mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 f2a789e334
			
		
	
	f2a789e334
	
	
	
		
			
			* ggml : make gallocr respect the backend's max buffer size * if the graph requires more memory than can fit into a single allocation, split it into multiple backend buffers * vulkan: report the actual max allocation size in buffer type interface * fix missing newline, apple-clang warning * track size of individual chunks in ggml_dyn_tallocr and raise max chunks. revert to use suballocation_block_size as max chunk size for vulkan. * track (chunk, offset) pairs instead of "global" offsets through gallocr. * simpler, don't need loops to map between local/global offsets * touches more code * fix dyn_tallocr_max_size and initialization * fix memory leak when buffers are reused due to same buffer type appearing multiple times * make vbuffer allocation follow the same logic as backend_buffer did before * continue to use leftover unallocated space of previous chunks after a new one has been created * treat free blocks of each chunk as separate list * they're still allocated together, but start/end of each chunk is tracked, and allocate/free iterate over sub-ranges * exhaust freed blocks of all chunks before considering their last blocks with unallocated space * start with 0 chunks/blocks and create chunks as needed * allow the last chunk to grow beyond max size * refactor: move adding new free block and new chunk into separate functions * allocate chunks individually with a separate free-blocks list for each one * needs a bit more memory/allocations/indirections, but code is simpler * fix warnings (missing static) & debug checks
		
			
				
	
	
		
			656 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			656 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| // GGML internal header
 | |
| 
 | |
| #include "ggml.h"
 | |
| #include "gguf.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <math.h>
 | |
| #include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
 | |
| #include <stdbool.h>
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #ifdef __ARM_FEATURE_SVE
 | |
| #include <arm_sve.h>
 | |
| #endif // __ARM_FEATURE_SVE
 | |
| 
 | |
| #if defined(__ARM_NEON) && !defined(__CUDACC__) && !defined(__MUSACC__)
 | |
| // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
 | |
| //
 | |
| //   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
 | |
| //
 | |
| #include <arm_neon.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(__F16C__)
 | |
| #include <immintrin.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| void ggml_print_backtrace(void);
 | |
| 
 | |
| #ifndef MIN
 | |
| #    define MIN(a, b) ((a) < (b) ? (a) : (b))
 | |
| #endif
 | |
| 
 | |
| #ifndef MAX
 | |
| #    define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| #endif
 | |
| 
 | |
| // required for mmap as gguf only guarantees 32-byte alignment
 | |
| #define TENSOR_ALIGNMENT 32
 | |
| 
 | |
| // static_assert should be a #define, but if it's not,
 | |
| // fall back to the _Static_assert C11 keyword.
 | |
| // if C99 - static_assert is noop
 | |
| // ref: https://stackoverflow.com/a/53923785/4039976
 | |
| #ifndef __cplusplus
 | |
|     #ifndef static_assert
 | |
|         #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
 | |
|             #define static_assert(cond, msg) _Static_assert(cond, msg)
 | |
|         #else
 | |
|             #define static_assert(cond, msg) struct global_scope_noop_trick
 | |
|         #endif
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| static inline int ggml_up32(int n) {
 | |
|     return (n + 31) & ~31;
 | |
| }
 | |
| 
 | |
| //static inline int ggml_up64(int n) {
 | |
| //    return (n + 63) & ~63;
 | |
| //}
 | |
| 
 | |
| static inline int ggml_up(int n, int m) {
 | |
|     // assert m is a power of 2
 | |
|     GGML_ASSERT((m & (m - 1)) == 0);
 | |
|     return (n + m - 1) & ~(m - 1);
 | |
| }
 | |
| 
 | |
| // TODO: move to ggml.h? (won't be able to inline)
 | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
 | |
|     if (a->type != b->type) {
 | |
|         return false;
 | |
|     }
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         if (a->ne[i] != b->ne[i]) {
 | |
|             return false;
 | |
|         }
 | |
|         if (a->nb[i] != b->nb[i]) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool ggml_op_is_empty(enum ggml_op op) {
 | |
|     switch (op) {
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_PERMUTE:
 | |
|             return true;
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // logging
 | |
| //
 | |
| 
 | |
| GGML_ATTRIBUTE_FORMAT(2, 3)
 | |
| GGML_API void ggml_log_internal        (enum ggml_log_level level, const char * format, ...);
 | |
| GGML_API void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data);
 | |
| 
 | |
| #define GGML_LOG(...)       ggml_log_internal(GGML_LOG_LEVEL_NONE , __VA_ARGS__)
 | |
| #define GGML_LOG_INFO(...)  ggml_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
 | |
| #define GGML_LOG_WARN(...)  ggml_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
 | |
| #define GGML_LOG_ERROR(...) ggml_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
 | |
| #define GGML_LOG_DEBUG(...) ggml_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
 | |
| #define GGML_LOG_CONT(...)  ggml_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__)
 | |
| 
 | |
| #define GGML_DEBUG 0
 | |
| 
 | |
| #if (GGML_DEBUG >= 1)
 | |
| #define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 5)
 | |
| #define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_5(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 10)
 | |
| #define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_10(...)
