mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			609 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "clip.h"
 | |
| #include "clip-impl.h"
 | |
| #include "mtmd.h"
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cerrno>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| 
 | |
| // slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
 | |
| // models not having it (llava-1.6) will process embeddings without any special tokens in-between
 | |
| enum mtmd_slice_tmpl {
 | |
|     MTMD_SLICE_TMPL_NONE,
 | |
|     MTMD_SLICE_TMPL_MINICPMV_2_5,
 | |
|     MTMD_SLICE_TMPL_MINICPMV_2_6,
 | |
|     // TODO @ngxson : add support for idefics (SmolVLM)
 | |
| };
 | |
| 
 | |
| struct mtmd_context {
 | |
|     struct clip_ctx * ctx_clip;
 | |
|     const struct llama_model * text_model;
 | |
|     std::vector<float> image_embd_v; // image embedding vector
 | |
| 
 | |
|     bool print_timings;
 | |
|     int n_threads;
 | |
|     std::string image_marker;
 | |
| 
 | |
|     // for minicpmv, we need special tokens in-between slices
 | |
|     mtmd_slice_tmpl slice_tmpl    = MTMD_SLICE_TMPL_NONE;
 | |
|     llama_token tok_ov_img_start  = LLAMA_TOKEN_NULL; // overview image
 | |
|     llama_token tok_ov_img_end    = LLAMA_TOKEN_NULL; // overview image
 | |
|     llama_token tok_slices_start  = LLAMA_TOKEN_NULL; // start of all slices
 | |
|     llama_token tok_slices_end    = LLAMA_TOKEN_NULL; // end of all slices
 | |
|     llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice
 | |
|     llama_token tok_sli_img_end   = LLAMA_TOKEN_NULL; // single slice
 | |
|     llama_token tok_row_end       = LLAMA_TOKEN_NULL; // end of row
 | |
| 
 | |
|     // TODO @ngxson : add timings
 | |
| 
 | |
|     mtmd_context(const char * mmproj_fname,
 | |
|                    const llama_model * text_model,
 | |
|                    const mtmd_context_params & ctx_params) :
 | |
|         print_timings(ctx_params.print_timings),
 | |
|         n_threads    (ctx_params.n_threads),
 | |
|         image_marker (ctx_params.image_marker)
 | |
|     {
 | |
|         clip_context_params ctx_clip_params;
 | |
|         ctx_clip_params.use_gpu   = ctx_params.use_gpu;
 | |
|         ctx_clip_params.verbosity = ctx_params.verbosity;
 | |
|         ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
 | |
|         if (!ctx_clip) {
 | |
|             throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
 | |
|         }
 | |
|         this->text_model = text_model;
 | |
| 
 | |
|         GGML_ASSERT(!clip_is_qwen2vl(ctx_clip) && "Qwen2VL model is not supported yet, use llama-qwen2vl-cli instead");
 | |
| 
 | |
|         int minicpmv_version = clip_is_minicpmv(ctx_clip);
 | |
|         if (minicpmv_version == 2) {
 | |
|             // minicpmv 2.5 format:
 | |
|             // <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
 | |
|             slice_tmpl        = MTMD_SLICE_TMPL_MINICPMV_2_5;
 | |
|             tok_ov_img_start  = lookup_token("<image>");
 | |
|             tok_ov_img_end    = lookup_token("</image>");
 | |
|             tok_slices_start  = lookup_token("<slice>");
 | |
|             tok_slices_end    = lookup_token("</slice>");
 | |
|             tok_sli_img_start = tok_ov_img_start;
 | |
|             tok_sli_img_end   = tok_ov_img_end;
 | |
|             tok_row_end       = lookup_token("\n");
 | |
| 
 | |
|         } else if (minicpmv_version == 3 || minicpmv_version == 4) {
 | |
|             // minicpmv 2.6 format:
 | |
|             // <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
 | |
|             slice_tmpl        = MTMD_SLICE_TMPL_MINICPMV_2_6;
 | |
|             tok_ov_img_start  = lookup_token("<image>");
 | |
|             tok_ov_img_end    = lookup_token("</image>");
 | |
|             tok_sli_img_start = lookup_token("<slice>");
 | |
|             tok_sli_img_end   = lookup_token("</slice>");
 | |
|             tok_row_end       = lookup_token("\n");
 | |
| 
 | |
|         } else if (minicpmv_version != 0) {
 | |
|             GGML_ASSERT(false && "unsupported minicpmv version");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ~mtmd_context() {
 | |
|         clip_free(ctx_clip);
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     llama_token lookup_token(const std::string & token_text) {
 | |
