ||
|     result->op     = GGML_OP_ADD_REL_POS;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = pw;
 | ||
|     result->src[2] = ph;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_add_rel_pos(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * pw,
 | ||
|         struct ggml_tensor  * ph) {
 | ||
|     return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_add_rel_pos_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * pw,
 | ||
|         struct ggml_tensor  * ph) {
 | ||
|     return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_rwkv_wkv6
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rwkv_wkv6(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * k,
 | ||
|         struct ggml_tensor  * v,
 | ||
|         struct ggml_tensor  * r,
 | ||
|         struct ggml_tensor  * tf,
 | ||
|         struct ggml_tensor  * td,
 | ||
|         struct ggml_tensor  * state) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(k));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(v));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(r));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(tf));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(td));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(state));
 | ||
| 
 | ||
|     const int64_t S = k->ne[0];
 | ||
|     const int64_t H = k->ne[1];
 | ||
|     const int64_t n_tokens = k->ne[2];
 | ||
|     const int64_t n_seqs = state->ne[1];
 | ||
|     {
 | ||
|         GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(r->ne[0] == S && r->ne[1] == H && r->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(td->ne[0] == S && td->ne[1] == H && td->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
 | ||
|     }
 | ||
| 
 | ||
|     // concat output and new_state
 | ||
|     const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_RWKV_WKV6;
 | ||
|     result->src[0] = k;
 | ||
|     result->src[1] = v;
 | ||
|     result->src[2] = r;
 | ||
|     result->src[3] = tf;
 | ||
|     result->src[4] = td;
 | ||
|     result->src[5] = state;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_gated_linear_attn
 | ||
| 
 | ||
| struct ggml_tensor * ggml_gated_linear_attn(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * k,
 | ||
|         struct ggml_tensor  * v,
 | ||
|         struct ggml_tensor  * q,
 | ||
|         struct ggml_tensor  * g,
 | ||
|         struct ggml_tensor  * state,
 | ||
|         float scale) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(k));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(v));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(q));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(g));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(state));
 | ||
| 
 | ||
|     const int64_t S = k->ne[0];
 | ||
|     const int64_t H = k->ne[1];
 | ||
|     const int64_t n_tokens = k->ne[2];
 | ||
|     const int64_t n_seqs = state->ne[1];
 | ||
|     {
 | ||
|         GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(q->ne[0] == S && q->ne[1] == H && q->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(g->ne[0] == S && g->ne[1] == H && g->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
 | ||
|     }
 | ||
| 
 | ||
|     // concat output and new_state
 | ||
|     const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     ggml_set_op_params_f32(result, 0, scale);
 | ||
| 
 | ||
|     result->op     = GGML_OP_GATED_LINEAR_ATTN;
 | ||
|     result->src[0] = k;
 | ||
|     result->src[1] = v;
 | ||
|     result->src[2] = q;
 | ||
|     result->src[3] = g;
 | ||
|     result->src[4] = state;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_rwkv_wkv7
 | ||
| 
 | ||
| struct ggml_tensor * ggml_rwkv_wkv7(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * r,
 | ||
|         struct ggml_tensor  * w,
 | ||
|         struct ggml_tensor  * k,
 | ||
|         struct ggml_tensor  * v,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * state) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(r));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(w));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(k));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(v));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(a));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(b));
 | ||
|     GGML_ASSERT(ggml_is_contiguous(state));
 | ||
| 
 | ||
|     const int64_t S = k->ne[0];
 | ||
|     const int64_t H = k->ne[1];
 | ||
|     const int64_t n_tokens = k->ne[2];
 | ||
|     const int64_t n_seqs = state->ne[1];
 | ||
|     {
 | ||
|         GGML_ASSERT(w->ne[0] == S && w->ne[1] == H && w->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(k->ne[0] == S && k->ne[1] == H && k->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(a->ne[0] == S && a->ne[1] == H && a->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(b->ne[0] == S && b->ne[1] == H && b->ne[2] == n_tokens);
 | ||
|         GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
 | ||
|     }
 | ||
| 
 | ||
|     // concat output and new_state
 | ||
|     const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
 | ||
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | ||
| 
 | ||
|     result->op     = GGML_OP_RWKV_WKV7;
 | ||
|     result->src[0] = r;
 | ||
|     result->src[1] = w;
 | ||
|     result->src[2] = k;
 | ||
|     result->src[3] = v;
 | ||
|     result->src[4] = a;
 | ||
|     result->src[5] = b;
 | ||
|     result->src[6] = state;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_unary
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_unary_impl(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         enum ggml_unary_op    op,
 | ||
|         bool                  inplace) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous_1(a));
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     ggml_set_op_params_i32(result, 0, (int32_t) op);
 | ||
| 
 | ||
|     result->op     = GGML_OP_UNARY;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_unary(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         enum ggml_unary_op    op) {
 | ||
|     return ggml_unary_impl(ctx, a, op, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_unary_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         enum ggml_unary_op    op) {
 | ||
|     return ggml_unary_impl(ctx, a, op, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_map_custom1
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_map_custom1_impl(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         const  ggml_custom1_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata,
 | ||
|         bool                       inplace) {
 | ||
|     GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     struct ggml_map_custom1_op_params params = {
 | ||
|         /*.fun      =*/ fun,
 | ||
|         /*.n_tasks  =*/ n_tasks,
 | ||
|         /*.userdata =*/ userdata
 | ||
|     };
 | ||
|     ggml_set_op_params(result, ¶ms, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_MAP_CUSTOM1;
 | ||
|     result->src[0] = a;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_map_custom1(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         const  ggml_custom1_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata) {
 | ||
|     return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_map_custom1_inplace(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         const  ggml_custom1_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata) {
 | ||
|     return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_map_custom2
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_map_custom2_impl(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         struct ggml_tensor       * b,
 | ||
|         const  ggml_custom2_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata,
 | ||
|         bool                       inplace) {
 | ||
|     GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     struct ggml_map_custom2_op_params params = {
 | ||
|         /*.fun      =*/ fun,
 | ||
|         /*.n_tasks  =*/ n_tasks,
 | ||
|         /*.userdata =*/ userdata
 | ||
|     };
 | ||
|     ggml_set_op_params(result, ¶ms, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_MAP_CUSTOM2;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_map_custom2(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         struct ggml_tensor       * b,
 | ||
|         const  ggml_custom2_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata) {
 | ||
|     return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_map_custom2_inplace(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         struct ggml_tensor       * b,
 | ||
|         const  ggml_custom2_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata) {
 | ||
|     return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
 | ||
| }
 | ||
| 
 | ||
| // ggml_map_custom3
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_map_custom3_impl(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         struct ggml_tensor       * b,
 | ||
|         struct ggml_tensor       * c,
 | ||
|         const  ggml_custom3_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata,
 | ||
|         bool                       inplace) {
 | ||
|     GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
 | ||
| 
 | ||
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | ||