 | |
| #endif
 | |
| 
 | |
| // tensor params
 | |
| 
 | |
| static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
 | |
|     GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
 | |
|     assert(params_size <= GGML_MAX_OP_PARAMS);
 | |
|     memcpy(tensor->op_params, params, params_size);
 | |
| }
 | |
| 
 | |
| static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
 | |
|     assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
 | |
|     return ((const int32_t *)(tensor->op_params))[i];
 | |
| }
 | |
| 
 | |
| static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
 | |
|     assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
 | |
|     return ((const float *)(tensor->op_params))[i];
 | |
| }
 | |
| 
 | |
| static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
 | |
|     assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
 | |
|     ((int32_t *)(tensor->op_params))[i] = value;
 | |
| }
 | |
| 
 | |
| static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
 | |
|     assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
 | |
|     ((float *)(tensor->op_params))[i] = value;
 | |
| }
 | |
| 
 | |
| struct ggml_map_custom1_op_params {
 | |
|     ggml_custom1_op_t  fun;
 | |
|     int                n_tasks;
 | |
|     void             * userdata;
 | |
| };
 | |
| 
 | |
| struct ggml_map_custom2_op_params {
 | |
|     ggml_custom2_op_t   fun;
 | |
|     int                 n_tasks;
 | |
|     void              * userdata;
 | |
| };
 | |
| 
 | |
| struct ggml_map_custom3_op_params {
 | |
|     ggml_custom3_op_t fun;
 | |
|     int               n_tasks;
 | |
|     void            * userdata;
 | |
| };
 | |
| 
 | |
| struct ggml_custom_op_params {
 | |
|     ggml_custom_op_t fun;
 | |
|     int              n_tasks;
 | |
|     void           * userdata;
 | |
| };
 | |
| 
 | |
| // bitset
 | |
| 
 | |
| typedef uint32_t ggml_bitset_t;
 | |
| 
 | |
| static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
 | |
| #define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
 | |
| #define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
 | |
| 
 | |
| static size_t ggml_bitset_size(size_t n) {
 | |
|     return (n + BITSET_MASK) >> BITSET_SHR;
 | |
| }
 | |
| 
 | |
| static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) {
 | |
|     return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK)));
 | |
| }
 | |
| 
 | |
| static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) {
 | |
|     bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK));
 | |
| }
 | |
| 
 | |
| static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) {
 | |
|     bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK));
 | |
| }
 | |
| 
 | |
| // hash set
 | |
| 
 | |
| #define GGML_HASHSET_FULL ((size_t)-1)
 | |
| #define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
 | |
| 
 | |
| struct ggml_hash_set {
 | |
|     size_t size;
 | |
|     ggml_bitset_t * used;       // whether or not the keys are in use i.e. set
 | |
|     struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i)
 | |
| };
 | |
| 
 | |
| struct ggml_hash_set ggml_hash_set_new(size_t size);
 | |
| void                 ggml_hash_set_free(struct ggml_hash_set * hash_set);
 | |
| 
 | |
| // returns the minimum size for a hash set that can hold min_sz elements
 | |
| size_t ggml_hash_size(size_t min_sz);
 | |
| 
 | |
| // remove all elements from the hash set
 | |
| void ggml_hash_set_reset(struct ggml_hash_set * hash_set);
 | |
| 
 | |
| // returns true if key is in the hash set
 | |
| static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
 | |
| 
 | |
| // returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted
 | |
| static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key);
