mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 d1aa0cc5d1
			
		
	
	d1aa0cc5d1
	
	
	
		
			
			* Add --show-statistics option * Add --show-statistics logic * Add tensor name parsing * Tidy output format * Fix typo in title * Improve tensor influence ranking * Add better statistics * Change statistics' sort order * Add Cosine Similarity * Add header search path * Change header search path to private * Add weighted statistics per layer * Update report title * Refactor compute_statistics out of main * Refactor compute_cossim out of load_imatrix * Refactor compute_statistics out of load_imatrix * Move imatrix statistics calculation into its own functions * Add checks and validations * Remove unnecessary include directory * Rename labels * Add m_stats getter and refactor compute_statistics out of load_imatrix * Refactor variable names * Minor cosmetic change * Retrigger checks (empty commit) * Rerun checks (empty commit) * Fix unnecessary type promotion Co-authored-by: compilade <git@compilade.net> * Reverting change to improve code readability * Rerun checks (empty commit) * Rerun checks (empty commit) * Rerun checks - third time's the Charm 🤞 (empty commit) * Minor cosmetic change * Update README * Fix typo * Update README * Rerun checks (empty commit) * Re-implement changes on top of #9400 * Update README.md * Update README * Update README.md Co-authored-by: compilade <git@compilade.net> * Update README.md Co-authored-by: compilade <git@compilade.net> * Update README.md * Remove duplicate option in print_usage() * Update README.md * Update README.md Co-authored-by: compilade <git@compilade.net> * Update README.md Co-authored-by: compilade <git@compilade.net> * Remove input check * Remove commented out code --------- Co-authored-by: compilade <git@compilade.net>
		
			
				
	
	
		
			1285 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1285 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | ||
| #include "common.h"
 | ||
| #include "log.h"
 | ||
| #include "llama.h"
 | ||
| #include "gguf.h"
 | ||
| 
 | ||
| #include <algorithm>
 | ||
| #include <chrono>
 | ||
| #include <cmath>
 | ||
| #include <cstdio>
 | ||
| #include <cstring>
 | ||
| #include <ctime>
 | ||
| #include <thread>
 | ||
| #include <mutex>
 | ||
| #include <vector>
 | ||
| #include <fstream>
 | ||
| #include <unordered_map>
 | ||
| #include <map>
 | ||
| #include <regex>
 | ||
| #include <numeric>
 | ||
| 
 | ||
| #if defined(_MSC_VER)
 | ||
| #pragma warning(disable: 4244 4267) // possible loss of data
 | ||
| #endif
 | ||
| 
 | ||
| static void print_usage(int, char ** argv) {
 | ||
|     LOG("\nexample usage:\n");
 | ||
|     LOG("\n    %s \\\n"
 | ||
|             "       -m model.gguf -f some-text.txt [-o imatrix.gguf] [--no-ppl] \\\n"
 | ||
|             "       [--process-output] [--chunk 123] [--save-frequency 0] [--output-frequency 10] \\\n"
 | ||
|             "       [--in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf ...] [--parse-special] \\\n"
 | ||
|             "       [--show-statistics] [...]\n" , argv[0]);
 | ||
|     LOG("\n");
 | ||
| }
 | ||
| 
 | ||
| static const char * const LLM_KV_IMATRIX_DATASETS    = "imatrix.datasets";
 | ||
| static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count";
 | ||
| static const char * const LLM_KV_IMATRIX_CHUNK_SIZE  = "imatrix.chunk_size";
 | ||
| 
 | ||
| struct Stats {
 | ||
|     std::vector<float>   values;
 | ||
|     std::vector<int64_t> counts;
 | ||
| };
 | ||
| 
 | ||
| struct tensor_statistics {
 | ||
|     std::string tensor;
 | ||
|     Stats stats;
 | ||
|     float total_sqract = 0.0f;
 | ||
|     float mean_sqract  = 0.0f;
 | ||
|     float max_sqract   = 0.0f;
 | ||
|     float min_sqract   = 0.0f;
 | ||
|     int elements       = 0;
 | ||
|     float stddev       = 0.0f;
 | ||
|     float active       = 0.0f;
 | ||
|     float entropy      = 0.0f;
 | ||
|     float zd           = 0.0f;
 | ||
|     float cossim       = 0.0f;
 | ||
| };
 | ||
| 
 | ||
| class IMatrixCollector {
 | ||
| public:
 | ||
|     IMatrixCollector() = default;
 | ||
|     void set_params(common_params params) { m_params = std::move(params); }
 | ||
|     bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
 | ||
|     void save_imatrix_legacy(int32_t ncall = -1) const;
 | ||
|     void save_imatrix(int32_t n_chunk = -1) const;
 | ||
|     bool load_imatrix_legacy(const char * fname);
 | ||
|     bool load_imatrix(const char * file_name);
 | ||
|     const std::unordered_map<std::string, Stats> & get_mstats() const { return m_stats; }
 | ||
| private:
 | ||
|     std::unordered_map<std::string, Stats> m_stats;
 | ||
|     common_params                          m_params;
 | ||
|     std::mutex                             m_mutex;
 | ||
|     std::vector<std::string>               m_datasets;
 | ||
|     int32_t                                m_last_chunk = 0;
 | ||
|     std::vector<char>                      m_src1_data;
 | ||
|     std::vector<char>                      m_ids; // the expert ids from ggml_mul_mat_id
 | ||
| };
 | ||
| 
 | ||
| // remove any prefix and suffixes from the name
 | ||
| // CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
 | ||
| static std::string filter_tensor_name(const char * name) {
 | ||
|     std::string wname;
 | ||
|     const char * p = strchr(name, '#');
 | ||
|     if (p != NULL) {
 | ||
|         p = p + 1;
 | ||
|         const char * q = strchr(p, '#');
 | ||
|         if (q != NULL) {
 | ||
|             wname = std::string(p, q - p);
 | ||
|         } else {
 | ||
|             wname = p;
 | ||
|         }
 | ||
|     } else {
 | ||
|         wname = name;
 | ||
|     }
 | ||
|     return wname;
 | ||
| }
 | ||
| 
 | ||
| static void process_tensor_name(const std::string & input, std::string & layer, std::string & tensor) {
 | ||
|     std::vector<std::string> name;
 | ||
|     std::istringstream stream(input);
 | ||
|     std::string item;
 | ||
| 
 | ||
|     while (std::getline(stream, item, '.')) {
 | ||
|         name.push_back(item);
 | ||
|     }
 | ||
|     for (size_t i = 0; i < name.size(); ++i) {
 | ||
|         if (name[i] == "blk" && i + 1 < name.size()) {
 | ||
|             layer = name[i + 1];
 | ||
|             break;
 | ||
|         }
 | ||
|     }
 | ||
|     for (size_t i = 0; i < name.size(); ++i) {
 | ||
|         if (name[i] == "weight" && i > 0) {
 | ||
|             tensor = name[i - 1];
 | ||
|             break;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (tensor.empty()) {
 | ||
|         tensor = input;
 | ||
|     }
 | ||
|     if (layer.empty()) {
 | ||
|         layer = "-";
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void compute_statistics(std::vector<tensor_statistics> & tstats, const std::string & name, const Stats & e) {
 | ||
|     if (e.values.size() % e.counts.size() != 0) {
 | ||
|         LOG_ERR("%s: activation size mismatch for tensor %s (%zu vs %zu)\n", __func__, name.c_str(), e.counts.size(), e.values.size());