| 
 | ||
|     struct ggml_map_custom3_op_params params = {
 | ||
|         /*.fun      =*/ fun,
 | ||
|         /*.n_tasks  =*/ n_tasks,
 | ||
|         /*.userdata =*/ userdata
 | ||
|     };
 | ||
|     ggml_set_op_params(result, ¶ms, sizeof(params));
 | ||
| 
 | ||
|     result->op     = GGML_OP_MAP_CUSTOM3;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
|     result->src[2] = c;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_map_custom3(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         struct ggml_tensor       * b,
 | ||
|         struct ggml_tensor       * c,
 | ||
|         const  ggml_custom3_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata) {
 | ||
|     return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_map_custom3_inplace(
 | ||
|         struct ggml_context      * ctx,
 | ||
|         struct ggml_tensor       * a,
 | ||
|         struct ggml_tensor       * b,
 | ||
|         struct ggml_tensor       * c,
 | ||
|         const  ggml_custom3_op_t   fun,
 | ||
|         int                        n_tasks,
 | ||
|         void                     * userdata) {
 | ||
|     return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_custom_4d(
 | ||
|         struct ggml_context * ctx,
 | ||
|         enum ggml_type        type,
 | ||
|         int64_t               ne0,
 | ||
|         int64_t               ne1,
 | ||
|         int64_t               ne2,
 | ||
|         int64_t               ne3,
 | ||
|         struct ggml_tensor ** args,
 | ||
|         int                   n_args,
 | ||
|         ggml_custom_op_t      fun,
 | ||
|         int                   n_tasks,
 | ||
|         void                * userdata) {
 | ||
| 
 | ||
|     GGML_ASSERT(n_args < GGML_MAX_SRC);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
 | ||
| 
 | ||
|     struct ggml_custom_op_params params = {
 | ||
|         /*.fun      =*/ fun,
 | ||
|         /*.n_tasks  =*/ n_tasks,
 | ||
|         /*.userdata =*/ userdata
 | ||
|     };
 | ||
|     ggml_set_op_params(result, ¶ms, sizeof(params));
 | ||
| 
 | ||
|     result->op = GGML_OP_CUSTOM;
 | ||
|     for (int i = 0; i < n_args; i++) {
 | ||
|         result->src[i] = args[i];
 | ||
|     }
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_custom_inplace(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor ** args,
 | ||
|         int                   n_args,
 | ||
|         ggml_custom_op_t      fun,
 | ||
|         int                   n_tasks,
 | ||
|         void                * userdata) {
 | ||
| 
 | ||
|     GGML_ASSERT(n_args < GGML_MAX_SRC - 1);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | ||
| 
 | ||
|     struct ggml_custom_op_params params = {
 | ||
|         /*.fun      =*/ fun,
 | ||
|         /*.n_tasks  =*/ n_tasks,
 | ||
|         /*.userdata =*/ userdata
 | ||
|     };
 | ||
|     ggml_set_op_params(result, ¶ms, sizeof(params));
 | ||
| 
 | ||
|     result->op = GGML_OP_CUSTOM;
 | ||
|     result->src[0] = a;
 | ||
|     for (int i = 0; i < n_args; i++) {
 | ||
|         result->src[i + 1] = args[i];
 | ||
|     }
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| // ggml_cross_entropy_loss
 | ||
| 
 | ||
| struct ggml_tensor * ggml_cross_entropy_loss(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b) {
 | ||
|     GGML_ASSERT(ggml_are_same_shape(a, b));
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
 | ||
| 
 | ||
|     result->op     = GGML_OP_CROSS_ENTROPY_LOSS;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // ggml_cross_entropy_loss_back
 | ||
| 
 | ||
| struct ggml_tensor * ggml_cross_entropy_loss_back(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * b,
 | ||
|         struct ggml_tensor  * c) {
 | ||
|     GGML_ASSERT(ggml_is_scalar(a));
 | ||
|     GGML_ASSERT(ggml_are_same_shape(b, c));
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, b);
 | ||
| 
 | ||
|     result->op     = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = b;
 | ||
|     result->src[2] = c;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // opt_step_adamw
 | ||
| 
 | ||
| struct ggml_tensor * ggml_opt_step_adamw(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_tensor  * a,
 | ||
|         struct ggml_tensor  * grad,
 | ||
|         struct ggml_tensor  * m,
 | ||
|         struct ggml_tensor  * v,
 | ||
|         struct ggml_tensor  * adamw_params) {
 | ||
|     GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
 | ||
|     GGML_ASSERT(ggml_are_same_shape(a, grad));
 | ||
|     GGML_ASSERT(ggml_are_same_shape(a, m));
 | ||
|     GGML_ASSERT(ggml_are_same_shape(a, v));
 | ||
|     GGML_ASSERT(adamw_params->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(ggml_nelements(adamw_params) == 7);
 | ||
| 
 | ||
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | ||
| 
 | ||
|     result->op     = GGML_OP_OPT_STEP_ADAMW;
 | ||
|     result->src[0] = a;
 | ||
|     result->src[1] = grad;
 | ||
|     result->src[2] = m;
 | ||
|     result->src[3] = v;
 | ||
|     result->src[4] = adamw_params;
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| struct ggml_hash_set ggml_hash_set_new(size_t size) {
 | ||
|     size = ggml_hash_size(size);
 | ||
|     struct ggml_hash_set result;
 | ||
|     result.size = size;
 | ||
|     result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
 | ||
|     result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
 | ||
|     memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
 | ||
| }
 | ||
| 
 | ||
| void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
 | ||
|     GGML_FREE(hash_set->used);
 | ||
|     GGML_FREE(hash_set->keys);
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_hash_size(size_t min_sz) {
 | ||
|     // next primes after powers of two
 | ||
|     static const size_t primes[] = {
 | ||
|         2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
 | ||
|         2053, 4099, 8209, 16411, 32771, 65537, 131101,
 | ||
|         262147, 524309, 1048583, 2097169, 4194319, 8388617,
 | ||
|         16777259, 33554467, 67108879, 134217757, 268435459,
 | ||
|         536870923, 1073741827, 2147483659
 | ||
|     };
 | ||
|     static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
 | ||
| 
 | ||
|     // find the smallest prime that is larger or equal than min_sz
 | ||
|     size_t l = 0;
 | ||
|     size_t r = n_primes;
 | ||
|     while (l < r) {
 | ||
|         size_t m = (l + r)/2;
 | ||
|         if (primes[m] < min_sz) {
 | ||
|             l = m + 1;
 | ||
|         } else {
 | ||
|             r = m;
 | ||
|         }
 | ||
|     }
 | ||
|     size_t sz = l < n_primes ? primes[l] : min_sz | 1;
 | ||
|     return sz;
 | ||
| }
 | ||
| 
 | ||
| struct hash_map {
 | ||
|     struct ggml_hash_set set;
 | ||
|     struct ggml_tensor ** vals;
 | ||
| };
 | ||
| 
 | ||
| static struct hash_map * ggml_new_hash_map(size_t size) {
 | ||
|     struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
 | ||
|     result->set = ggml_hash_set_new(size);
 | ||
|     result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_hash_map_free(struct hash_map * map) {
 | ||
|     ggml_hash_set_free(&map->set);
 | ||
|     GGML_FREE(map->vals);
 | ||
|     GGML_FREE(map);
 | ||
| }
 | ||
| 
 | ||
| // utility functions to change gradients
 | ||
| // isrc is the index of tensor in cgraph->visited_has_set.keys
 | ||
| // the corresponding gradient (accumulators) are also at position isrc
 | ||
| // if tensor has a gradient accumulator, modify that accumulator in-place
 | ||
| // else if there is no gradient for tensor, set the corresponding value
 | ||
| // else, just add/subtract/etc. the gradients
 | ||
| 
 | ||
| static void ggml_add_or_set(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_cgraph  * cgraph,
 | ||
|         size_t                isrc,
 | ||
|         struct ggml_tensor  * tensor) {
 | ||
|     struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
 | ||
|     GGML_ASSERT(src);
 | ||
|     if (cgraph->grads[isrc]) {
 | ||
|         cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, /*inplace =*/ cgraph->grad_accs[isrc]);
 | ||
|     } else {
 | ||
|         cgraph->grads[isrc] = tensor;
 | ||
|     }
 | ||
|     ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
 | ||
|     ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_acc_or_set(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_cgraph  * cgraph,
 | ||
|         size_t                isrc,
 | ||
|         struct ggml_tensor  * tensor,
 | ||
|         const  size_t         nb1,
 | ||
|         const  size_t         nb2,
 | ||
|         const  size_t         nb3,
 | ||
|         const  size_t         offset) {
 | ||
|     struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
 | ||
|     GGML_ASSERT(src);
 | ||
|     if (cgraph->grads[isrc]) {
 | ||
|         cgraph->grads[isrc] = ggml_acc_impl(ctx, cgraph->grads[isrc], tensor, nb1, nb2, nb3, offset, cgraph->grad_accs[isrc]);
 | ||
|     } else {
 | ||
|         struct ggml_tensor * a_zero = ggml_scale(ctx, src, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
 | ||
|         cgraph->grads[isrc] = ggml_acc_impl(ctx, a_zero, tensor, nb1, nb2, nb3, offset, false);
 | ||
|     }
 | ||
|     ggml_format_name(cgraph->grads[isrc], "grad for %s", cgraph->visited_hash_set.keys[isrc]->name);
 | ||