|         const llama_vocab * vocab = llama_model_get_vocab(text_model);
 | |
|         const int n_vocab = llama_vocab_n_tokens(vocab);
 | |
|         for (int i = 0; i < n_vocab; i++) {
 | |
|             if (token_to_piece(vocab, i, true) == token_text) {
 | |
|                 return i;
 | |
|             }
 | |
|         }
 | |
|         return LLAMA_TOKEN_NULL;
 | |
|     }
 | |
| 
 | |
|     std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
 | |
|         std::string piece;
 | |
|         piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
 | |
|         const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | |
|         if (n_chars < 0) {
 | |
|             piece.resize(-n_chars);
 | |
|             int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | |
|             GGML_ASSERT(check == -n_chars);
 | |
|         } else {
 | |
|             piece.resize(n_chars);
 | |
|         }
 | |
|         return piece;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct mtmd_image_tokens_data {
 | |
|     clip_image_f32_batch batch_f32; // preprocessed image patches
 | |
| };
 | |
| 
 | |
| struct mtmd_image_tokens {
 | |
|     uint32_t nx; // number of tokens in x direction
 | |
|     uint32_t ny; // number of tokens in y direction
 | |
|     uint32_t n_tokens() const { return nx * ny; }
 | |
|     clip_image_f32_batch batch_f32; // preprocessed image patches
 | |
|     std::string id; // optional user-defined ID, useful for KV cache tracking
 | |
| };
 | |
| 
 | |
| mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
 | |
|         const struct llama_model * text_model,
 | |
|         const struct mtmd_context_params ctx_params) {
 | |
|     try {
 | |
|         return new mtmd_context(mmproj_fname, text_model, ctx_params);
 | |
|     } catch (const std::exception & e) {
 | |
|         LOG_ERR("%s: error: %s\n", __func__, e.what());
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mtmd_free(mtmd_context * ctx) {
 | |
|     if (ctx) {
 | |
|         delete ctx;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // copied from common_tokenize
 | |
| static std::vector<llama_token> mtmd_tokenize_text_internal(
 | |
|     const struct llama_vocab * vocab,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special) {
 | |
|     // upper limit for the number of tokens
 | |
|     int n_tokens = text.length() + 2 * add_special;
 | |
|     std::vector<llama_token> result(n_tokens);
 | |
|     n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|     if (n_tokens < 0) {
 | |
|         result.resize(-n_tokens);
 | |
|         int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|         GGML_ASSERT(check == -n_tokens);
 | |
|     } else {
 | |
|         result.resize(n_tokens);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_tokenize(mtmd_context * ctx,
 | |
|                         std::vector<mtmd_input_chunk> & output,
 | |
|                         const mtmd_input_text & text,
 | |
|                         const std::vector<mtmd_bitmap> & bitmaps) {
 | |
|     auto vocab = llama_model_get_vocab(ctx->text_model);
 | |
| 
 | |
|     std::string prompt_modified(text.text);
 | |
|     std::string marker_modified(ctx->image_marker);
 | |
|     projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
 | |
| 
 | |
|     // a bit hacky here, but works for now
 | |
|     // for some models, we need to add prefix and suffix to the image embeddings
 | |
|     if (clip_is_gemma3(ctx->ctx_clip)) {
 | |
|         // gemma 3
 | |
|         // <start_of_image> ... (image embeddings) ... <end_of_image>
 | |
|         marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     } else if (proj_type == PROJECTOR_TYPE_GLM_EDGE) {
 | |
|         // <|begin_of_image|> ... (image embeddings) ... <|end_of_image|>
 | |
|         marker_modified = "<|begin_of_image|>" + ctx->image_marker + "<|end_of_image|>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     } else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
 | |
|         // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
 | |
|         marker_modified = "<fake_token_around_image><global-img>" + ctx->image_marker + "<fake_token_around_image>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     } else if (proj_type == PROJECTOR_TYPE_PIXTRAL) {
 | |