 | |
| 
 | |
| // returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
 | |
| static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
 | |
| 
 | |
| // return index, asserts if table is full
 | |
| static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
 | |
| 
 | |
| // hash function for ggml_tensor
 | |
| static inline size_t ggml_hash(const struct ggml_tensor * p) {
 | |
|     // the last 4 bits are always zero due to alignment
 | |
|     return (size_t)(uintptr_t)p >> 4;
 | |
| }
 | |
| 
 | |
| static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key) {
 | |
|     size_t h = ggml_hash(key) % hash_set->size;
 | |
| 
 | |
|     // linear probing
 | |
|     size_t i = h;
 | |
|     while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) {
 | |
|         i = (i + 1) % hash_set->size;
 | |
|         if (i == h) {
 | |
|             // visited all hash table entries -> not found
 | |
|             return GGML_HASHSET_FULL;
 | |
|         }
 | |
|     }
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
 | |
|     size_t i = ggml_hash_find(hash_set, key);
 | |
|     return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i);
 | |
| }
 | |
| 
 | |
| static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
 | |
|     size_t h = ggml_hash(key) % hash_set->size;
 | |
| 
 | |
|     // linear probing
 | |
|     size_t i = h;
 | |
|     do {
 | |
|         if (!ggml_bitset_get(hash_set->used, i)) {
 | |
|             ggml_bitset_set(hash_set->used, i);
 | |
|             hash_set->keys[i] = key;
 | |
|             return i;
 | |
|         }
 | |
|         if (hash_set->keys[i] == key) {
 | |
|             return GGML_HASHSET_ALREADY_EXISTS;
 | |
|         }
 | |
|         i = (i + 1) % hash_set->size;
 | |
|     } while (i != h);
 | |
| 
 | |
|     // visited all hash table entries -> not found
 | |
|     GGML_ABORT("fatal error");
 | |
| }
 | |
| 
 | |
| static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
 | |
|     size_t h = ggml_hash(key) % hash_set->size;
 | |
| 
 | |
|     // linear probing
 | |
|     size_t i = h;
 | |
|     do {
 | |
|         if (!ggml_bitset_get(hash_set->used, i)) {
 | |
|             ggml_bitset_set(hash_set->used, i);
 | |
|             hash_set->keys[i] = key;
 | |
|             return i;
 | |
|         }
 | |
|         if (hash_set->keys[i] == key) {
 | |
|             return i;
 | |
|         }
 | |
|         i = (i + 1) % hash_set->size;
 | |
|     } while (i != h);
 | |
| 
 | |
|     // visited all hash table entries -> not found
 | |
|     GGML_ABORT("fatal error");
 | |
| }
 | |
| 
 | |
| // computation graph
 | |
| 
 | |
| enum ggml_cgraph_eval_order {
 | |
|     GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
 | |
|     GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
 | |
|     GGML_CGRAPH_EVAL_ORDER_COUNT
 | |
| };
 | |
| 
 | |
| struct ggml_cgraph {
 | |
|     int size;    // maximum number of nodes/leafs/grads/grad_accs
 | |
|     int n_nodes; // number of nodes currently in use
 | |
|     int n_leafs; // number of leafs currently in use
 | |
| 
 | |
|     struct ggml_tensor ** nodes;     // tensors with data that can change if the graph is evaluated
 | |
|     struct ggml_tensor ** grads;     // the outputs of these tensors are the gradients of the nodes
 | |
|     struct ggml_tensor ** grad_accs; // accumulators for node gradients
 | |
|     struct ggml_tensor ** leafs;     // tensors with constant data
 | |
|     int32_t             * use_counts;// number of uses of each tensor, indexed by hash table slot
 | |
| 
 | |
|     struct ggml_hash_set visited_hash_set;
 | |
| 
 | |
|     enum ggml_cgraph_eval_order order;
 | |
| };
 | |
| 
 | |
| // returns a slice of cgraph with nodes [i0, i1)