|     ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_add1_or_set(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_cgraph  * cgraph,
 | ||
|         size_t                isrc,
 | ||
|         struct ggml_tensor  * tensor) {
 | ||
|     struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
 | ||
|     GGML_ASSERT(src);
 | ||
|     if (cgraph->grads[isrc]) {
 | ||
|         cgraph->grads[isrc] = ggml_add1_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
 | ||
|     } else {
 | ||
|         cgraph->grads[isrc] = ggml_repeat(ctx, tensor, src);
 | ||
|     }
 | ||
|     ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
 | ||
|     ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sub_or_set(
 | ||
|         struct ggml_context * ctx,
 | ||
|         struct ggml_cgraph  * cgraph,
 | ||
|         size_t                isrc,
 | ||
|         struct ggml_tensor  * tensor) {
 | ||
|     struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
 | ||
|     GGML_ASSERT(src);
 | ||
|     if (cgraph->grads[isrc]) {
 | ||
|         cgraph->grads[isrc] = ggml_sub_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
 | ||
|     } else {
 | ||
|         cgraph->grads[isrc] = ggml_neg(ctx, tensor);
 | ||
|     }
 | ||
|     ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
 | ||
|     ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_compute_backward(
 | ||
|         struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i, const bool * grads_needed) {
 | ||
|     struct ggml_tensor * tensor = cgraph->nodes[i];
 | ||
|     struct ggml_tensor * grad   = ggml_graph_get_grad(cgraph, tensor);
 | ||
| 
 | ||
|     if (!grad) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     struct ggml_tensor * src0 = tensor->src[0];
 | ||
|     struct ggml_tensor * src1 = tensor->src[1];
 | ||
|     struct ggml_tensor * src2 = tensor->src[2];
 | ||
|     struct ggml_hash_set * hash_set = &cgraph->visited_hash_set;
 | ||
|     const size_t isrc0 = src0 ? ggml_hash_find(hash_set, src0) : (size_t) -1;
 | ||
|     const size_t isrc1 = src1 ? ggml_hash_find(hash_set, src1) : (size_t) -1;
 | ||
|     const size_t isrc2 = src2 ? ggml_hash_find(hash_set, src2) : (size_t) -1;
 | ||
|     const bool src0_needs_grads = src0 && isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0];
 | ||
|     const bool src1_needs_grads = src1 && isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1];
 | ||
|     const bool src2_needs_grads = src2 && isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2];
 | ||
| 
 | ||
|     switch (tensor->op) {
 | ||
|         case GGML_OP_DUP: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, grad);
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_ADD: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, grad);
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 struct ggml_tensor * tmp = grad;
 | ||
|                 if (!ggml_are_same_shape(src0, src1)) {
 | ||
|                     tmp = ggml_repeat_back(ctx, tmp, src1);
 | ||
|                 }
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc1, tmp);
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_ADD1: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, grad);
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc1, ggml_mean(ctx, grad)); // TODO: should probably be sum instead of mean
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_ACC: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, grad);
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 const size_t nb1    = ((int32_t *) tensor->op_params)[0];
 | ||
|                 const size_t nb2    = ((int32_t *) tensor->op_params)[1];
 | ||
|                 const size_t nb3    = ((int32_t *) tensor->op_params)[2];
 | ||
|                 const size_t offset = ((int32_t *) tensor->op_params)[3];
 | ||
| 
 | ||
|                 struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
 | ||
|                     grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
 | ||
|                     nb1, nb2, nb3, offset);
 | ||
| 
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SUB: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, grad);
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 ggml_sub_or_set(ctx, cgraph, isrc1, grad);
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_MUL: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, src1));
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 struct ggml_tensor * tmp = ggml_mul(ctx, src0, grad);
 | ||
|                 if (!ggml_are_same_shape(src0, src1)) {
 | ||
|                     tmp = ggml_repeat_back(ctx, tmp, src1);
 | ||
|                 }
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc1, tmp);
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_DIV: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src1));
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 ggml_sub_or_set(ctx, cgraph, isrc1, ggml_mul(ctx, grad, ggml_div(ctx, tensor, src1)));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SQR: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_mul(ctx, src0, grad), 2.0f));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SQRT: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_div(ctx, grad, tensor), 0.5f));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_LOG: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src0));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SIN: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_cos(ctx, src0)));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_COS: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_sub_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_sin(ctx, src0)));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SUM: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add1_or_set(ctx, cgraph, isrc0, grad);
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SUM_ROWS: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_MEAN: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], 0.0, false));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_REPEAT: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat_back(ctx, grad, src0));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_REPEAT_BACK: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_RMS_NORM: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 float eps;
 | ||
|                 memcpy(&eps, tensor->op_params, sizeof(float));
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_rms_norm_back(ctx, grad, src0, eps));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_MUL_MAT: {
 | ||
|             // https://cs231n.github.io/optimization-2/#staged
 | ||
|             // # forward pass
 | ||
|             // s0 = np.random.randn(5, 10)
 | ||
|             // s1 = np.random.randn(10, 3)
 | ||
|             // t = s0.dot(s1)
 | ||
| 
 | ||
|             // # now suppose we had the gradient on t from above in the circuit
 | ||
|             // dt = np.random.randn(*t.shape) # same shape as t
 | ||
|             // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
 | ||
|             // ds1 = t.T.dot(dt)
 | ||
| 
 | ||
|             // tensor.shape [m,p,qq,rr]
 | ||
|             // src0.shape   [n,m,q1,r1]
 | ||
|             // src1.shape   [n,p,qq,rr]
 | ||
| 
 | ||
|             if (src0_needs_grads) {
 | ||
|                 GGML_ASSERT(grad->ne[2] == src1->ne[2]);
 | ||
|                 GGML_ASSERT(grad->ne[3] == src1->ne[3]);
 | ||
|                 struct ggml_tensor * tmp =
 | ||
|                     ggml_out_prod(ctx, // [n,m,qq,rr]
 | ||
|                         src1,          // [n,p,qq,rr]
 | ||
|                         grad);         // [m,p,qq,rr]
 | ||
|                 if (!ggml_are_same_shape(tmp, src0)) {
 | ||
|                     GGML_ASSERT(tmp->ne[0] == src0->ne[0]);
 | ||
|                     GGML_ASSERT(tmp->ne[1] == src0->ne[1]);
 | ||
|                     GGML_ASSERT(tmp->ne[3] == 1);
 | ||
| 
 | ||
|                     const int64_t nr2 = tmp->ne[2] / src0->ne[2];
 | ||
|                     const size_t nb2 = tmp->nb[2] * nr2;
 | ||
|                     const size_t nb3 = tmp->nb[2];
 | ||
| 
 | ||
|                     tmp = ggml_view_4d(ctx, tmp, src0->ne[0], src0->ne[1], src0->ne[2], nr2, tmp->nb[1], nb2, nb3, 0);
 | ||
|                     tmp = ggml_repeat_back(ctx, tmp, src0);
 | ||
|                 }
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, tmp);
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc1,
 | ||
|                         // ggml_mul_mat(ctx,                   // [n,p,qq,rr]
 | ||
|                         //     ggml_cont(ctx,                  // [m,n,q1,r1]
 | ||
|                         //         ggml_transpose(ctx, src0)), // [m,n,q1,r1]
 | ||
|                         //     grad),                          // [m,p,qq,rr]
 | ||
| 
 | ||
|                         // when src0 is bigger than tensor->grad (this is mostly the case in llama),
 | ||
|                         // avoid transpose of src0, rather transpose smaller tensor->grad
 | ||
|                         // and then use ggml_out_prod
 | ||
|                         ggml_out_prod(ctx,      // [n,p,qq,rr]
 | ||
|                             src0,               // [n,m,q1,r1]
 | ||
|                             ggml_transpose(ctx, // [p,m,qq,rr]
 | ||
|                                 grad)));        // [m,p,qq,rr]