|         // https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
 | |
|         marker_modified = ctx->image_marker + "[IMG_END]";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
|     }
 | |
| 
 | |
|     // llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
 | |
|     // for glm-edge, we don't need to add because the tokens are already in the returned embeddings
 | |
| 
 | |
|     // TODO @ngxson : glm-edge : remove BOI / EOI tokens embeddings, decode them as normal tokens
 | |
| 
 | |
|     std::vector<std::string> parts = string_split_str(prompt_modified, ctx->image_marker);
 | |
|     output.clear();
 | |
|     output.reserve(parts.size());
 | |
| 
 | |
|     size_t i_img = 0;
 | |
| 
 | |
|     // utility for adding raw tokens
 | |
|     auto add_text_chunk = [&output](std::vector<llama_token> && tokens) {
 | |
|         mtmd_input_chunk chunk{
 | |
|             MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|             std::move(tokens),
 | |
|             {},
 | |
|         };
 | |
|         output.emplace_back(std::move(chunk));
 | |
|     };
 | |
| 
 | |
|     // utility for splitting batch of multiple images into chunks of batch having single images
 | |
|     auto split_batch_to_chunk = [&ctx](clip_image_f32_batch && batch_f32, const std::string & id) {
 | |
|         std::vector<mtmd_input_chunk> chunks;
 | |
| 
 | |
|         for (auto & entry : batch_f32.entries) {
 | |
|             mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | |
|             image_tokens->nx = clip_n_patches_by_img(ctx->ctx_clip, entry.get());
 | |
|             image_tokens->ny = 1;
 | |
|             image_tokens->batch_f32.entries.push_back(std::move(entry));
 | |
|             image_tokens->id = id;
 | |
| 
 | |
|             mtmd_input_chunk chunk{
 | |
|                 MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|                 {},
 | |
|                 std::move(image_tokens),
 | |
|             };
 | |
|             chunks.emplace_back(std::move(chunk));
 | |
|         }
 | |
| 
 | |
|         return chunks;
 | |
|     };
 | |
| 
 | |
|     for (const auto & part : parts) {
 | |
|         //printf("tokenizing part: %s\n", part.c_str());
 | |
|         bool add_bos = &parts.front() == ∂
 | |
|         auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
 | |
|         if (tokens.empty()) {
 | |
|             continue;
 | |
|         }
 | |
|         mtmd_input_chunk chunk{
 | |
|             MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|             std::move(tokens),
 | |
|             {},
 | |
|         };
 | |
|         output.emplace_back(std::move(chunk));
 | |
| 
 | |
|         if (&parts.back() != &part) {
 | |
|             // add image token to middle of 2 parts
 | |
| 
 | |
|             if (i_img >= bitmaps.size()) {
 | |
|                 LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             // convert mtmd_bitmap to clip_image_u8
 | |
|             clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|             img_u8->nx = bitmaps[i_img].nx;
 | |
|             img_u8->ny = bitmaps[i_img].ny;
 | |
|             img_u8->buf.resize(bitmaps[i_img].data.size());
 | |
|             std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
 | |
|             clip_image_size img_u8_size{img_u8->nx, img_u8->ny};
 | |
| 
 | |
|             // preprocess image
 | |
|             clip_image_f32_batch batch_f32;
 | |
|             bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
 | |
|             if (!ok) {
 | |
|                 LOG_ERR("Unable to preprocess image\n");
 | |
|                 return 2;
 | |
|             }
 | |
| 
 | |
|             if (ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6) {
 | |
|                 // split batch into chunks of single images
 | |
|                 auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_img].id);
 | |
|                 GGML_ASSERT(chunks.size() > 0);
 | |
| 
 | |
|                 // add overview image
 | |
|                 add_text_chunk({ctx->tok_ov_img_start});
 | |
|                 output.emplace_back(std::move(chunks.front()));
 | |
|                 chunks.erase(chunks.begin());
 | |
|                 add_text_chunk({ctx->tok_ov_img_end});
 | |
| 
 | |
|                 // add slices
 | |
|                 if (!chunks.empty()) {
