mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* py : switch to snake_case ggml-ci * cont ggml-ci * cont ggml-ci * cont : fix link * gguf-py : use snake_case in scripts entrypoint export * py : rename requirements for convert_legacy_llama.py Needed for scripts/check-requirements.sh --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net>
		
			
				
	
	
		
			34 lines
		
	
	
		
			939 B
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			34 lines
		
	
	
		
			939 B
		
	
	
	
		
			Python
		
	
	
	
	
	
import asyncio
 | 
						|
import requests
 | 
						|
import numpy as np
 | 
						|
 | 
						|
n = 8
 | 
						|
 | 
						|
result = []
 | 
						|
 | 
						|
async def requests_post_async(*args, **kwargs):
 | 
						|
    return await asyncio.to_thread(requests.post, *args, **kwargs)
 | 
						|
 | 
						|
async def main():
 | 
						|
    model_url = "http://127.0.0.1:6900"
 | 
						|
    responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
 | 
						|
        url= f"{model_url}/embedding",
 | 
						|
        json= {"content": str(0)*1024}
 | 
						|
    ) for i in range(n)])
 | 
						|
 | 
						|
    for response in responses:
 | 
						|
        embedding = response.json()["embedding"]
 | 
						|
        print(embedding[-8:])
 | 
						|
        result.append(embedding)
 | 
						|
 | 
						|
asyncio.run(main())
 | 
						|
 | 
						|
# compute cosine similarity
 | 
						|
 | 
						|
for i in range(n-1):
 | 
						|
    for j in range(i+1, n):
 | 
						|
        embedding1 = np.array(result[i])
 | 
						|
        embedding2 = np.array(result[j])
 | 
						|
        similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
 | 
						|
        print(f"Similarity between {i} and {j}: {similarity:.2f}")
 |