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SCALE: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 float s;
 | ||
|                 memcpy(&s, tensor->op_params, sizeof(float));
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, s, 0.0, false));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SET: {
 | ||
|             const size_t nb1    = ((const int32_t *) tensor->op_params)[0];
 | ||
|             const size_t nb2    = ((const int32_t *) tensor->op_params)[1];
 | ||
|             const size_t nb3    = ((const int32_t *) tensor->op_params)[2];
 | ||
|             const size_t offset = ((const int32_t *) tensor->op_params)[3];
 | ||
| 
 | ||
|             struct ggml_tensor * tensor_grad_view = NULL;
 | ||
| 
 | ||
|             if (src0_needs_grads || src1_needs_grads) {
 | ||
|                 GGML_ASSERT(src0->type == tensor->type);
 | ||
|                 GGML_ASSERT(!cgraph->grads[isrc0] ||                      cgraph->grads[isrc0]->type == grad->type);
 | ||
|                 GGML_ASSERT(!cgraph->grads[isrc1] || !src1_needs_grads || cgraph->grads[isrc1]->type == grad->type);
 | ||
| 
 | ||
|                 tensor_grad_view = ggml_view_4d(ctx,
 | ||
|                     grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
 | ||
|                     nb1, nb2, nb3, offset);
 | ||
|             }
 | ||
| 
 | ||
|             if (src0_needs_grads) {
 | ||
|                 struct ggml_tensor * tmp = ggml_neg(ctx, tensor_grad_view);
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_acc_impl(ctx, grad, tmp, nb1, nb2, nb3, offset, false));
 | ||
|             }
 | ||
| 
 | ||
|             if (src1_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_CPY: {
 | ||
|             // cpy overwrites value of src1 by src0 and returns view(src1)
 | ||
|             // the overwriting is mathematically equivalent to:
 | ||
|             // tensor = src0 * 1 + src1 * 0
 | ||
|             if (src0_needs_grads) {
 | ||
|                 // dsrc0 = dtensor * 1
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad, src0));
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 // dsrc1 = dtensor * 0 -> noop
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_CONT: {
 | ||
|             // same as cpy
 | ||
|             if (src0_needs_grads) {
 | ||
|                 GGML_ASSERT(!cgraph->grads[isrc0] || ggml_is_contiguous(cgraph->grads[isrc0]));
 | ||
|                 GGML_ASSERT(ggml_is_contiguous(grad));
 | ||
|                 GGML_ASSERT(ggml_nelements(tensor) == ggml_nelements(src0));
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0,
 | ||
|                     ggml_are_same_shape(tensor, src0) ? grad : ggml_reshape(ctx, grad, src0));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_RESHAPE: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 struct ggml_tensor * grad_cont = ggml_is_contiguous(grad) ? grad : ggml_cont(ctx, grad);
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad_cont, src0));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_VIEW: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 size_t offset;
 | ||
| 
 | ||
|                 memcpy(&offset, tensor->op_params, sizeof(offset));
 | ||
| 
 | ||
|                 size_t nb1 = tensor->nb[1];
 | ||
|                 size_t nb2 = tensor->nb[2];
 | ||
|                 size_t nb3 = tensor->nb[3];
 | ||
| 
 | ||
|                 if (cgraph->grads[isrc0] && src0->type != cgraph->grads[isrc0]->type) {
 | ||
|                     // gradient is typically F32, but src0 could be other type
 | ||
|                     size_t ng = ggml_element_size(cgraph->grads[isrc0]);
 | ||
|                     size_t n0 = ggml_element_size(src0);
 | ||
|                     GGML_ASSERT(offset % n0 == 0);
 | ||
|                     GGML_ASSERT(nb1 % n0 == 0);
 | ||
|                     GGML_ASSERT(nb2 % n0 == 0);
 | ||
|                     GGML_ASSERT(nb3 % n0 == 0);
 | ||
|                     offset = (offset / n0) * ng;
 | ||
|                     nb1 = (nb1 / n0) * ng;
 | ||
|                     nb2 = (nb2 / n0) * ng;
 | ||
|                     nb3 = (nb3 / n0) * ng;
 | ||
|                 }
 | ||
| 
 | ||
|                 ggml_acc_or_set(ctx, cgraph, isrc0, grad, nb1, nb2, nb3, offset);
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_PERMUTE: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 const int32_t * axes = (const int32_t *) tensor->op_params;
 | ||
|                 const int axis0 = axes[0] & 0x3;
 | ||
|                 const int axis1 = axes[1] & 0x3;
 | ||
|                 const int axis2 = axes[2] & 0x3;
 | ||
|                 const int axis3 = axes[3] & 0x3;
 | ||
|                 int axb[4] = {0,0,0,0}; // axes backward
 | ||
|                 axb[axis0] = 0;
 | ||
|                 axb[axis1] = 1;
 | ||
|                 axb[axis2] = 2;
 | ||
|                 axb[axis3] = 3;
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_permute(ctx, grad, axb[0], axb[1], axb[2], axb[3]));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_TRANSPOSE: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_transpose(ctx, grad));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_GET_ROWS: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_get_rows_back(ctx, grad, src1, src0));
 | ||
|             }
 | ||
|             if (src1_needs_grads) {
 | ||
|                 // noop
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_DIAG_MASK_INF: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 /* ggml_diag_mask_inf_impl() shouldn't be here */
 | ||
|                 /* ref:  https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
 | ||
|                 const int n_past = ((const int32_t *) tensor->op_params)[0];
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_DIAG_MASK_ZERO: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 const int n_past = ((const int32_t *) tensor->op_params)[0];
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_SOFT_MAX: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 float scale    = 1.0f;
 | ||
|                 float max_bias = 0.0f;
 | ||
| 
 | ||
|                 memcpy(&scale,    (const float *) tensor->op_params + 0, sizeof(float));
 | ||
|                 memcpy(&max_bias, (const float *) tensor->op_params + 1, sizeof(float));
 | ||
| 
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_soft_max_ext_back(ctx, grad, tensor, scale, max_bias));
 | ||
|             }
 | ||
|             GGML_ASSERT((!src1 || !src1_needs_grads) && "backward pass for softmax mask not implemented");
 | ||
|         } break;
 | ||
|         case GGML_OP_ROPE: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 //const int n_past = ((int32_t *) tensor->op_params)[0];
 | ||
|                 const int n_dims     = ((const int32_t *) tensor->op_params)[1];
 | ||
|                 const int mode       = ((const int32_t *) tensor->op_params)[2];
 | ||
|                 //const int n_ctx      = ((int32_t *) tensor->op_params)[3];
 | ||
|                 const int n_ctx_orig = ((const int32_t *) tensor->op_params)[4];
 | ||
|                 float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | ||
|                 int sections[4] = {0, 0, 0, 0};
 | ||
| 
 | ||
|                 memcpy(&freq_base,   (const float *) tensor->op_params +  5, sizeof(float));
 | ||
|                 memcpy(&freq_scale,  (const float *) tensor->op_params +  6, sizeof(float));
 | ||
|                 memcpy(&ext_factor,  (const float *) tensor->op_params +  7, sizeof(float));
 | ||
|                 memcpy(&attn_factor, (const float *) tensor->op_params +  8, sizeof(float));
 | ||
|                 memcpy(&beta_fast,   (const float *) tensor->op_params +  9, sizeof(float));
 | ||
|                 memcpy(&beta_slow,   (const float *) tensor->op_params + 10, sizeof(float));
 | ||
|                 memcpy(§ions,                    tensor->op_params + 11, sizeof(sections));
 | ||
| 
 | ||
|                 struct ggml_tensor * rope_back = grad->ne[2] == src1->ne[0] ?
 | ||
|                     ggml_rope_ext_back(ctx, grad, src1, src2, n_dims,
 | ||
|                         mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow) :
 | ||
|                     ggml_rope_multi_back(ctx, grad, src1, src2, n_dims, sections,
 | ||
|                         mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, rope_back);
 | ||
|             }
 | ||
|             GGML_ASSERT((!src2 || !src2_needs_grads) && "gradients for freq factors not implemented");
 | ||
|         } break;
 | ||
|         case GGML_OP_IM2COL: {
 | ||
|             if (src1_needs_grads) {
 | ||
|                 const int32_t s0    = ggml_get_op_params_i32(tensor, 0);
 | ||
|                 const int32_t s1    = ggml_get_op_params_i32(tensor, 1);
 | ||
|                 const int32_t p0    = ggml_get_op_params_i32(tensor, 2);
 | ||
|                 const int32_t p1    = ggml_get_op_params_i32(tensor, 3);
 | ||
|                 const int32_t d0    = ggml_get_op_params_i32(tensor, 4);
 | ||
|                 const int32_t d1    = ggml_get_op_params_i32(tensor, 5);
 | ||
|                 const bool    is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
 | ||
| 
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc1, ggml_im2col_back(ctx, grad, src0, src1->ne, s0, s1, p0, p1, d0, d1, is_2D));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_POOL_2D: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