 | |
|                     clip_add_load_image_size(ctx->ctx_clip, &img_u8_size);
 | |
|                     int n_col = clip_uhd_num_image_embeds_col(ctx->ctx_clip);
 | |
|                     int n_row = (int)chunks.size() / n_col;
 | |
|                     GGML_ASSERT(n_row * n_col == (int)chunks.size());
 | |
|                     if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
 | |
|                         add_text_chunk({ctx->tok_slices_start});
 | |
|                     }
 | |
|                     for (int y = 0; y < n_row; y++) {
 | |
|                         for (int x = 0; x < n_col; x++) {
 | |
|                             if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
 | |
|                                 add_text_chunk({ctx->tok_sli_img_start});
 | |
|                             }
 | |
|                             output.emplace_back(std::move(chunks[y * n_col + x]));
 | |
|                             if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
 | |
|                                 add_text_chunk({ctx->tok_sli_img_end});
 | |
|                             }
 | |
|                         }
 | |
|                         if (ctx->tok_row_end != LLAMA_TOKEN_NULL && y != n_row - 1) {
 | |
|                             add_text_chunk({ctx->tok_row_end});
 | |
|                         }
 | |
|                     }
 | |
|                     if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
 | |
|                         add_text_chunk({ctx->tok_slices_end});
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|             } else {
 | |
|                 size_t n_tokens = 0;
 | |
|                 for (const auto & entry : batch_f32.entries) {
 | |
|                     n_tokens += clip_n_patches_by_img(ctx->ctx_clip, entry.get());
 | |
|                 }
 | |
| 
 | |
|                 mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | |
|                 image_tokens->nx = n_tokens;
 | |
|                 image_tokens->ny = 1; // TODO
 | |
|                 image_tokens->batch_f32 = std::move(batch_f32);
 | |
|                 image_tokens->id = bitmaps[i_img].id; // optional
 | |
| 
 | |
|                 LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
 | |
|                 LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
 | |
|                 LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
 | |
| 
 | |
|                 if (clip_is_glm(ctx->ctx_clip)) {
 | |
|                     // glm-edge
 | |
|                     image_tokens->nx += 2; // add 2 for the begin_of_image and end_of_image token embeddings
 | |
|                 }
 | |
| 
 | |
|                 mtmd_input_chunk chunk{
 | |
|                     MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|                     {},
 | |
|                     std::move(image_tokens),
 | |
|                 };
 | |
|                 output.emplace_back(std::move(chunk));
 | |
|             }
 | |
| 
 | |
|             i_img++; // move to next image
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens) {
 | |
|     if (image_tokens) {
 | |
|         delete image_tokens;
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->n_tokens();
 | |
| }
 | |
| 
 | |
| size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->nx;
 | |
| }
 | |
| 
 | |
| size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->ny;
 | |
| }
 | |
| 
 | |
| std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->id;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
 | |
|     int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
 | |
|     ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
 | |
|     bool ok = false;
 | |
| 
 | |
|     // only effective for minicpmv and qwen2vl, other models will ignore load_image_size
 | |
|     {
 | |
|         clip_image_size slice_size{
 | |
|             image_tokens->batch_f32.entries[0]->nx,
 | |
|             image_tokens->batch_f32.entries[0]->ny};
 | |
|         clip_add_load_image_size(ctx->ctx_clip, &slice_size);
 | |
|     }
 | |
| 
 | |
|     if (clip_is_llava(ctx->ctx_clip) || clip_is_minicpmv(ctx->ctx_clip) || clip_is_glm(ctx->ctx_clip)) {
 | |
|         // TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
 | |
|         const auto & entries = image_tokens->batch_f32.entries;