 | ||
|         return;
 | ||
|     }
 | ||
|     if (e.counts.empty()) {
 | ||
|         LOG_ERR("%s: there are no activations for tensor %s. The imatrix may be suboptimal\n", __func__, name.c_str());
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int n_mat = e.counts.size();
 | ||
|     const int row_size = e.values.size() / n_mat;
 | ||
| 
 | ||
|     std::vector<float> activations;
 | ||
|     activations.reserve(e.values.size());
 | ||
| 
 | ||
|     for (int i = 0; i < n_mat; ++i) {
 | ||
|         for (int j = 0; j < row_size; ++j) {
 | ||
|             activations.push_back(e.values[i*row_size + j] / e.counts[i]);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     const float act_total     = std::accumulate(activations.begin(), activations.end(), 0.0f);
 | ||
|     const float act_max       = *std::max_element(activations.begin(), activations.end());
 | ||
|     const float act_min       = *std::min_element(activations.begin(), activations.end());
 | ||
|     const float act_mean      = act_total / activations.size();
 | ||
|     const float act_sqr_total = std::inner_product(activations.begin(), activations.end(), activations.begin(), 0.0f);
 | ||
|     const float act_var       = (act_sqr_total / activations.size()) - (act_mean * act_mean);
 | ||
|     const float act_dev       = std::sqrt(std::max(0.0f, act_var));
 | ||
|     float threshold           = 1e-5f;
 | ||
|     const int inactive_count  = std::count_if(activations.begin(), activations.end(),
 | ||
|                                                [threshold](const float v) { return fabsf(v) <= threshold; });
 | ||
|     const float active_ratio  = 1 - static_cast<float>(inactive_count) / activations.size();
 | ||
| 
 | ||
|     float entropy = 0;
 | ||
|     if (act_total > 0) {
 | ||
|         for (const auto act : activations) {
 | ||
|             if (const float p = act / act_total; p > 0) {
 | ||
|                 entropy -= p * std::log2(p);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     int z_score = 0;
 | ||
|     if (act_dev > 0.0f) {
 | ||
|         for (const auto act : activations) {
 | ||
|             if (const float p = (act - act_mean) / act_dev; p > 1) {
 | ||
|                 z_score++;
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     auto & ts = tstats.emplace_back();
 | ||
|     ts.tensor     = name;
 | ||
|     ts.stats      = e;
 | ||
|     ts.total_sqract = act_total;
 | ||
|     ts.mean_sqract  = act_mean;
 | ||
|     ts.max_sqract   = act_max;
 | ||
|     ts.min_sqract   = act_min;
 | ||
|     ts.elements   = static_cast<int>(activations.size());
 | ||
|     ts.stddev     = act_dev;
 | ||
|     ts.active     = active_ratio;
 | ||
|     ts.entropy    = entropy;
 | ||
|     ts.zd         = static_cast<float>(z_score) / ts.elements;
 | ||
| }
 | ||
| 
 | ||
| static void compute_cossim(std::vector<tensor_statistics> & tstats) {
 | ||
|     static const std::regex pattern(R"(blk\.(\d+)\.)");
 | ||
|     for (auto & ts : tstats) {
 | ||
|         if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) {
 | ||
|             const int blk = std::stoi(match[1]);
 | ||
|             std::string tname(ts.tensor);
 | ||
|             tname.replace(match.position(1), match.length(1), std::to_string(blk-1));
 | ||
|             auto prev = std::find_if(tstats.begin(), tstats.end(),
 | ||
|                 [tname](const tensor_statistics & t) { return t.tensor == tname; });
 | ||
|             if (prev != tstats.end()) {
 | ||
|                 const float dp = std::inner_product(ts.stats.values.begin(), ts.stats.values.end(),
 | ||
|                     prev->stats.values.begin(), 0.0f);
 | ||
|                 const float curr_mag = std::sqrt(std::inner_product(ts.stats.values.begin(), ts.stats.values.end(),
 | ||
|                     ts.stats.values.begin(), 0.0f));
 | ||
|                 const float prev_mag = std::sqrt(std::inner_product(prev->stats.values.begin(), prev->stats.values.end(),
 | ||
|                     prev->stats.values.begin(), 0.0f));
 | ||
|                 const float cs = dp / (curr_mag * prev_mag);
 | ||
|                 ts.cossim = cs;
 | ||
|             }
 | ||
|         } else {
 | ||
|             ts.cossim = 0;
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
 | ||
|     GGML_UNUSED(user_data);
 | ||
| 
 | ||
|     const struct ggml_tensor * src0 = t->src[0];
 | ||
|     const struct ggml_tensor * src1 = t->src[1];
 | ||
|     std::string wname = filter_tensor_name(src0->name);
 | ||
| 
 | ||
|     const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
 | ||
| 
 | ||
|     // when ask is true, the scheduler wants to know if we are interested in data from this tensor
 | ||
|     // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
 | ||
|     if (ask) {
 | ||
|         if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
 | ||
|         if (t->op != GGML_OP_MUL_MAT) return false;
 | ||
|         // why are small batches ignored (<16 tokens)?
 | ||
|         if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
 | ||
|         if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false;
 | ||
|         return true;
 | ||
|     }
 | ||
| 
 | ||
|     std::lock_guard<std::mutex> lock(m_mutex);
 | ||
| 
 | ||
|     // copy the data from the GPU memory if needed
 | ||
|     const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
 | ||
| 
 | ||
|     if (!is_host) {
 | ||
|         const size_t src1_nbytes = ggml_nbytes(src1);
 | ||
|         m_src1_data.resize(src1_nbytes);
 | ||
|         ggml_backend_tensor_get(src1, m_src1_data.data(), 0, src1_nbytes);
 | ||
|     }
 | ||
| 
 | ||
|     const char * data = is_host ? (const char *) src1->data : m_src1_data.data();
 | ||
|     GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
 | ||
| 
 | ||
|     // TODO: 4d? (is that even used in practice?)
 | ||
|     // the extra dimension would need to be stored somewhere to be reflected in the imatrix file
 | ||
|     if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) {
 | ||
|         LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str());
 | ||
|         GGML_ASSERT(false);
 | ||
|     }
 | ||
| 
 | ||
|     // this has been adapted to the new format of storing merged experts in a single 3d tensor
 | ||
|     // ref: https://github.com/ggml-org/llama.cpp/pull/6387
 | ||
|     if (t->op == GGML_OP_MUL_MAT_ID) {
 | ||
|         //   ids  -> [n_experts_used, n_tokens]
 | ||
|         //   src1 -> [cols, n_expert_used, n_tokens]
 | ||
|         const ggml_tensor * ids = t->src[2];
 | ||
|         const int64_t n_as = src0->ne[2];
 | ||
|         const int64_t n_ids = ids->ne[0];
 | ||
| 
 | ||
|         // the top-k selected expert ids are stored in the ids tensor
 | ||
|         // for simplicity, always copy ids to host, because it is small
 | ||
|         // take into account that ids is not contiguous!