 | ||
|                 const      int32_t      k0 = ggml_get_op_params_i32(tensor, 1);
 | ||
|                 const      int32_t      k1 = ggml_get_op_params_i32(tensor, 2);
 | ||
|                 const      int32_t      s0 = ggml_get_op_params_i32(tensor, 3);
 | ||
|                 const      int32_t      s1 = ggml_get_op_params_i32(tensor, 4);
 | ||
|                 const      int32_t      p0 = ggml_get_op_params_i32(tensor, 5);
 | ||
|                 const      int32_t      p1 = ggml_get_op_params_i32(tensor, 6);
 | ||
| 
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_pool_2d_back(ctx, grad, src0, op, k0, k1, s0, s1, p0, p1));
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_WIN_PART:
 | ||
|         case GGML_OP_WIN_UNPART:
 | ||
|         case GGML_OP_UNARY: {
 | ||
|             switch (ggml_get_unary_op(tensor)) {
 | ||
|                 case GGML_UNARY_OP_ABS: {
 | ||
|                     if (src0_needs_grads) {
 | ||
|                         ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_sgn(ctx, src0), grad));
 | ||
|                     }
 | ||
|                 } break;
 | ||
|                 case GGML_UNARY_OP_SGN: {
 | ||
|                     // noop
 | ||
|                 } break;
 | ||
|                 case GGML_UNARY_OP_NEG: {
 | ||
|                     if (src0_needs_grads) {
 | ||
|                         ggml_sub_or_set(ctx, cgraph, isrc0, grad);
 | ||
|                     }
 | ||
|                 } break;
 | ||
|                 case GGML_UNARY_OP_STEP: {
 | ||
|                     // noop
 | ||
|                 } break;
 | ||
|                 case GGML_UNARY_OP_RELU: {
 | ||
|                     if (src0_needs_grads) {
 | ||
|                         ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_step(ctx, src0), grad));
 | ||
|                     }
 | ||
|                 } break;
 | ||
|                 case GGML_UNARY_OP_SILU: {
 | ||
|                     if (src0_needs_grads) {
 | ||
|                         ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, grad, src0));
 | ||
|                     }
 | ||
|                 } break;
 | ||
|                 case GGML_UNARY_OP_EXP: {
 | ||
|                     if (src0_needs_grads) {
 | ||
|                         ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, tensor, grad));
 | ||
|                     }
 | ||
|                 } break;
 | ||
|                 default: {
 | ||
|                     fprintf(stderr, "%s: unsupported unary op for backward pass: %s\n",
 | ||
|                         __func__, ggml_unary_op_name(ggml_get_unary_op(tensor)));
 | ||
|                     GGML_ABORT("fatal error");
 | ||
|                 } //break;
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_CROSS_ENTROPY_LOSS: {
 | ||
|             if (src0_needs_grads) {
 | ||
|                 ggml_add_or_set(ctx, cgraph, isrc0, ggml_cross_entropy_loss_back(ctx, grad, src0, src1));
 | ||
|             }
 | ||
|             GGML_ASSERT(!src1_needs_grads && "backward pass for labels not implemented");
 | ||
|         } break;
 | ||
|         case GGML_OP_GLU: {
 | ||
|             switch (ggml_get_glu_op(tensor)) {
 | ||
|                 case GGML_GLU_OP_SWIGLU: {
 | ||
|                     if (src0_needs_grads) {
 | ||
|                         GGML_ASSERT(src1 && "backward pass only implemented for split swiglu");
 | ||
|                         ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, ggml_mul(ctx, grad, src1), src0));
 | ||
|                     }
 | ||
|                     if (src1_needs_grads) {
 | ||
|                         ggml_add_or_set(ctx, cgraph, isrc1, ggml_mul(ctx, ggml_silu(ctx, src0), grad));
 | ||
|                     }
 | ||
|                 } break;
 | ||
|                 default: {
 | ||
|                     GGML_ABORT("unsupported glu op for backward pass: %s", ggml_glu_op_name(ggml_get_glu_op(tensor)));
 | ||
|                 } //break;
 | ||
|             }
 | ||
|         } break;
 | ||
|         case GGML_OP_NONE: {
 | ||
|             // noop
 | ||
|         } break;
 | ||
|         case GGML_OP_COUNT:
 | ||
|         default: {
 | ||
|             GGML_ABORT("%s: unsupported ggml op for backward pass: %s\n", __func__, ggml_op_name(tensor->op));
 | ||
|         } //break;
 | ||
|     }
 | ||
| 
 | ||
|     GGML_ASSERT(!src0_needs_grads || ggml_are_same_shape(src0, cgraph->grads[isrc0]));
 | ||
|     GGML_ASSERT(!src1_needs_grads || ggml_are_same_shape(src1, cgraph->grads[isrc1]));
 | ||
|     GGML_ASSERT(!src2_needs_grads || ggml_are_same_shape(src2, cgraph->grads[isrc2]));
 | ||
| }
 | ||
| 
 | ||
| static size_t ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
 | ||
|     // check if already visited
 | ||
|     size_t node_hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
 | ||
|     GGML_ASSERT(node_hash_pos != GGML_HASHSET_FULL);
 | ||
|     if (!ggml_bitset_get(cgraph->visited_hash_set.used, node_hash_pos)) {
 | ||
|         // This is the first time we see this node in the current graph.
 | ||
|         cgraph->visited_hash_set.keys[node_hash_pos] = node;
 | ||
|         ggml_bitset_set(cgraph->visited_hash_set.used, node_hash_pos);
 | ||
|         cgraph->use_counts[node_hash_pos] = 0;
 | ||
|     } else {
 | ||
|         // already visited
 | ||
|         return node_hash_pos;
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < GGML_MAX_SRC; ++i) {
 | ||
|         const int k =
 | ||
|             (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
 | ||
|             (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
 | ||
|             /* unknown order, just fall back to using i */ i;
 | ||
| 
 | ||
|         struct ggml_tensor * src = node->src[k];
 | ||
|         if (src) {
 | ||
|             size_t src_hash_pos = ggml_visit_parents(cgraph, src);
 | ||
| 
 | ||
|             // Update the use count for this operand.
 | ||
|             cgraph->use_counts[src_hash_pos]++;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) {
 | ||
|         // reached a leaf node, not part of the gradient graph (e.g. a constant)
 | ||
|         GGML_ASSERT(cgraph->n_leafs < cgraph->size);
 | ||
| 
 | ||
|         if (strlen(node->name) == 0) {
 | ||
|             ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
 | ||
|         }
 | ||
| 
 | ||
|         cgraph->leafs[cgraph->n_leafs] = node;
 | ||
|         cgraph->n_leafs++;
 | ||
|     } else {
 | ||
|         GGML_ASSERT(cgraph->n_nodes < cgraph->size);
 | ||
| 
 | ||
|         if (strlen(node->name) == 0) {
 | ||
|             ggml_format_name(node, "node_%d", cgraph->n_nodes);
 | ||
|         }
 | ||
| 
 | ||
|         cgraph->nodes[cgraph->n_nodes] = node;
 | ||
|         cgraph->n_nodes++;
 | ||
|     }
 | ||
| 
 | ||
|     return node_hash_pos;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
 | ||
|     if (!expand) {
 | ||
|         // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
 | ||
|         ggml_graph_clear(cgraph);
 | ||
|     }
 | ||
| 
 | ||
|     const int n0 = cgraph->n_nodes;
 | ||
| 
 | ||
|     ggml_visit_parents(cgraph, tensor);
 | ||
| 
 | ||
|     const int n_new = cgraph->n_nodes - n0;
 | ||
|     GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
 | ||
| 
 | ||
|     if (n_new > 0) {
 | ||
|         // the last added node should always be starting point
 | ||
|         GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
 | ||
|     ggml_build_forward_impl(cgraph, tensor, true);
 | ||
| }
 | ||
| 
 | ||
| void ggml_build_backward_expand(
 | ||
|         struct ggml_context *  ctx,
 | ||
|         struct ggml_cgraph  *  cgraph,
 | ||
|         struct ggml_tensor  ** grad_accs) {
 | ||
|     GGML_ASSERT(cgraph->n_nodes > 0);
 | ||
|     GGML_ASSERT(cgraph->grads);
 | ||
|     GGML_ASSERT(cgraph->grad_accs);
 | ||
| 
 | ||
|     const int n_nodes_f = cgraph->n_nodes;
 | ||
| 
 | ||
|     memset(cgraph->grads,     0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
 | ||
|     memset(cgraph->grad_accs, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
 | ||
|     bool * grads_needed = calloc(cgraph->visited_hash_set.size, sizeof(bool));
 | ||
| 
 | ||
|     {
 | ||
|         bool any_params = false;
 | ||
|         bool any_loss   = false;
 | ||
|         for (int i = 0; i < n_nodes_f; ++i) {
 | ||
|             struct ggml_tensor * node = cgraph->nodes[i];
 | ||
|             any_params = any_params || (node->flags & GGML_TENSOR_FLAG_PARAM);
 | ||
|             any_loss   = any_loss   || (node->flags & GGML_TENSOR_FLAG_LOSS);
 | ||
|         }
 | ||
|         GGML_ASSERT(any_params && "no trainable parameters found, did you forget to call ggml_set_param?");
 | ||
|         GGML_ASSERT(any_loss && "no training loss found, did you forget to call ggml_set_loss?");
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < n_nodes_f; ++i) {
 | ||
|         struct ggml_tensor * node = cgraph->nodes[i];
 | ||
| 
 | ||
|         if (node->type == GGML_TYPE_I32) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         bool node_needs_grad = (node->flags & GGML_TENSOR_FLAG_PARAM) || (node->flags & GGML_TENSOR_FLAG_LOSS);
 | ||
|         bool ignore_src[GGML_MAX_SRC] = {false};
 | ||
|         switch (node->op) {
 | ||