 | |
|         for (size_t i = 0; i < entries.size(); i++) {
 | |
|             int n_tokens_per_image = clip_n_patches_by_img(ctx->ctx_clip, entries[i].get());
 | |
|             ok = clip_image_encode(
 | |
|                 ctx->ctx_clip,
 | |
|                 ctx->n_threads,
 | |
|                 entries[i].get(),
 | |
|                 ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
 | |
|         }
 | |
|     } else {
 | |
|         ok = clip_image_batch_encode(
 | |
|             ctx->ctx_clip,
 | |
|             ctx->n_threads,
 | |
|             &image_tokens->batch_f32,
 | |
|             ctx->image_embd_v.data());
 | |
|     }
 | |
| 
 | |
|     return ok ? 0 : 1;
 | |
| }
 | |
| 
 | |
| float * mtmd_get_output_embd(mtmd_context * ctx) {
 | |
|     return ctx->image_embd_v.data();
 | |
| }
 | |
| 
 | |
| size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks) {
 | |
|     size_t n_tokens = 0;
 | |
|     for (auto & chunk : chunks) {
 | |
|         if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|             n_tokens += chunk.tokens_text.size();
 | |
|         } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|             n_tokens += chunk.tokens_image->n_tokens();
 | |
|         } else {
 | |
|             GGML_ASSERT(false && "chunk type not supported");
 | |
|         }
 | |
|     }
 | |
|     return n_tokens;
 | |
| }
 | |
| 
 | |
| // helper struct to make working with embd batch easier
 | |
| // note: this will be removed after llama_batch_ext refactoring
 | |
| struct decode_embd_batch {
 | |
|     std::vector<llama_pos>      pos;
 | |
|     std::vector<int32_t>        n_seq_id;
 | |
|     std::vector<llama_seq_id>   seq_id_0;
 | |
|     std::vector<llama_seq_id *> seq_ids;
 | |
|     std::vector<int8_t>         logits;
 | |
|     llama_batch batch;
 | |
|     decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
 | |
|         pos     .resize(n_tokens);
 | |
|         n_seq_id.resize(n_tokens);
 | |
|         seq_ids .resize(n_tokens + 1);
 | |
|         logits  .resize(n_tokens);
 | |
|         seq_id_0.resize(1);
 | |
|         seq_id_0[0] = seq_id;
 | |
|         seq_ids [n_tokens] = nullptr;
 | |
|         batch = {
 | |
|             /*n_tokens       =*/ n_tokens,
 | |
|             /*tokens         =*/ nullptr,
 | |
|             /*embd           =*/ embd,
 | |
|             /*pos            =*/ pos.data(),
 | |
|             /*n_seq_id       =*/ n_seq_id.data(),
 | |
|             /*seq_id         =*/ seq_ids.data(),
 | |
|             /*logits         =*/ logits.data(),
 | |
|         };
 | |
|         for (int i = 0; i < n_tokens; i++) {
 | |
|             batch.pos     [i] = pos_0 + i;
 | |
|             batch.n_seq_id[i] = 1;
 | |
|             batch.seq_id  [i] = seq_id_0.data();
 | |
|             batch.logits  [i] = false;
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| int32_t mtmd_helper_eval(mtmd_context * ctx,
 | |
|         llama_context * lctx,
 | |
|         mtmd_input_chunks & chunks,
 | |
|         llama_pos pos0,
 | |
|         llama_seq_id seq_id,
 | |
|         int32_t n_batch) {
 | |
|     int32_t ret;
 | |
|     llama_pos n_past = pos0;
 | |
|     llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
 | |
|     int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
 | |
| 
 | |
|     for (auto & chunk : chunks) {
 | |
|         bool is_last = &chunk == &chunks.back();
 | |
|         if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|             text_batch.n_tokens = chunk.tokens_text.size();
 | |
|             size_t i = 0;
 | |
|             while (i < chunk.tokens_text.size()) { // split into batches
 | |
|                 for (; i < chunk.tokens_text.size() && text_batch.n_tokens < n_batch; i++) {
 | |
|                     text_batch.token   [i]    = chunk.tokens_text[i];
 | |
|                     text_batch.pos     [i]    = n_past++;
 | |
|                     text_batch.n_seq_id[i]    = 1;
 | |
|                     text_batch.seq_id  [i][0] = seq_id;
 | |
|                     text_batch.logits  [i]    = false;
 | |
|                 }
 | |
|                 if (is_last) {
 | |
|                     // always get logits for last input chunk
 | |
|                     text_batch.logits[text_batch.n_tokens - 1] = true;
 | |
|                 }
 | |