 | ||
| 
 | ||
|         GGML_ASSERT(ids->ne[1] == src1->ne[2]);
 | ||
| 
 | ||
|         m_ids.resize(ggml_nbytes(ids));
 | ||
|         ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
 | ||
| 
 | ||
|         auto & e = m_stats[wname];
 | ||
| 
 | ||
|         if (e.counts.size() == 1 && n_as > 1) {
 | ||
|             // broadcast, when loading an old imatrix
 | ||
|             e.counts.resize(n_as, e.counts[0]);
 | ||
|         }
 | ||
|         if (e.values.empty()) {
 | ||
|             e.values.resize(src1->ne[0]*n_as, 0);
 | ||
|             e.counts.resize(n_as, 0);
 | ||
|         }
 | ||
|         else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
 | ||
|             LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0]*n_as));
 | ||
|             exit(1); //GGML_ABORT("fatal error");
 | ||
|         }
 | ||
|         else if (e.counts.size() != (size_t)n_as) {
 | ||
|             LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_as);
 | ||
|             exit(1); //GGML_ABORT("fatal error");
 | ||
|         }
 | ||
|         LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
 | ||
|         // loop over all possible experts, regardless if they are used or not in the batch
 | ||
|         for (int64_t ex = 0; ex < n_as; ++ex) {
 | ||
|             size_t e_start = ex*src1->ne[0];
 | ||
| 
 | ||
|             for (int64_t idx = 0; idx < n_ids; ++idx) {
 | ||
|                 for (int64_t row = 0; row < src1->ne[2]; ++row) {
 | ||
|                     const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
 | ||
| 
 | ||
|                     GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
 | ||
| 
 | ||
|                     if (excur != ex) continue;
 | ||
| 
 | ||
|                     const int64_t i11 = idx % src1->ne[1];
 | ||
|                     const int64_t i12 = row;
 | ||
|                     const float * x = (const float *)(data + i11*src1->nb[1] + i12*src1->nb[2]);
 | ||
| 
 | ||
|                     e.counts[ex]++;
 | ||
| 
 | ||
|                     for (int64_t j = 0; j < src1->ne[0]; ++j) {
 | ||
|                         e.values[e_start + j] += x[j] * x[j];
 | ||
|                         if (!std::isfinite((float)e.values[e_start + j])) {
 | ||
|                             LOG_ERR("%f detected in %s\n", (float)e.values[e_start + j], wname.c_str());
 | ||
|                             exit(1);
 | ||
|                         }
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
|             const int32_t n_chunk = e.counts[ex] / chunk_size;
 | ||
|             if (n_chunk > m_last_chunk) {
 | ||
|                 const int32_t chunk_step = n_chunk - m_last_chunk;
 | ||
|                 m_last_chunk = n_chunk;
 | ||
|                 if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
 | ||
|                     save_imatrix();
 | ||
|                 }
 | ||
|                 if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
 | ||
|                     save_imatrix(m_last_chunk);
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|     } else {
 | ||
|         auto & e = m_stats[wname];
 | ||
|         const int64_t n_mat = src1->ne[2] * src1->ne[3];
 | ||
| 
 | ||
|         if (e.values.empty()) {
 | ||
|             e.values.resize(src1->ne[0] * n_mat, 0);
 | ||
|             e.counts.resize(n_mat, 0);
 | ||
|         }
 | ||
|         else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) {
 | ||
|             LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat));
 | ||
|             exit(1); //GGML_ABORT("fatal error");
 | ||
|         }
 | ||
|         else if (e.counts.size() != (size_t)n_mat) {
 | ||
|             LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_mat);
 | ||
|             exit(1); //GGML_ABORT("fatal error");
 | ||
|         }
 | ||
|         LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type);
 | ||
|         for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) {
 | ||
|             for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) {
 | ||
|                 const int64_t mat_id = i3 * src1->ne[2] + i2;
 | ||
|                 const int64_t mat_start = mat_id * src1->ne[0];
 | ||
| 
 | ||
|                 for (int64_t row = 0; row < src1->ne[1]; ++row) {
 | ||
|                     const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]);
 | ||
|                     e.counts[mat_id]++;
 | ||
|                     for (int64_t j = 0; j < src1->ne[0]; ++j) {
 | ||
|                         e.values[mat_start + j] += x[j] * x[j];
 | ||
|                         if (!std::isfinite((float)e.values[j])) {
 | ||
|                             LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str());
 | ||
|                             exit(1);
 | ||
|                         }
 | ||
|                     }
 | ||
|                 }
 | ||
|                 const int32_t n_chunk = e.counts[mat_id] / chunk_size;
 | ||
|                 if (n_chunk > m_last_chunk) {
 | ||
|                     const int32_t chunk_step = n_chunk - m_last_chunk;
 | ||
|                     m_last_chunk = n_chunk;
 | ||
|                     if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
 | ||
|                         save_imatrix();
 | ||
|                     }
 | ||
|                     if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
 | ||
|                         save_imatrix(m_last_chunk);
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return true;
 | ||
| }
 | ||
| 
 | ||
| void IMatrixCollector::save_imatrix_legacy(int32_t ncall) const {
 | ||
|     auto fname = m_params.out_file;
 | ||
| 
 | ||
|     if (ncall > 0) {
 | ||
|         fname += ".at_";
 | ||
|         fname += std::to_string(ncall);
 | ||
|     }
 | ||
| 
 | ||
|     // warn when writing imatrix entries that do not have full data
 | ||
|     // this can happen with MoE models where some of the experts end up not being exercised by the provided training data
 | ||
| 
 | ||
|     int n_entries = 0;
 | ||
|     std::vector<std::string> to_store;
 | ||
| 
 | ||
|     bool is_first = true; // for printing
 | ||
|     for (const auto & kv : m_stats) {
 | ||
|         const int n_all = kv.second.counts.size();
 | ||
| 
 | ||
|         if (n_all == 0) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         int n_zeros = 0;
 | ||
|         for (const int c : kv.second.counts) {
 | ||
|             if (c == 0) {
 | ||
|                 n_zeros++;
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         if (n_zeros != 0 && is_first) {
 | ||
|             LOG_INF("\n");
 | ||
|             is_first = false;
 | ||
|         }
 | ||
| 
 | ||
|         if (n_zeros == n_all) {
 | ||
|             LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         if (n_zeros > 0) {
 | ||
|             LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
 | ||
|         }
 | ||
| 
 | ||
|         n_entries++;
 | ||
|         to_store.push_back(kv.first);
 | ||
|     }
 | ||
| 
 | ||
|     if (to_store.size() < m_stats.size()) {
 | ||
|         LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
 | ||
|     }
 | ||
| 
 | ||
|     // deterministic tensor name order
 | ||
|     std::sort(to_store.begin(), to_store.end());
 | ||
| 
 | ||
|     const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
 | ||
| 
 | ||
|     std::ofstream out(fname, std::ios::binary);
 | ||
|     out.write((const char *) &n_entries, sizeof(n_entries));
 | ||
|     for (const auto & name : to_store) {
 | ||
|         const auto & stat = m_stats.at(name);
 | ||
|         const int32_t len = name.size();
 | ||
|         out.write((const char *) &len, sizeof(len));
 | ||
|         out.write(name.c_str(), len);
 | ||
|         // ceiling division to avoid accidental zeros
 | ||
|         const int32_t ncall = (*std::max_element(stat.counts.begin(), stat.counts.end()) + (chunk_size - 1)) / chunk_size;
 | ||
|         out.write((const char *) &ncall, sizeof(ncall));
 | ||
|         const int32_t nval = stat.values.size();
 | ||
|         const int32_t nmat = stat.counts.size();
 | ||
|         out.write((const char *) &nval, sizeof(nval));
 | ||
|         if (nval > 0 && nmat > 0) {
 | ||
|             std::vector<float> tmp(nval);
 | ||
|             for (int32_t i = 0; i < nval; i++) {
 | ||