|             // gradients in node->src[0] for one reason or another have no effect on output gradients
 | ||
|             case GGML_OP_IM2COL:      // only used for its shape
 | ||
|             case GGML_OP_IM2COL_BACK: // same as IM2COL
 | ||
|                 ignore_src[0] = true;
 | ||
|                 break;
 | ||
|             case GGML_OP_UNARY: {
 | ||
|                 const enum ggml_unary_op uop = ggml_get_unary_op(node);
 | ||
|                 // SGN and STEP unary ops are piecewise constant
 | ||
|                 if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) {
 | ||
|                     ignore_src[0] = true;
 | ||
|                 }
 | ||
|             } break;
 | ||
| 
 | ||
|             // gradients in node->src[1] for one reason or another have no effect on output gradients
 | ||
|             case GGML_OP_CPY:           // gradients in CPY target are irrelevant
 | ||
|             case GGML_OP_GET_ROWS:      // row indices not differentiable
 | ||
|             case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS
 | ||
|             case GGML_OP_ROPE:          // positions not differentiable
 | ||
|                 ignore_src[1] = true;
 | ||
|                 break;
 | ||
| 
 | ||
|             default:
 | ||
|                 break;
 | ||
|         }
 | ||
|         for (int j = 0; j < GGML_MAX_SRC; ++j) {
 | ||
|             if (!node->src[j] || ignore_src[j] || !grads_needed[ggml_hash_find(&cgraph->visited_hash_set, node->src[j])]) {
 | ||
|                 continue;
 | ||
|             }
 | ||
|             GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16);
 | ||
|             node_needs_grad = true;
 | ||
|             break;
 | ||
|         }
 | ||
|         if (!node_needs_grad) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         // inplace operations are currently not supported
 | ||
|         GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
 | ||
|             node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
 | ||
| 
 | ||
|         const size_t ihash = ggml_hash_find(&cgraph->visited_hash_set, node);
 | ||
|         GGML_ASSERT(ihash != GGML_HASHSET_FULL);
 | ||
|         GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, ihash));
 | ||
|         if (grad_accs && grad_accs[i]) {
 | ||
|             cgraph->grad_accs[ihash] = grad_accs[i];
 | ||
|             cgraph->grads[ihash]     = cgraph->grad_accs[ihash];
 | ||
|         } else if (node->flags & GGML_TENSOR_FLAG_LOSS) {
 | ||
|             // loss tensors always need a gradient accumulator
 | ||
|             cgraph->grad_accs[ihash] = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
 | ||
|             cgraph->grads[ihash]     = cgraph->grad_accs[ihash];
 | ||
|         }
 | ||
|         grads_needed[ihash] = true;
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = n_nodes_f - 1; i >= 0; --i) {
 | ||
|         // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
 | ||
|         // use allocator to automatically make inplace operations
 | ||
|         ggml_compute_backward(ctx, cgraph, i, grads_needed);
 | ||
|     }
 | ||
| 
 | ||
|     free(grads_needed);
 | ||
| }
 | ||
| 
 | ||
| static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
 | ||
|     void * ptr = *p;
 | ||
|     ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
 | ||
|     *p = (void *) ((char *) ptr + size);
 | ||
|     return ptr;
 | ||
| }
 | ||
| 
 | ||
| static size_t ggml_graph_nbytes(size_t size, bool grads) {
 | ||
|     size_t hash_size = ggml_hash_size(size * 2);
 | ||
|     void * p = 0;
 | ||
|     incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
 | ||
|     incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
 | ||
|     incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
 | ||
|     incr_ptr_aligned(&p, hash_size * sizeof(int32_t), sizeof(int32_t)); // use_counts
 | ||
|     incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
 | ||
|     if (grads) {
 | ||
|         incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
 | ||
|         incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grad_accs
 | ||
|     }
 | ||
|     incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
 | ||
| 
 | ||
|     size_t nbytes = (size_t) p;
 | ||
|     return nbytes;
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_graph_overhead_custom(size_t size, bool grads) {
 | ||
|     return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_graph_overhead(void) {
 | ||
|     return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
 | ||
|     const size_t obj_size = ggml_graph_nbytes(size, grads);
 | ||
|     struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
 | ||
|     struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
 | ||
| 
 | ||
|     // the size of the hash table is doubled since it needs to hold both nodes and leafs
 | ||
|     size_t hash_size = ggml_hash_size(size * 2);
 | ||
| 
 | ||
|     void * p = cgraph + 1;
 | ||
| 
 | ||
|     struct ggml_tensor ** nodes_ptr      =         incr_ptr_aligned(&p, size      * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
 | ||
|     struct ggml_tensor ** leafs_ptr      =         incr_ptr_aligned(&p, size      * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
 | ||
|     int32_t             * use_counts_ptr =         incr_ptr_aligned(&p, hash_size * sizeof(int32_t), sizeof(int32_t));
 | ||
|     struct ggml_tensor ** hash_keys_ptr  =         incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
 | ||
|     struct ggml_tensor ** grads_ptr      = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
 | ||
|     struct ggml_tensor ** grad_accs_ptr  = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
 | ||
| 
 | ||
|     ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
 | ||
| 
 | ||
|     // check that we allocated the correct amount of memory
 | ||
|     assert(obj_size == (size_t)((char *)p - (char *)cgraph));
 | ||
| 
 | ||
|     *cgraph = (struct ggml_cgraph) {
 | ||
|         /*.size         =*/ size,
 | ||
|         /*.n_nodes      =*/ 0,
 | ||
|         /*.n_leafs      =*/ 0,
 | ||
|         /*.nodes        =*/ nodes_ptr,
 | ||
|         /*.grads        =*/ grads_ptr,
 | ||
|         /*.grad_accs    =*/ grad_accs_ptr,
 | ||
|         /*.leafs        =*/ leafs_ptr,
 | ||
|         /*.use_counts   =*/ use_counts_ptr,
 | ||
|         /*.hash_table   =*/ { hash_size, hash_used, hash_keys_ptr },
 | ||
|         /*.order        =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
 | ||
|     };
 | ||
| 
 | ||
|     ggml_hash_set_reset(&cgraph->visited_hash_set);
 | ||
|     if (grads) {
 | ||
|         memset(cgraph->grads,     0, hash_size*sizeof(struct ggml_tensor *));
 | ||
|         memset(cgraph->grad_accs, 0, hash_size*sizeof(struct ggml_tensor *));
 | ||
|     }
 | ||
| 
 | ||
|     return cgraph;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
 | ||
|     return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
 | ||
| }
 | ||
| 
 | ||
| struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
 | ||
|     struct ggml_cgraph cgraph = {
 | ||
|         /*.size             =*/ 0,
 | ||
|         /*.n_nodes          =*/ i1 - i0,
 | ||
|         /*.n_leafs          =*/ 0,
 | ||
|         /*.nodes            =*/ cgraph0->nodes + i0,
 | ||
|         /*.grads            =*/ NULL, // gradients would need visited_hash_set
 | ||
|         /*.grad_accs        =*/ NULL,
 | ||
|         /*.leafs            =*/ NULL,
 | ||
|         /*.use_counts       =*/ cgraph0->use_counts,
 | ||
|         /*.visited_hash_set =*/ cgraph0->visited_hash_set,
 | ||
|         /*.order            =*/ cgraph0->order,
 | ||
|     };
 | ||
| 
 | ||
|     return cgraph;
 | ||
| }
 | ||
| 
 | ||
| void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
 | ||
|     GGML_ASSERT(dst->size >= src->n_leafs);
 | ||
|     GGML_ASSERT(dst->size >= src->n_nodes);
 | ||
|     GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
 | ||
| 
 | ||
|     dst->n_leafs = src->n_leafs;
 | ||
|     dst->n_nodes = src->n_nodes;
 | ||
|     dst->order   = src->order;
 | ||
| 
 | ||
|     for (int i = 0; i < src->n_leafs; ++i) {
 | ||
|         dst->leafs[i] = src->leafs[i];
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < src->n_nodes; ++i) {
 | ||
|         dst->nodes[i] = src->nodes[i];
 | ||
|     }
 | ||
| 
 | ||
|     for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
 | ||
|         // copy all hashset keys (tensors) that are in use
 | ||
|         if (ggml_bitset_get(src->visited_hash_set.used, i)) {
 | ||
|             size_t new_hash_pos = ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
 | ||
|             dst->use_counts[new_hash_pos] = src->use_counts[i];
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (dst->grads) {
 | ||
|         memset(dst->grads,     0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
 | ||
|         memset(dst->grad_accs, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
 | ||
|     }
 | ||
|     if (src->grads) {
 | ||
|         GGML_ASSERT(dst->grads     != NULL);
 | ||
|         GGML_ASSERT(dst->grad_accs != NULL);
 | ||
|         for (int i = 0; i < src->n_nodes; ++i) {
 | ||
|             const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
 | ||
|             const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
 | ||
| 
 | ||
|             GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