|                 ret = llama_decode(lctx, text_batch);
 | |
|                 if (ret != 0) {
 | |
|                     LOG_ERR("failed to decode text\n");
 | |
|                     llama_batch_free(text_batch);
 | |
|                     return ret;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|         } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|             GGML_ASSERT(!is_last && "logits for last image chunk is not yet support");
 | |
|             GGML_ASSERT(chunk.tokens_image != nullptr);
 | |
|             int64_t t0 = ggml_time_ms();
 | |
|             if (ctx->print_timings) {
 | |
|                 LOG_INF("encoding image or slice...\n");
 | |
|             }
 | |
|             ret = mtmd_encode(ctx, chunk.tokens_image.get());
 | |
|             if (ret != 0) {
 | |
|                 LOG_ERR("failed to encode image\n");
 | |
|                 llama_batch_free(text_batch);
 | |
|                 return ret;
 | |
|             }
 | |
|             if (ctx->print_timings) {
 | |
|                 LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
 | |
|             }
 | |
| 
 | |
|             int32_t n_tokens = mtmd_image_tokens_get_n_tokens(chunk.tokens_image.get());
 | |
|             int32_t i_batch = 0;
 | |
|             int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
 | |
|             float * embd = mtmd_get_output_embd(ctx);
 | |
| 
 | |
|             if (mtmd_decode_use_non_causal(ctx)) {
 | |
|                 llama_set_causal_attn(lctx, false);
 | |
|                 // TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
 | |
|             }
 | |
| 
 | |
|             while (i_batch < n_img_batches) { // split into batches
 | |
|                 int32_t pos_offset = i_batch*n_batch;
 | |
|                 int32_t n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
 | |
|                 float * embd_batch = embd + pos_offset*n_mmproj_embd;
 | |
|                 decode_embd_batch batch_img(embd_batch, n_tokens_batch, n_past, 0);
 | |
| 
 | |
|                 printf("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
 | |
| 
 | |
|                 int64_t t1 = ggml_time_ms();
 | |
|                 ret = llama_decode(lctx, batch_img.batch);
 | |
|                 if (ret != 0) {
 | |
|                     LOG_ERR("failed to decode image\n");
 | |
|                     llama_set_causal_attn(lctx, true); // restore causal attn
 | |
|                     llama_batch_free(text_batch);
 | |
|                     return ret;
 | |
|                 }
 | |
| 
 | |
|                 if (ctx->print_timings) {
 | |
|                     LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
 | |
|                 }
 | |
| 
 | |
|                 i_batch++;
 | |
|                 n_past += n_tokens_batch;
 | |
|             }
 | |
| 
 | |
|             if (mtmd_decode_use_non_causal(ctx)) {
 | |
|                 llama_set_causal_attn(lctx, true);
 | |
|             }
 | |
| 
 | |
|         } else {
 | |
|             GGML_ASSERT(false && "chunk type not supported");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     llama_batch_free(text_batch);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) {
 | |
|     clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|     bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
 | |
|     if (!ok) {
 | |
|         LOG_ERR("Unable to load image from buffer\n");
 | |
|         return 1;
 | |
|     }
 | |
|     unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
 | |
|     output.data.resize(output.nx * output.ny * 3);
 | |
|     std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) {
 | |
|     clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|     bool ok = clip_image_load_from_file(fname, img_u8.get());
 | |
|     if (!ok) {
 | |
|         LOG_ERR("Unable to load image %s\n", fname);
 | |
|         return 1;
 | |
|     }
 | |
|     unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
 | |
|     output.data.resize(output.nx * output.ny * 3);
 | |
|     std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
 | |
|     projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
 | |
|     if (proj_type == PROJECTOR_TYPE_GEMMA3) {
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
 | |
|     mtmd_image_tokens_free(val);
 | |
| }
 | 