|                 float count = static_cast<float>(stat.counts[i / (nval / nmat)]);
 | ||
|                 float value = stat.values[i];
 | ||
|                 if (count == 0.0f) {
 | ||
|                     // store 1 for partial data
 | ||
|                     value = 1.0f;
 | ||
|                     count = 1.0f;
 | ||
|                 }
 | ||
|                 tmp[i] = (value / count) * static_cast<float>(ncall);
 | ||
|             }
 | ||
|             out.write((const char *) tmp.data(), nval * sizeof(float));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // Write the number of call the matrix was computed with
 | ||
|     out.write((const char *) &m_last_chunk, sizeof(m_last_chunk));
 | ||
| 
 | ||
|     // Write the input filename at the end of the file to later on specify it in quantize
 | ||
|     {
 | ||
|         const char * dataset_file = m_params.prompt_file.c_str();
 | ||
|         int32_t len = m_params.prompt_file.size();
 | ||
|         // When there is no prompt but there were other imatrix files loaded, use the last dataset
 | ||
|         if (m_params.prompt_file.empty() && !m_datasets.empty()) {
 | ||
|             const std::string & dataset_str = m_datasets[m_datasets.size() - 1];
 | ||
|             dataset_file = dataset_str.c_str();
 | ||
|             len = dataset_str.size();
 | ||
|         }
 | ||
|         out.write((const char *) &len, sizeof(len));
 | ||
|         out.write(dataset_file, len);
 | ||
|     }
 | ||
| 
 | ||
|     LOGV(1, "\n");
 | ||
|     LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
 | ||
| }
 | ||
| 
 | ||
| void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
 | ||
|     auto fname = m_params.out_file;
 | ||
| 
 | ||
|     // TODO: use the new format in more cases
 | ||
|     if (!string_ends_with(fname, ".gguf")) {
 | ||
|         LOG_WRN("\n%s: saving to legacy imatrix format because output suffix is not .gguf\n", __func__);
 | ||
|         this->save_imatrix_legacy(n_chunk);
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     if (n_chunk > 0) {
 | ||
|         fname += ".at_";
 | ||
|         fname += std::to_string(n_chunk);
 | ||
|     }
 | ||
| 
 | ||
|     // write imatrix entries even if they don't have full data. (can be corrected when reading)
 | ||
|     // this can happen with MoE models where some of the experts end up not being exercised by the provided training data
 | ||
| 
 | ||
|     std::vector<std::string> to_store;
 | ||
|     size_t data_size = 0;
 | ||
| 
 | ||
|     bool is_first = true; // for printing
 | ||
|     for (const auto & kv : m_stats) {
 | ||
|         const int n_all = kv.second.counts.size();
 | ||
| 
 | ||
|         int n_zeros = 0;
 | ||
|         for (const auto c : kv.second.counts) {
 | ||
|             if (c == 0) {
 | ||
|                 n_zeros++;
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         if (n_zeros != 0 && is_first) {
 | ||
|             LOG_INF("\n");
 | ||
|             is_first = false;
 | ||
|         }
 | ||
| 
 | ||
|         if (n_zeros > 0) {
 | ||
|             LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
 | ||
|         }
 | ||
| 
 | ||
|         to_store.push_back(kv.first);
 | ||
|         data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN);
 | ||
|         data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN);
 | ||
|     }
 | ||
| 
 | ||
|     // deterministic tensor name order
 | ||
|     std::sort(to_store.begin(), to_store.end());
 | ||
| 
 | ||
|     struct ggml_init_params params = {
 | ||
|         /* .mem_size   = */ data_size,
 | ||
|         /* .mem_buffer = */ NULL,
 | ||
|         /* .no_alloc   = */ false,
 | ||
|     };
 | ||
|     struct ggml_context * ctx = ggml_init(params);
 | ||
|     struct gguf_context * ctx_gguf = gguf_init_empty();
 | ||
| 
 | ||
|     {
 | ||
|         std::vector<const char *> datasets;
 | ||
|         datasets.reserve(m_datasets.size() + 1);
 | ||
|         for (size_t i = 0; i < m_datasets.size(); ++i) {
 | ||
|             datasets.push_back(m_datasets[i].c_str());
 | ||
|         }
 | ||
|         if (!m_params.prompt_file.empty()) {
 | ||
|             datasets.push_back(m_params.prompt_file.c_str());
 | ||
|         }
 | ||
| 
 | ||
|         gguf_set_val_str(ctx_gguf, "general.type", "imatrix");
 | ||
|         // Write the dataset paths
 | ||
|         gguf_set_arr_str(ctx_gguf, LLM_KV_IMATRIX_DATASETS, datasets.data(), datasets.size());
 | ||
|         // Write the number of chunks the matrix was computed with
 | ||
|         gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT, m_last_chunk);
 | ||
|         gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE, m_params.n_ctx / m_params.n_parallel);
 | ||
|     }
 | ||
| 
 | ||
|     for (const auto & name : to_store) {
 | ||
|         const auto & stat = m_stats.at(name);
 | ||
|         const int32_t nval = (int32_t) stat.values.size();
 | ||
|         const int32_t nmat = (int32_t) stat.counts.size();
 | ||
|         if (nval > 0 && nmat > 0) {
 | ||
|             struct ggml_tensor * in_sum2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nval / nmat, nmat);
 | ||
|             struct ggml_tensor * counts  = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, nmat);
 | ||
|             ggml_format_name(in_sum2, "%s.in_sum2", name.c_str());
 | ||
|             ggml_format_name(counts, "%s.counts", name.c_str());
 | ||
| 
 | ||
|             for (int32_t j = 0; j < nval; ++j) {
 | ||
|                 ((float *) in_sum2->data)[j] = (float) stat.values[j];
 | ||
|             }
 | ||
|             for (int32_t j = 0; j < nmat; ++j) {
 | ||
|                 ((float *) counts->data)[j] = (float) stat.counts[j];
 | ||
|             }
 | ||
| 
 | ||
|             gguf_add_tensor(ctx_gguf, in_sum2);
 | ||
|             gguf_add_tensor(ctx_gguf, counts);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     gguf_write_to_file(ctx_gguf, fname.c_str(), false);
 | ||
| 
 | ||
|     LOGV(1, "\n");
 | ||
|     LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
 | ||
| 
 | ||
|     gguf_free(ctx_gguf);
 | ||
|     ggml_free(ctx);
 | ||
| }
 | ||
| 
 | ||
| bool IMatrixCollector::load_imatrix_legacy(const char * fname) {
 | ||
|     std::ifstream in(fname, std::ios::binary);
 | ||
|     if (!in) {
 | ||
|         LOG_ERR("%s: failed to open %s\n", __func__, fname);
 | ||
|         return false;
 | ||
|     }
 | ||
|     int n_entries;
 | ||
|     in.read((char *) &n_entries, sizeof(n_entries));
 | ||
|     if (in.fail() || n_entries < 1) {
 | ||
|         LOG_ERR("%s: no data in file %s\n", __func__, fname);
 | ||
|         return false;
 | ||
|     }
 | ||
|     // Guess the chunk size because it's not stored in the file
 | ||
|     const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
 | ||
| 
 | ||
|     for (int i = 0; i < n_entries; ++i) {
 | ||
|         int32_t len = 0;
 | ||
|         in.read((char *) &len, sizeof(len));
 | ||
|         std::vector<char> name_as_vec(len + 1);
 | ||
|         in.read((char *) name_as_vec.data(), len);
 | ||
|         if (in.fail()) {
 | ||
|             LOG_ERR("%s: failed reading name for entry %d from %s\n", __func__, i + 1, fname);
 | ||
|             return false;
 | ||
|         }
 | ||
|         name_as_vec[len] = 0;
 | ||
|         std::string name{ name_as_vec.data() };
 | ||
|         auto & e = m_stats[std::move(name)];
 | ||
|         int32_t ncall = 0;
 | ||
|         in.read((char *) &ncall, sizeof(ncall));
 | ||
|         int32_t nval = 0;
 | ||
|         in.read((char *) &nval, sizeof(nval));
 | ||
|         if (in.fail() || nval < 1) {
 | ||
|             LOG_ERR("%s: failed reading number of values for entry %d\n", __func__, i);
 | ||
|             m_stats = {};
 | ||
|             return false;
 | ||
|         }
 | ||
| 
 | ||
|         if (e.values.empty()) {
 | ||
|             e.values.resize(nval, 0.0f);
 | ||
|             e.counts.resize(1, 0);
 | ||
|         }
 | ||
| 
 | ||
|         std::vector<float> tmp(nval);
 | ||
|         in.read((char *) tmp.data(), nval * sizeof(float));
 | ||
|         if (in.fail()) {
 | ||
|             LOG_ERR("%s: failed reading data for entry %d\n", __func__, i);
 | ||
|             m_stats = {};
 | ||
|             return false;
 | ||
|         }
 | ||
| 
 | ||
|         // Recreate the state as expected by save_imatrix(), and correct for weighted sum.