 | ||
|             GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
 | ||
|             GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
 | ||
|             GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
 | ||
| 
 | ||
|             dst->grads[igrad_dst]     = src->grads[igrad_src];
 | ||
|             dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads) {
 | ||
|     struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads || force_grads);
 | ||
|     ggml_graph_cpy(cgraph, result);
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
 | ||
|     if (ggml_is_empty(tensor)) {
 | ||
|         return tensor;
 | ||
|     }
 | ||
|     if (tensor->buffer) {
 | ||
|         ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
 | ||
|     } else {
 | ||
|         GGML_ASSERT(tensor->data);
 | ||
|         memset(tensor->data, 0, ggml_nbytes(tensor));
 | ||
|     }
 | ||
|     return tensor;
 | ||
| }
 | ||
| 
 | ||
| void ggml_graph_reset(struct ggml_cgraph * cgraph) {
 | ||
|     if (!cgraph) {
 | ||
|         return;
 | ||
|     }
 | ||
|     GGML_ASSERT(cgraph->grads != NULL);
 | ||
| 
 | ||
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | ||
|         struct ggml_tensor * node     = cgraph->nodes[i];
 | ||
|         struct ggml_tensor * grad_acc = ggml_graph_get_grad_acc(cgraph, node);
 | ||
| 
 | ||
|         if (node->op == GGML_OP_OPT_STEP_ADAMW) {
 | ||
|             // clear momenta
 | ||
|             ggml_set_zero(node->src[2]);
 | ||
|             ggml_set_zero(node->src[3]);
 | ||
|         }
 | ||
| 
 | ||
|         // initial gradients of loss should be 1, 0 otherwise
 | ||
|         if (grad_acc) {
 | ||
|             if (node->flags & GGML_TENSOR_FLAG_LOSS) {
 | ||
|                 GGML_ASSERT(grad_acc->type == GGML_TYPE_F32);
 | ||
|                 GGML_ASSERT(ggml_is_scalar(grad_acc));
 | ||
| 
 | ||
|                 const float onef = 1.0f;
 | ||
|                 if (grad_acc->buffer) {
 | ||
|                     ggml_backend_tensor_set(grad_acc, &onef, 0, sizeof(float));
 | ||
|                 } else {
 | ||
|                     GGML_ASSERT(grad_acc->data);
 | ||
|                     *((float *) grad_acc->data) = onef;
 | ||
|                 }
 | ||
|             } else {
 | ||
|                 ggml_set_zero(grad_acc);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ggml_graph_clear(struct ggml_cgraph * cgraph) {
 | ||
|     cgraph->n_leafs = 0;
 | ||
|     cgraph->n_nodes = 0;
 | ||
|     ggml_hash_set_reset(&cgraph->visited_hash_set);
 | ||
| }
 | ||
| 
 | ||
| int ggml_graph_size(struct ggml_cgraph * cgraph) {
 | ||
|     return cgraph->size;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
 | ||
|     if (i < 0) {
 | ||
|         GGML_ASSERT(cgraph->n_nodes + i >= 0);
 | ||
|         return cgraph->nodes[cgraph->n_nodes + i];
 | ||
|     }
 | ||
| 
 | ||
|     GGML_ASSERT(i < cgraph->n_nodes);
 | ||
|     return cgraph->nodes[i];
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
 | ||
|     return cgraph->nodes;
 | ||
| }
 | ||
| 
 | ||
| int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
 | ||
|     return cgraph->n_nodes;
 | ||
| }
 | ||
| 
 | ||
| void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
 | ||
|     GGML_ASSERT(cgraph->size > cgraph->n_nodes);
 | ||
|     cgraph->nodes[cgraph->n_nodes] = tensor;
 | ||
|     cgraph->n_nodes++;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_graph_get_tensor(const struct ggml_cgraph * cgraph, const char * name) {
 | ||
|     for (int i = 0; i < cgraph->n_leafs; i++) {
 | ||
|         struct ggml_tensor * leaf = cgraph->leafs[i];
 | ||
| 
 | ||
|         if (strcmp(leaf->name, name) == 0) {
 | ||
|             return leaf;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | ||
|         struct ggml_tensor * node = cgraph->nodes[i];
 | ||
| 
 | ||
|         if (strcmp(node->name, name) == 0) {
 | ||
|             return node;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_graph_get_grad(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
 | ||
|     const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
 | ||
|     return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grads ? cgraph->grads[igrad] : NULL;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
 | ||
|     const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
 | ||
|     return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grad_accs ? cgraph->grad_accs[igrad] : NULL;
 | ||
| }
 | ||
| 
 | ||
| void ggml_graph_print(const struct ggml_cgraph * cgraph) {
 | ||
|     GGML_LOG_INFO("=== GRAPH ===\n");
 | ||
| 
 | ||
|     GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes);
 | ||
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | ||
|         struct ggml_tensor * node = cgraph->nodes[i];
 | ||
| 
 | ||
|         GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
 | ||
|                 i,
 | ||
|                 node->ne[0], node->ne[1], node->ne[2],
 | ||
|                 ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" :
 | ||
|                       ggml_graph_get_grad(cgraph, node) ? "g" : " ");
 | ||
|     }
 | ||
| 
 | ||
|     GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs);
 | ||
|     for (int i = 0; i < cgraph->n_leafs; i++) {
 | ||
|         struct ggml_tensor * node = cgraph->leafs[i];
 | ||
| 
 | ||
|         GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
 | ||
|                 i,
 | ||
|                 node->ne[0], node->ne[1],
 | ||
|                 ggml_op_name(node->op),
 | ||
|                 ggml_get_name(node));
 | ||
|     }
 | ||
| 
 | ||
|     GGML_LOG_INFO("========================================\n");
 | ||
| }
 | ||
| 
 | ||
| // check if node is part of the graph
 | ||
| static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
 | ||
|     if (cgraph == NULL) {
 | ||
|         return true;
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | ||
|         if (cgraph->nodes[i] == node) {
 | ||
|             return true;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
 | ||
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | ||
|         struct ggml_tensor * parent = cgraph->nodes[i];
 | ||
|         struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, parent);
 | ||
| 
 | ||
|         if (grad == node) {
 | ||
|             return parent;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label)  {
 | ||
|     struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
 | ||
|     struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
 | ||
|     fprintf(fp, "  \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
 | ||
|             gparent0 ? (void *) gparent0 : (void *) parent,
 | ||
|             gparent0 ? "g" : "x",
 | ||
|             gparent ? (void *) gparent : (void *) node,
 | ||
|             gparent ? "g" : "x",
 | ||
|             gparent ? "empty" : "vee",
 | ||
|             gparent ? "dashed" : "solid",
 | ||
|             label);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label)  {
 | ||
|     fprintf(fp, "  \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
 | ||
|             (void *) parent, "x",
 | ||
|             (void *) node, "x",
 | ||
|             label);
 | ||
| }
 | ||
| 
 | ||
| void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
 | ||
|     char color[16];
 | ||
| 
 | ||
|     FILE * fp = ggml_fopen(filename, "w");
 | ||
|     GGML_ASSERT(fp);
 | ||
| 
 | ||
|     fprintf(fp, "digraph G {\n");
 | ||
|     fprintf(fp, "  newrank = true;\n");
 | ||
|     fprintf(fp, "  rankdir = TB;\n");
 | ||
| 
 | ||
|     for (int i = 0; i < gb->n_nodes; i++) {
 | ||
|         struct ggml_tensor * node = gb->nodes[i];
 | ||
|         struct ggml_tensor * grad = ggml_graph_get_grad(gb, node);
 | ||
| 
 | ||
|         if (ggml_graph_get_parent(gb, node) != NULL) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         if (node->flags & GGML_TENSOR_FLAG_PARAM) {
 | ||
|             snprintf(color, sizeof(color), "yellow");
 | ||
|         } else if (grad) {
 | ||
|             if (ggml_graph_find(gf, node)) {
 | ||
|                 snprintf(color, sizeof(color), "green");
 | ||
|             } else {
 | ||
|                 snprintf(color, sizeof(color), "lightblue");
 | ||
|             }
 | ||
|         } else {
 | ||
|             snprintf(color, sizeof(color), "white");
 | ||
|         }
 | ||
| 
 | ||
|         fprintf(fp, "  \"%p\" [ "
 | ||
|                     "style = filled; fillcolor = %s; shape = record; "
 | ||
|                     "label=\"",
 | ||
|                 (void *) node, color);
 | ||
| 
 | ||
|         if (strlen(node->name) > 0) {
 | ||
|             fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
 | ||
|         } else {
 | ||
|             fprintf(fp, "(%s)|", ggml_type_name(node->type));
 | ||
|         }
 | ||
| 
 | ||
|         if (ggml_is_matrix(node)) {
 | ||
|             fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
 | ||
|         } else {
 | ||
|             fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
 | ||
|         }
 | ||
| 
 | ||
|         if (grad) {
 | ||
|             fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(grad->op));
 | ||
|         } else {
 | ||
|             fprintf(fp, "\"; ]\n");
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < gb->n_leafs; i++) {
 | ||