 | |
| // the slice does not have leafs or gradients
 | |
| // if you need the gradients, get them from the original graph
 | |
| struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
 | |
| 
 | |
| // ggml-alloc.c: true if the operation can reuse memory from its sources
 | |
| GGML_API bool ggml_op_can_inplace(enum ggml_op op);
 | |
| 
 | |
| 
 | |
| // Memory allocation
 | |
| 
 | |
| GGML_API void * ggml_aligned_malloc(size_t size);
 | |
| GGML_API void ggml_aligned_free(void * ptr, size_t size);
 | |
| 
 | |
| // FP16 <-> FP32
 | |
| // ref: https://github.com/Maratyszcza/FP16
 | |
| 
 | |
| static inline float fp32_from_bits(uint32_t w) {
 | |
|     union {
 | |
|         uint32_t as_bits;
 | |
|         float as_value;
 | |
|     } fp32;
 | |
|     fp32.as_bits = w;
 | |
|     return fp32.as_value;
 | |
| }
 | |
| 
 | |
| static inline uint32_t fp32_to_bits(float f) {
 | |
|     union {
 | |
|         float as_value;
 | |
|         uint32_t as_bits;
 | |
|     } fp32;
 | |
|     fp32.as_value = f;
 | |
|     return fp32.as_bits;
 | |
| }
 | |
| 
 | |
| static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
 | |
|     const uint32_t w = (uint32_t) h << 16;
 | |
|     const uint32_t sign = w & UINT32_C(0x80000000);
 | |
|     const uint32_t two_w = w + w;
 | |
| 
 | |
|     const uint32_t exp_offset = UINT32_C(0xE0) << 23;
 | |
| #if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L)
 | |
|     const float exp_scale = 0x1.0p-112f;
 | |
| #else
 | |
|     const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
 | |
| #endif
 | |
|     const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
 | |
| 
 | |
|     const uint32_t magic_mask = UINT32_C(126) << 23;
 | |
|     const float magic_bias = 0.5f;
 | |
|     const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
 | |
| 
 | |
|     const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
 | |
|     const uint32_t result = sign |
 | |
|         (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
 | |
|     return fp32_from_bits(result);
 | |
| }
 | |
| 
 | |
| static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
 | |
| #if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L)
 | |
|     const float scale_to_inf = 0x1.0p+112f;
 | |
|     const float scale_to_zero = 0x1.0p-110f;
 | |
| #else
 | |
|     const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
 | |
|     const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
 | |
| #endif
 | |
|     float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
 | |
| 
 | |
|     const uint32_t w = fp32_to_bits(f);
 | |
|     const uint32_t shl1_w = w + w;
 | |
|     const uint32_t sign = w & UINT32_C(0x80000000);
 | |
|     uint32_t bias = shl1_w & UINT32_C(0xFF000000);
 | |
|     if (bias < UINT32_C(0x71000000)) {
 | |
|         bias = UINT32_C(0x71000000);
 | |
|     }
 | |
| 
 | |
|     base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
 | |
|     const uint32_t bits = fp32_to_bits(base);
 | |
|     const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
 | |
|     const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
 | |
|     const uint32_t nonsign = exp_bits + mantissa_bits;
 | |
|     return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
 | |
| }
 | |
| 
 | |
| #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
 | |
| #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
 | |
| 
 | |
| #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
 | |
| #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
 | |
| 
 | |
| static inline float ggml_e8m0_to_fp32(uint8_t x) {
 | |
|     uint32_t bits;  // Stores the raw bit representation of the float
 | |
| 
 | |
|     // Handle special case for minimum exponent (denormalized float)