 | ||
|         for (int i = 0; i < nval; i++) {
 | ||
|             e.values[i] += tmp[i] * chunk_size;
 | ||
|         }
 | ||
|         // The legacy format doesn't distinguish the counts for different experts
 | ||
|         for (size_t j = 0; j < e.counts.size(); ++j) {
 | ||
|             e.counts[j] += ncall * chunk_size;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     {
 | ||
|         // TODO: extract into its own method; this is also used by the GGUF-based format
 | ||
|         // Calculate the last chunk count
 | ||
|         int64_t max_count = 0;
 | ||
|         for (const auto & stats : m_stats) {
 | ||
|             for (int64_t count : stats.second.counts) {
 | ||
|                 if (count > max_count) {
 | ||
|                     max_count = count;
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|         m_last_chunk = max_count / (chunk_size);
 | ||
|     }
 | ||
| 
 | ||
|     {
 | ||
|         // Read the number of calls the matrix was computed with
 | ||
|         int32_t n_calls;
 | ||
|         in.read((char *) &n_calls, sizeof(n_calls));
 | ||
|         // ignore it because it's not important
 | ||
|     }
 | ||
| 
 | ||
|     // Read the dataset path to include it when writing to GGUF
 | ||
|     if (!in.fail()){
 | ||
|         int32_t len = 0;
 | ||
|         in.read((char *) &len, sizeof(len));
 | ||
|         if (!in.fail()) {
 | ||
|             std::vector<char> dataset;
 | ||
|             dataset.resize(len + 1, 0);
 | ||
|             in.read(dataset.data(), len);
 | ||
|             if (!in.fail()) {
 | ||
|                 m_datasets.push_back(dataset.data());
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return true;
 | ||
| }
 | ||
| 
 | ||
| // Using GGUF as the file format, for greater extensibility
 | ||
| bool IMatrixCollector::load_imatrix(const char * file_name) {
 | ||
|     struct ggml_context * ctx = nullptr;
 | ||
|     struct gguf_init_params meta_gguf_params = {
 | ||
|         /* .no_alloc = */ false, // the data is needed
 | ||
|         /* .ctx      = */ &ctx,
 | ||
|     };
 | ||
|     struct gguf_context * ctx_gguf = gguf_init_from_file(file_name, meta_gguf_params);
 | ||
|     if (!ctx_gguf) {
 | ||
|         return this->load_imatrix_legacy(file_name);
 | ||
|     }
 | ||
|     const int32_t n_entries = gguf_get_n_tensors(ctx_gguf);
 | ||
|     if (n_entries < 1) {
 | ||
|         LOG_ERR("%s: no data in file %s\n", __func__, file_name);
 | ||
|         gguf_free(ctx_gguf);
 | ||
|         ggml_free(ctx);
 | ||
|         return false;
 | ||
|     }
 | ||
| 
 | ||
|     const int64_t datasets_key = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_DATASETS);
 | ||
|     if (datasets_key != -1 && gguf_get_arr_type(ctx_gguf, datasets_key) == GGUF_TYPE_STRING) {
 | ||
|         const int64_t n = gguf_get_arr_n(ctx_gguf, datasets_key);
 | ||
|         m_datasets.reserve(m_datasets.size() + n);
 | ||
|         for (int64_t i = 0; i < n; ++i) {
 | ||
|             m_datasets.push_back(gguf_get_arr_str(ctx_gguf, datasets_key, i));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     const std::string in_sum2_suffix{ ".in_sum2" };
 | ||
|     const std::string counts_suffix{ ".counts" };
 | ||
| 
 | ||
|     // Could re-use m_stats instead, but this allows
 | ||
|     // checking for completeness of *each* loaded imatrix file
 | ||
|     // and also makes it easier to re-use a similar implementation in quantize.cpp
 | ||
|     // Using an ordered map to get a deterministic iteration order.