|         struct ggml_tensor * node = gb->leafs[i];
 | ||
| 
 | ||
|         snprintf(color, sizeof(color), "pink");
 | ||
| 
 | ||
|         fprintf(fp, "  \"%p\" [ "
 | ||
|                     "style = filled; fillcolor = %s; shape = record; "
 | ||
|                     "label=\"<x>",
 | ||
|                 (void *) node, color);
 | ||
| 
 | ||
|         if (strlen(node->name) > 0) {
 | ||
|             fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
 | ||
|         } else {
 | ||
|             fprintf(fp, "(%s)|", ggml_type_name(node->type));
 | ||
|         }
 | ||
| 
 | ||
|         fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
 | ||
|         if (ggml_nelements(node) < 5 && node->data != NULL) {
 | ||
|             fprintf(fp, " | (");
 | ||
|             for (int j = 0; j < ggml_nelements(node); j++) {
 | ||
|                 // FIXME: use ggml-backend to obtain the tensor data
 | ||
|                 //if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
 | ||
|                 //    fprintf(fp, "%d", ggml_get_i32_1d(node, j));
 | ||
|                 //}
 | ||
|                 //else if (node->type == GGML_TYPE_F32 ||
 | ||
|                 //         node->type == GGML_TYPE_F16 ||
 | ||
|                 //         node->type == GGML_TYPE_BF16) {
 | ||
|                 //    fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
 | ||
|                 //}
 | ||
|                 //else
 | ||
|                 {
 | ||
|                     fprintf(fp, "#");
 | ||
|                 }
 | ||
|                 if (j < ggml_nelements(node) - 1) {
 | ||
|                     fprintf(fp, ", ");
 | ||
|                 }
 | ||
|             }
 | ||
|             fprintf(fp, ")");
 | ||
|         }
 | ||
|         fprintf(fp, "\"; ]\n");
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < gb->n_nodes; i++) {
 | ||
|         struct ggml_tensor * node = gb->nodes[i];
 | ||
| 
 | ||
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | ||
|             if (node->src[j]) {
 | ||
|                 char label[16];
 | ||
|                 snprintf(label, sizeof(label), "src %d", j);
 | ||
|                 ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < gb->n_leafs; i++) {
 | ||
|         struct ggml_tensor * node = gb->leafs[i];
 | ||
| 
 | ||
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | ||
|             if (node->src[j]) {
 | ||
|                 char label[16];
 | ||
|                 snprintf(label, sizeof(label), "src %d", j);
 | ||
|                 ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     fprintf(fp, "}\n");
 | ||
| 
 | ||
|     fclose(fp);
 | ||
| 
 | ||
|     GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
 | ||
| }
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| void ggml_set_input(struct ggml_tensor * tensor) {
 | ||
|     tensor->flags |= GGML_TENSOR_FLAG_INPUT;
 | ||
| }
 | ||
| 
 | ||
| void ggml_set_output(struct ggml_tensor * tensor) {
 | ||
|     tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
 | ||
| }
 | ||
| 
 | ||
| void ggml_set_param(struct ggml_tensor * tensor) {
 | ||
|     GGML_ASSERT(tensor->op == GGML_OP_NONE);
 | ||
|     tensor->flags |= GGML_TENSOR_FLAG_PARAM;
 | ||
| }
 | ||
| 
 | ||
| void ggml_set_loss(struct ggml_tensor * tensor) {
 | ||
|     GGML_ASSERT(ggml_is_scalar(tensor));
 | ||
|     GGML_ASSERT(tensor->type == GGML_TYPE_F32);
 | ||
|     tensor->flags |= GGML_TENSOR_FLAG_LOSS;
 | ||
| }
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| void ggml_quantize_init(enum ggml_type type) {
 | ||
|     ggml_critical_section_start();
 | ||
| 
 | ||
|     switch (type) {
 | ||
|         case GGML_TYPE_IQ2_XXS:
 | ||
|         case GGML_TYPE_IQ2_XS:
 | ||
|         case GGML_TYPE_IQ2_S:
 | ||
|         case GGML_TYPE_IQ1_S:
 | ||
|         case GGML_TYPE_IQ1_M:   iq2xs_init_impl(type); break;
 | ||
|         case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
 | ||
|         case GGML_TYPE_IQ3_S:   iq3xs_init_impl(512); break;
 | ||
|         default: // nothing
 | ||
|             break;
 | ||
|     }
 | ||
| 
 | ||
|     ggml_critical_section_end();
 | ||
| }
 | ||
| 
 | ||
| void ggml_quantize_free(void) {
 | ||
|     ggml_critical_section_start();
 | ||
| 
 | ||
|     iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
 | ||
|     iq2xs_free_impl(GGML_TYPE_IQ2_XS);
 | ||
|     iq2xs_free_impl(GGML_TYPE_IQ1_S);
 | ||
|     iq3xs_free_impl(256);
 | ||
| 
 | ||
|     ggml_critical_section_end();
 | ||
| }
 | ||
| 
 | ||
| bool ggml_quantize_requires_imatrix(enum ggml_type type) {
 | ||
|     return
 | ||
|         type == GGML_TYPE_IQ2_XXS ||
 | ||
|         type == GGML_TYPE_IQ2_XS  ||
 | ||
|         type == GGML_TYPE_IQ1_S;//   ||
 | ||
|         //type == GGML_TYPE_IQ1_M;
 | ||
| }
 | ||
| 
 | ||
| size_t ggml_quantize_chunk(
 | ||
|         enum ggml_type   type,
 | ||
|            const float * src,
 | ||
|                   void * dst,
 | ||
|                int64_t   start,
 | ||
|                int64_t   nrows,
 | ||
|                int64_t   n_per_row,
 | ||
|            const float * imatrix) {
 | ||
|     const int64_t n = (int64_t) nrows * n_per_row;
 | ||
| 
 | ||
|     if (ggml_quantize_requires_imatrix(type)) {
 | ||
|         GGML_ASSERT(imatrix != NULL);
 | ||
|     }
 | ||
| 
 | ||
|     GGML_ASSERT(start % type_traits[type].blck_size == 0);
 | ||
|     GGML_ASSERT(start % n_per_row == 0);
 | ||
| 
 | ||
|     ggml_quantize_init(type); // this is noop if already initialized
 | ||
| 
 | ||
|     const size_t start_row = start / n_per_row;
 | ||
|     const size_t row_size  = ggml_row_size(type, n_per_row);
 | ||
| 
 | ||
|     size_t result = 0;
 | ||
| 
 | ||
|     switch (type) {
 | ||
|         case GGML_TYPE_Q4_0:    result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q4_1:    result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q5_0:    result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q5_1:    result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q8_0:    result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q2_K:    result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q3_K:    result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q4_K:    result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q5_K:    result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_Q6_K:    result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_TQ1_0:   result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_TQ2_0:   result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ2_XS:  result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ3_S:   result = quantize_iq3_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ2_S:   result = quantize_iq2_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ1_S:   result = quantize_iq1_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ1_M:   result = quantize_iq1_m  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ4_NL:  result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_IQ4_XS:  result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 | ||
|         case GGML_TYPE_F16:
 | ||
|             {
 | ||
|                 size_t elemsize = sizeof(ggml_fp16_t);
 | ||
|                 ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
 | ||
|                 result = n * elemsize;
 | ||
|             } break;
 | ||
|         case GGML_TYPE_BF16:
 | ||
|             {
 | ||
|                 size_t elemsize = sizeof(ggml_bf16_t);
 | ||
|                 ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
 | ||
|                 result = n * elemsize;
 | ||
|             } break;
 | ||
|         case GGML_TYPE_F32:
 | ||
|             {
 | ||
|                 size_t elemsize = sizeof(float);
 | ||
|                 result = n * elemsize;
 | ||
|                 memcpy((uint8_t *)dst + start * elemsize, src + start, result);
 | ||
|             } break;
 | ||
|         default:
 | ||
|             assert(false);
 | ||
|     }
 | ||
| 
 | ||
|     GGML_ASSERT(result == nrows * row_size);
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
 | ||
|     g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
 | ||
|     g_logger_state.log_callback_user_data = user_data;
 | ||
| }
 | ||
| 
 | ||
| void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
 | ||
|     p->n_threads  = n_threads;
 | ||
|     p->prio       = 0;     // default priority (usually means normal or inherited)
 | ||
|     p->poll       = 50;    // hybrid-polling enabled
 | ||
|     p->strict_cpu = false; // no strict placement (all threads share same cpumask)
 | ||
|     p->paused     = false; // threads are ready to go
 | ||
|     memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
 | ||
| }
 | ||
| 
 | ||
| struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
 | ||
|     struct ggml_threadpool_params p;
 | ||
|     ggml_threadpool_params_init(&p, n_threads);
 | ||
|     return p;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
 | ||
|     if (p0->n_threads      != p1->n_threads  )    return false;
 | ||
|     if (p0->prio           != p1->prio       )    return false;
 | ||
|     if (p0->poll           != p1->poll       )    return false;
 | ||
|     if (p0->strict_cpu     != p1->strict_cpu )    return false;
 | ||
|     return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
 | ||
| }
 |