 | |
|     if (x == 0) {
 | |
|         // Bit pattern for 2^(-127):
 | |
|         // - Sign bit: 0 (positive)
 | |
|         // - Exponent: 0 (denormalized number)
 | |
|         // - Mantissa: 0x400000 (0.5 in fractional form)
 | |
|         // Value = 0.5 * 2^(-126) = 2^(-127)
 | |
|         bits = 0x00400000;
 | |
|     }
 | |
|     // note: disabled as we don't need to handle NaNs
 | |
|     //// Handle special case for NaN (all bits set)
 | |
|     //else if (x == 0xFF) {
 | |
|     //    // Standard quiet NaN pattern:
 | |
|     //    // - Sign bit: 0
 | |
|     //    // - Exponent: all 1s (0xFF)
 | |
|     //    // - Mantissa: 0x400000 (quiet NaN flag)
 | |
|     //    bits = 0x7FC00000;
 | |
|     //}
 | |
|     // Normalized values (most common case)
 | |
|     else {
 | |
|         // Construct normalized float by shifting exponent into position:
 | |
|         // - Exponent field: 8 bits (positions 30-23)
 | |
|         // - Mantissa: 0 (implicit leading 1)
 | |
|         // Value = 2^(x - 127)
 | |
|         bits = (uint32_t) x << 23;
 | |
|     }
 | |
| 
 | |
|     float result;  // Final float value
 | |
|                    // Safely reinterpret bit pattern as float without type-punning issues
 | |
|     memcpy(&result, &bits, sizeof(float));
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Equal to ggml_e8m0_to_fp32/2
 | |
| // Useful with MXFP4 quantization since the E0M2 values are doubled
 | |
| static inline float ggml_e8m0_to_fp32_half(uint8_t x) {
 | |
|     uint32_t bits;
 | |
| 
 | |
|     // For x < 2: use precomputed denormal patterns
 | |
|     if (x < 2) {
 | |
|         // 0x00200000 = 2^(-128), 0x00400000 = 2^(-127)
 | |
|         bits = 0x00200000 << x;
 | |
|     }
 | |
|     // For x >= 2: normalized exponent adjustment
 | |
|     else {
 | |
|         // 0.5 * 2^(x-127) = 2^(x-128) = normalized with exponent (x-1)
 | |
|         bits = (uint32_t)(x - 1) << 23;
 | |
|     }
 | |
|     // Note: NaNs are not handled here
 | |
| 
 | |
|     float result;
 | |
|     memcpy(&result, &bits, sizeof(float));
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #define GGML_E8M0_TO_FP32(x) ggml_e8m0_to_fp32(x)
 | |
| #define GGML_E8M0_TO_FP32_HALF(x) ggml_e8m0_to_fp32_half(x)
 | |
| 
 | |
| /**
 | |
|  * Converts brain16 to float32.
 | |
|  *
 | |
|  * The bfloat16 floating point format has the following structure:
 | |
|  *
 | |
|  *       ┌sign
 | |
|  *       │
 | |
|  *       │   ┌exponent
 | |
|  *       │   │
 | |
|  *       │   │      ┌mantissa
 | |
|  *       │   │      │
 | |
|  *       │┌──┴───┐┌─┴───┐
 | |
|  *     0b0000000000000000 brain16
 | |
|  *
 | |
|  * Since bf16 has the same number of exponent bits as a 32bit float,
 | |
|  * encoding and decoding numbers becomes relatively straightforward.
 | |
|  *
 | |
|  *       ┌sign
 | |
|  *       │
 | |
|  *       │   ┌exponent
 | |
|  *       │   │
 | |
|  *       │   │      ┌mantissa
 | |
|  *       │   │      │
 | |
|  *       │┌──┴───┐┌─┴───────────────────┐
 | |
|  *     0b00000000000000000000000000000000 IEEE binary32
 | |
|  *
 | |
|  * For comparison, the standard fp16 format has fewer exponent bits.
 | |
|  *
 | |
|  *       ┌sign
 | |
|  *       │
 | |
|  *       │  ┌exponent
 | |
|  *       │  │
 | |
|  *       │  │    ┌mantissa
 | |
|  *       │  │    │
 | |
|  *       │┌─┴─┐┌─┴──────┐
 | |
|  *     0b0000000000000000 IEEE binary16
 | |
|  *
 | |
|  * @see IEEE 754-2008
 | |
|  */
 | |
| static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
 | |
|     union {
 | |
|         float f;
 | |
|         uint32_t i;
 | |
|     } u;
 | |
|     u.i = (uint32_t)h.bits << 16;
 | |
|     return u.f;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Converts float32 to brain16.