 | ||
|     std::map<std::string, std::pair<struct ggml_tensor *, struct ggml_tensor *>> sums_counts_for;
 | ||
| 
 | ||
|     for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
 | ||
|         std::string name = cur->name;
 | ||
| 
 | ||
|         if (name.empty()) { continue; }
 | ||
| 
 | ||
|         if (string_remove_suffix(name, in_sum2_suffix)) {
 | ||
|             // in_sum2
 | ||
|             sums_counts_for[std::move(name)].first = cur;
 | ||
|         } else if (string_remove_suffix(name, counts_suffix)) {
 | ||
|             // counts
 | ||
|             sums_counts_for[std::move(name)].second = cur;
 | ||
|         } else {
 | ||
|             // ignore other tensors
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     for (const auto & sc : sums_counts_for) {
 | ||
|         const std::string &        name    = sc.first;
 | ||
|         const struct ggml_tensor * in_sum2 = sc.second.first;
 | ||
|         const struct ggml_tensor * counts  = sc.second.second;
 | ||
| 
 | ||
|         if (!in_sum2 || !counts) {
 | ||
|             LOG_ERR("%s: mismatched sums and counts for %s\n", __func__, name.c_str());
 | ||
|             gguf_free(ctx_gguf);
 | ||
|             ggml_free(ctx);
 | ||
|             return false;
 | ||
|         }
 | ||
| 
 | ||
|         auto & e = m_stats[name];
 | ||
| 
 | ||
|         int64_t nval = ggml_nelements(in_sum2);
 | ||
|         if (e.values.empty()) {
 | ||
|             e.values.resize(nval, 0.0f);
 | ||
|         } else if ((size_t) nval != e.values.size()) {
 | ||
|             LOG_ERR("%s: mismatched sums size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) nval, e.values.size());
 | ||
|             gguf_free(ctx_gguf);
 | ||
|             ggml_free(ctx);
 | ||
|             return false;
 | ||
|         }
 | ||
| 
 | ||
|         int64_t ncounts = ggml_nelements(counts);
 | ||
|         if (e.counts.empty()) {
 | ||
|             e.counts.resize(ncounts, 0);
 | ||
|         } else if (e.counts.size() == 1 && ncounts > 1) {
 | ||
|             // broadcast, when loading an old imatrix
 | ||
|             e.counts.resize(ncounts, e.counts[0]);
 | ||
|         } else if ((size_t) ncounts != e.counts.size()) {
 | ||
|             LOG_ERR("%s: mismatched counts size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) ncounts, e.counts.size());
 | ||
|             gguf_free(ctx_gguf);
 | ||
|             ggml_free(ctx);
 | ||
|             return false;
 | ||
|         }
 | ||
| 
 | ||
|         // Recreate the state as expected by save_imatrix()
 | ||
|         for (int64_t j = 0; j < nval; j++) {
 | ||
|             e.values[j] += ((const float *) in_sum2->data)[j];
 | ||
|         }
 | ||
|         for (int64_t j = 0; j < ncounts; j++) {
 | ||
|             e.counts[j] += std::lround(((const float *) counts->data)[j]);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // TODO: extract into its own method; this is also used by the legacy format
 | ||
|     // Calculate the last chunk count
 | ||
|     int64_t max_count = 0;
 | ||
|     for (const auto & stats : m_stats) {
 | ||
|         for (int64_t count : stats.second.counts) {
 | ||
|             if (count > max_count) {
 | ||
|                 max_count = count;
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|     m_last_chunk = max_count / (m_params.n_ctx / m_params.n_parallel);
 | ||
| 
 | ||
|     gguf_free(ctx_gguf);
 | ||
|     ggml_free(ctx);
 | ||
|     return true;
 | ||
| }
 | ||
| 
 | ||
| static IMatrixCollector g_collector;
 | ||
| 
 | ||
| static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
 | ||
|     return g_collector.collect_imatrix(t, ask, user_data);
 | ||
| }
 | ||
| 
 | ||
| struct results_log_softmax {
 | ||
|     double log_softmax;
 | ||
|     float  logit;
 | ||
|     float  prob;
 | ||
| };
 | ||
| 
 | ||
| static std::vector<float> softmax(const std::vector<float> & logits) {
 | ||
|     std::vector<float> probs(logits.size());
 | ||
|     float max_logit = logits[0];
 | ||
|     for (float v : logits) {
 | ||
|         max_logit = std::max(max_logit, v);
 | ||
|     }
 | ||
|     double sum_exp = 0.0;
 | ||
|     for (size_t i = 0; i < logits.size(); i++) {
 | ||
|         // Subtract the maximum logit value from the current logit value for numerical stability
 | ||
|         const float logit = logits[i] - max_logit;
 | ||
|         const float exp_logit = expf(logit);
 | ||
|         sum_exp += exp_logit;
 | ||
|         probs[i] = exp_logit;
 | ||
|     }
 | ||
|     for (size_t i = 0; i < probs.size(); i++) {
 | ||
|         probs[i] /= sum_exp;
 | ||
|     }
 | ||
|     return probs;
 | ||
| }
 | ||
| 
 | ||
| static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
 | ||
|     float max_logit = logits[0];
 | ||
|     for (int i = 1; i < n_vocab; ++i) {
 | ||
|         max_logit = std::max(max_logit, logits[i]);
 | ||
|     }
 | ||
|     double sum_exp = 0.0;
 | ||
|     for (int i = 0; i < n_vocab; ++i) {
 | ||
|         sum_exp += expf(logits[i] - max_logit);
 | ||
|     }
 | ||
|     return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
 | ||
| }
 | ||
| 
 | ||
| static void process_logits(
 | ||
|     int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
 | ||
|     double & nll, double & nll2, float * logit_history, float * prob_history) {
 | ||
|     std::mutex mutex;
 | ||
|     int counter = 0;
 | ||
|     auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
 | ||
|         double local_nll  = 0;
 | ||
|         double local_nll2 = 0;
 | ||
|         while (true) {
 | ||
|             std::unique_lock<std::mutex> lock(mutex);
 | ||
|             int i = counter++;
 | ||
|             if (i >= n_token) {
 | ||
|                 nll += local_nll; nll2 += local_nll2;
 | ||
|                 break;
 | ||
|             }
 | ||
|             lock.unlock();
 | ||
|             const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
 | ||
|             const double v = -results.log_softmax;
 | ||
|             local_nll += v;
 | ||
|             local_nll2 += v*v;
 | ||
| 
 | ||
|             logit_history[i] = results.logit;
 | ||
|             prob_history[i]  = results.prob;
 | ||
|         }
 | ||
|     };
 | ||
|     for (auto & w : workers) {
 | ||
|         w = std::thread(compute);
 | ||
|     }
 | ||
|     compute();
 | ||
|     for (auto & w : workers) {
 | ||
|         w.join();
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static bool compute_imatrix(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
 | ||
|     const llama_model * model = llama_get_model(ctx);
 | ||
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | ||
| 
 | ||
|     const bool add_bos = llama_vocab_get_add_bos(vocab);
 | ||
| 
 | ||
|     GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
 | ||
| 
 | ||
|     auto tim1 = std::chrono::high_resolution_clock::now();
 | ||
|     LOG_INF("%s: tokenizing the input ..\n", __func__);
 | ||
| 
 | ||
|     std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true, params.parse_special);
 | ||
| 
 | ||
|     auto tim2 = std::chrono::high_resolution_clock::now();
 | ||
|     LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
 | ||
| 
 | ||
|     if (params.i_chunk > 0) {
 | ||
|         if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
 | ||
|             LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
 | ||
|             return false;
 | ||
|         }
 | ||
|         LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
 | ||
|         tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
 | ||
|     }
 | ||
| 
 | ||
|     if (int(tokens.size()) < 2*n_ctx) {
 | ||
|         LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx);
 | ||
|         LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size());
 | ||
|         return false;
 | ||
|     }
 | ||
| 
 | ||
|     std::vector<float> logit_history;
 | ||
|     std::vector<float> prob_history;
 | ||
| 
 | ||
|     if (params.compute_ppl) {
 | ||
|         logit_history.resize(tokens.size());
 | ||
|         prob_history.resize(tokens.size());
 | ||
|     }
 | ||
| 
 | ||
|     const int n_chunk_max = tokens.size() / n_ctx;
 | ||
| 
 | ||
|     const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
 | ||
|     const int n_vocab = llama_vocab_n_tokens(vocab);
 | ||
|     const int n_batch = params.n_batch;
 | ||
| 
 | ||
|     int count = 0;
 | ||
|     double nll = 0.0;
 | ||
|     double nll2 = 0.0;
 | ||
| 
 | ||
|     const int num_batches = (n_ctx + n_batch - 1) / n_batch;
 | ||
|     const int n_seq = std::max(1, n_batch / n_ctx);
 | ||
| 
 | ||
|     GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
 | ||
|     GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
 | ||
| 
 | ||
|     llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
 | ||
| 
 | ||
|     std::vector<float> logits;
 | ||
|     if (params.compute_ppl && num_batches > 1) {
 | ||
|         logits.reserve((size_t)n_ctx * n_vocab);
 | ||
|     }
 | ||
| 
 | ||
|     LOG_INF("%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
 | ||
| 
 | ||
|     std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
 | ||
| 
 | ||
|     for (int i = 0; i < n_chunk; i += n_seq) {
 | ||
|         const int start =     i * n_ctx;
 | ||
|         const int end   = start + n_ctx;
 | ||
| 
 | ||
|         const int n_seq_batch = std::min(n_seq, n_chunk - i);
 | ||
| 
 | ||
|         const auto t_start = std::chrono::high_resolution_clock::now();
 | ||
| 
 | ||
|         // clear the KV cache
 | ||
|         llama_memory_clear(llama_get_memory(ctx), true);
 | ||
| 
 | ||
|         for (int j = 0; j < num_batches; ++j) {
 | ||
|             const int batch_start = start + j * n_batch;
 | ||
|             const int batch_size  = std::min(end - batch_start, n_batch);
 | ||
| 
 | ||
|             // clear the batch
 | ||
|             common_batch_clear(batch);
 | ||
| 
 | ||
|             for (int seq = 0; seq < n_seq_batch; seq++) {
 | ||
|                 int seq_start = batch_start + seq*n_ctx;
 | ||
| 
 | ||
|                 // save original token and restore it after eval
 | ||
|                 const auto token_org = tokens[seq_start];
 | ||
| 
 | ||
|                 // add BOS token for the first batch of each chunk
 | ||
|                 if (add_bos && j == 0) {
 | ||
|                     tokens[seq_start] = llama_vocab_bos(vocab);
 | ||
|                 }
 | ||
|                 for (int k = 0; k < batch_size; ++k) {
 | ||
|                     // NOTE: specifying all logits to get activations for the output.weight tensor
 | ||
|                     //       and also for the perplexity calculation.
 | ||
|                     // TODO: only get outputs when (params.process_output || params.compute_ppl)
 | ||
|                     //       (not possible when this skips FFN computation of the last layer)
 | ||
|                     common_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true);
 | ||
|                 }
 | ||
| 
 | ||
|                 // restore the original token in case it was set to BOS
 | ||
|                 tokens[seq_start] = token_org;
 | ||
|             }
 | ||
| 
 | ||
|             if (llama_decode(ctx, batch)) {
 | ||
|                 LOG_ERR("%s : failed to eval\n", __func__);
 | ||
|                 llama_batch_free(batch);
 | ||
|                 return false;
 | ||
|             }
 | ||
| 
 | ||
|             if (params.compute_ppl && num_batches > 1) {
 | ||
|                 const auto * batch_logits = llama_get_logits(ctx);
 | ||
|                 logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
| 
 | ||
|         if (i == 0) {
 | ||
|             llama_synchronize(ctx);
 | ||
|             const auto t_end = std::chrono::high_resolution_clock::now();
 | ||
|             const float t_total = std::chrono::duration<float>(t_end - t_start).count();
 | ||
|             LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
 | ||
|             int total_seconds = (int)(t_total * n_chunk / n_seq);
 | ||
|             if (total_seconds >= 60*60) {
 | ||
|                 LOG("%d hours ", total_seconds / (60*60));
 | ||
|                 total_seconds = total_seconds % (60*60);
 | ||
|             }
 | ||
|             LOG("%.2f minutes\n", total_seconds / 60.0);
 | ||
|         }
 | ||
| 
 | ||
|         if (params.compute_ppl) {
 | ||
|             const int first = n_ctx/2;
 | ||
|             for (int seq = 0; seq < n_seq_batch; seq++) {
 | ||
|                 const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx);
 | ||
| 
 | ||
|                 llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
 | ||
| 
 | ||
|                 process_logits(n_vocab, all_logits + first*n_vocab,
 | ||
|                         tokens_data, n_ctx - 1 - first,
 | ||
|                         workers, nll, nll2,
 | ||
|                         logit_history.data() + start + seq*n_ctx + first,
 | ||
|                         prob_history.data()  + start + seq*n_ctx + first);
 | ||
| 
 | ||
|                 count += n_ctx - first - 1;
 | ||
| 
 | ||
|                 LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
 | ||
|             }
 | ||
|             fflush(stdout);
 | ||
| 
 | ||
|             logits.clear();
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     LOG("\n");
 | ||
| 
 | ||
|     if (params.compute_ppl) {
 | ||
|         nll2 /= count;
 | ||
|         nll /= count;
 | ||
|         const double ppl = exp(nll);
 | ||
|         nll2 -= nll * nll;
 | ||
|         if (nll2 > 0) {
 | ||
|             nll2 = sqrt(nll2/(count-1));
 | ||
|             LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
 | ||
|         } else {
 | ||
|             LOG("Unexpected negative standard deviation of log(prob)\n");
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     llama_batch_free(batch);
 | ||
| 
 | ||
|     return true;
 | ||
| }
 | ||
| 
 | ||
| static bool show_statistics(const common_params & params) {
 | ||
|     std::vector<tensor_statistics> ts;
 | ||
|     if (params.in_files.empty() || params.in_files.size() > 1) {
 | ||
|         LOG_ERR("\nError: a single imatrix file is required to compute tensor statistics\n\n");
 | ||
|         return false;
 | ||
|     }
 | ||
|     if (g_collector.load_imatrix(params.in_files[0].c_str())) {
 | ||
|         for (const auto & [name, stats] :g_collector.get_mstats()) {
 | ||
|             compute_statistics(ts, name, stats);
 | ||
|         }
 | ||
|     } else {
 | ||
|         LOG_ERR("\nError: %s is not a valid imatrix file\n\n", params.in_files[0].c_str());
 | ||
|         return false;
 | ||
|     }
 | ||
|     if (!ts.empty()) {
 | ||
|         compute_cossim(ts);
 | ||
|     } else {
 | ||
|         LOG_ERR("Error: cannot compute statistics for %s\n\n", params.in_files[0].c_str());
 | ||
|         return false;
 | ||
|     }
 | ||
| 
 | ||
|     struct tensor_comparer {
 | ||
|         bool operator()(const tensor_statistics & a, const tensor_statistics & b) const {
 | ||
|             std::string layer, name_a, name_b;
 | ||
|             ;
 | ||
|             process_tensor_name(a.tensor, layer, name_a);
 | ||
|             process_tensor_name(b.tensor, layer, name_b);
 | ||
|             return name_a < name_b || (name_a == name_b && a.total_sqract > b.total_sqract);
 | ||
|         }
 | ||
|     };
 | ||
|     std::sort(ts.begin(), ts.end(), tensor_comparer());
 | ||
| 
 | ||
|     struct weighted_stats {
 | ||
|         float weighted_bias   = 0.0f;
 | ||
|         float weighted_zd     = 0.0f;
 | ||
|         float weighted_cossim = 0.0f;
 | ||
|         int   total_elements  = 0;
 | ||
|     };
 | ||
|     std::map<int, weighted_stats> ws;
 | ||
| 
 | ||
|     LOG_INF("\nComputing statistics for %s (%d tensors)\n", params.in_files[0].c_str(), static_cast<int>(ts.size()));
 | ||
|     LOG_INF("\n%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n", " Layer", "       Tensor", "          Σ(Act²)",
 | ||
|             "  Min", "            Max", "           μ", "   σ", " % Active", "N", "   Entropy", "E (norm)", "ZD",
 | ||
|             "  CosSim");
 | ||
|     LOG_INF(
 | ||
|         "=============================================================================================================="
 | ||
|         "===========================================================\n");
 | ||
|     for (const auto & tstat : ts) {
 | ||
|         std::string layer, name;
 | ||
|         process_tensor_name(tstat.tensor, layer, name);
 | ||
| 
 | ||
|         int blk;
 | ||
|         try {
 | ||
|             blk = std::stoi(layer);
 | ||
|         } catch (const std::exception & e) {
 | ||
|             blk = -1;  // not a block layer
 | ||
|         }
 | ||
| 
 | ||
|         LOG_INF("%5s\t%-20s\t%10.2f\t%8.4f\t%11.4f\t%6.2f\t%6.2f\t%8.2f%%\t%6d\t%10.4f\t%6.2f%%\t%10.2f%%\t%8.4f\n",
 | ||
|                 layer.c_str(), name.c_str(), tstat.total_sqract, tstat.min_sqract, tstat.max_sqract, tstat.mean_sqract,
 | ||
|                 tstat.stddev, tstat.active * 100.0f, tstat.elements, tstat.entropy,
 | ||
|                 100.0f * (tstat.entropy / std::log2(tstat.elements)), 100.0f * tstat.zd, tstat.cossim);
 | ||
| 
 | ||
|         const float weighted_bias   = tstat.elements * tstat.total_sqract;
 | ||
|         const float weighted_zd     = tstat.elements * tstat.zd;
 | ||
|         const float weighted_cossim = tstat.elements * tstat.cossim;
 | ||
| 
 | ||
|         if (ws.find(blk) != ws.end()) {
 | ||
|             ws[blk].weighted_bias += weighted_bias;
 | ||
|             ws[blk].weighted_zd += weighted_zd;
 | ||
|             ws[blk].weighted_cossim += weighted_cossim;
 | ||
|             ws[blk].total_elements += tstat.elements;
 | ||
|         } else {
 | ||
|             weighted_stats temp_ws;
 | ||
|             temp_ws.weighted_bias   = weighted_bias;
 | ||
|             temp_ws.weighted_zd     = weighted_zd;
 | ||
|             temp_ws.weighted_cossim = weighted_cossim;
 | ||
|             temp_ws.total_elements  = tstat.elements;
 | ||
|             ws[blk]                 = temp_ws;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     const int layers = std::count_if(ws.begin(), ws.end(), [](const auto & kv) { return kv.first >= 0; });
 | ||
|     LOG_INF("\nComputing weighted average statistics per layer (%d layers)\n", layers);
 | ||
|     LOG_INF("\n%s\t%s\t%s\t%s\n", "  Layer", "     μΣ(Act²)", "      μZD", "μCosSim");
 | ||
|     LOG_INF("================================================\n");
 | ||
|     for (const auto & [first, second] : ws) {
 | ||
|         const auto & layer = first;
 | ||
|         const auto & stats = second;
 | ||
| 
 | ||
|         if (stats.total_elements == 0) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         if (layer >= 0) {
 | ||
|             const float bias   = stats.weighted_bias / stats.total_elements;
 | ||
|             const float zd     = stats.weighted_zd / stats.total_elements;
 | ||
|             const float cossim = stats.weighted_cossim / stats.total_elements;
 | ||
| 
 | ||
|             LOG_INF("%5d\t%14.2f\t%10.4f%%\t%6.4f\n", layer, bias, 100.0f * zd, cossim);
 | ||
|         }
 | ||
|     }
 | ||
|     LOG_INF("\n");
 | ||
| 
 | ||
|     return true;
 | ||
| }
 | ||
| 
 | ||
| int main(int argc, char ** argv) {
 | ||
|     common_params params;
 | ||
| 
 | ||
|     params.out_file = "imatrix.gguf";
 | ||
| 
 | ||
|     params.n_ctx = 512;
 | ||
|     params.escape = false;
 | ||
| 
 | ||
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
 | ||
|         return 1;
 | ||
|     }
 | ||
| 
 | ||
|     if (params.show_statistics) {
 | ||
|         if (!show_statistics(params)) {
 | ||
|             return 1;
 | ||
|         }
 | ||
|         return 0;
 | ||
|     }
 | ||
| 
 | ||
|     common_init();
 | ||
| 
 | ||
|     const int32_t n_ctx = params.n_ctx;
 | ||
| 
 | ||
|     if (n_ctx <= 0) {
 | ||
|         LOG_ERR("%s: imatrix tool requires '--ctx-size' > 0\n", __func__);
 | ||
|         return 1;
 | ||
|     }
 | ||
| 
 | ||
|     {
 | ||
|         const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
 | ||
|         const int32_t n_kv = n_seq * n_ctx;
 | ||
| 
 | ||
|         params.n_parallel = n_seq;
 | ||
|         params.n_ctx      = n_kv;
 | ||
| 
 | ||
|         params.n_batch = std::min(params.n_batch, n_kv);
 | ||
|     }
 | ||
| 
 | ||
|     g_collector.set_params(params);
 | ||
| 
 | ||
|     for (const auto & in_file : params.in_files) {
 | ||
|         LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
 | ||
|         if (!g_collector.load_imatrix(in_file.c_str())) {
 | ||
|             LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str());
 | ||
|             return 1;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (params.prompt.empty()) {
 | ||
|         LOG_INF("No prompt provided; combining precomputed matrices only.\n");
 | ||
| 
 | ||
|         if (params.in_files.empty()) {
 | ||
|             LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
 | ||
|             return 1;
 | ||
|         }
 | ||
| 
 | ||
|         if (params.in_files.size() == 1) {
 | ||
|             LOG_INF("%s : saving imatrix to '%s'\n", __func__, params.out_file.c_str());
 | ||
|         } else if (params.in_files.size() > 1) {
 | ||
|             LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
 | ||
|         }
 | ||
| 
 | ||
|         g_collector.save_imatrix();
 | ||
| 
 | ||
|         return 0;
 | ||
|     }
 | ||
| 
 | ||
|     llama_backend_init();
 | ||
|     llama_numa_init(params.numa);
 | ||
| 
 | ||
|     // pass the callback to the backend scheduler
 | ||
|     // it will be executed for each node during the graph computation
 | ||
|     params.cb_eval = ik_collect_imatrix;
 | ||
|     params.cb_eval_user_data = NULL;
 | ||
|     params.warmup = false;
 | ||
| 
 | ||
|     // init
 | ||
|     common_init_result llama_init = common_init_from_params(params);
 | ||
| 
 | ||
|     llama_model * model = llama_init.model.get();
 | ||
|     llama_context * ctx = llama_init.context.get();
 | ||
| 
 | ||
|     if (model == nullptr || ctx == nullptr) {
 | ||
|         LOG_ERR("%s : failed to init\n", __func__);
 | ||
|         return 1;
 | ||
|     }
 | ||
| 
 | ||
|     const int n_ctx_train = llama_model_n_ctx_train(model);
 | ||
|     if (params.n_ctx > n_ctx_train) {
 | ||
|         LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
 | ||
|                 __func__, n_ctx_train, params.n_ctx);
 | ||
|     }
 | ||
| 
 | ||
|     // print system information
 | ||
|     {
 | ||
|         LOG_INF("\n");
 | ||
|         LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | ||
|     }
 | ||
| 
 | ||
|     if (!compute_imatrix(ctx, params, n_ctx)) {
 | ||
|         return 1;
 | ||
|     }
 | ||
| 
 | ||
|     g_collector.save_imatrix();
 | ||
| 
 | ||
|     LOG("\n");
 | ||
|     llama_perf_context_print(ctx);
 | ||
| 
 | ||
|     llama_backend_free();
 | ||
| 
 | ||
|     return 0;
 | ||
| }
 |