 | |
|  *
 | |
|  * This is binary identical with Google Brain float conversion.
 | |
|  * Floats shall round to nearest even, and NANs shall be quiet.
 | |
|  * Subnormals aren't flushed to zero, except perhaps when used.
 | |
|  * This code should vectorize nicely if using modern compilers.
 | |
|  */
 | |
| static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
 | |
|     ggml_bf16_t h;
 | |
|     union {
 | |
|         float f;
 | |
|         uint32_t i;
 | |
|     } u;
 | |
|     u.f = s;
 | |
|     if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
 | |
|         h.bits = (u.i >> 16) | 64; /* force to quiet */
 | |
|         return h;
 | |
|     }
 | |
|     h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
 | |
| #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
 | |
| 
 | |
| // return true if the node's results are only used by N other nodes
 | |
| // and can be fused into their calculations.
 | |
| static inline bool ggml_node_has_n_uses(const struct ggml_cgraph * cgraph, int node_idx, int32_t n_uses) {
 | |
|     const struct ggml_tensor * node = cgraph->nodes[node_idx];
 | |
| 
 | |
|     // check the use count against how many we're replacing
 | |
|     size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
 | |
|     if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos) || cgraph->use_counts[hash_pos] != n_uses) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // if node is a view, some other node might be using the intermediate result
 | |
|     // via the view source.
 | |
|     if (node->view_src) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If the user requested output for the node, can't fuse
 | |
|     if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Returns true if nodes with indices { node_idxs } are the sequence of ggml_ops in ops[]
 | |
| // and are fusable. Nodes are considered fusable according to this function if:
 | |
| // - all nodes except the last have only one use and are not views/outputs (see ggml_node_has_N_uses).
 | |
| // - all nodes except the last are a src of the following node.
 | |
| // - all nodes are the same shape.
 | |
| // TODO: Consider allowing GGML_OP_NONE nodes in between
 | |
| static inline bool ggml_can_fuse_ext(const struct ggml_cgraph * cgraph, const int * node_idxs, const enum ggml_op * ops, int num_ops) {
 | |
|     for (int i = 0; i < num_ops; ++i) {
 | |
|         if (node_idxs[i] >= cgraph->n_nodes) {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         struct ggml_tensor * node = cgraph->nodes[node_idxs[i]];
 | |
|         if (node->op != ops[i]) {
 | |
|             return false;
 | |
|         }
 | |
|         if (i < num_ops - 1 && !ggml_node_has_n_uses(cgraph, node_idxs[i], 1)) {
 | |
|             return false;
 | |
|         }
 | |
|         if (i > 0) {
 | |
|             struct ggml_tensor * prev = cgraph->nodes[node_idxs[i - 1]];
 | |
|             if (node->src[0] != prev && node->src[1] != prev) {
 | |
|                 return false;
 | |
|             }
 | |
|             if (!ggml_are_same_shape(node, prev)) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // same as above, for sequential indices starting at node_idx
 | |
| static inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, const enum ggml_op * ops, int num_ops) {
 | |
|     assert(num_ops < 32);
 | |
| 
 | |
|     if (node_idx + num_ops > cgraph->n_nodes) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     int idxs[32];
 | |
|     for (int i = 0; i < num_ops; ++i) {
 | |
|         idxs[i] = node_idx + i;
 | |
|     }
 | |
| 
 | |
|     return ggml_can_fuse_ext(cgraph, idxs, ops, num_ops);
 | |
| }
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| #include <initializer_list>
 | |
| #include <vector>
 | |
| 
 | |
| // nicer C++ syntax for ggml_can_fuse
 | |
| inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
 | |
|     return ggml_can_fuse(cgraph, node_idx, ops.begin(), (int)ops.size());
 | |
| }
 | |
| 
 | |
| // expose GGUF internals for test code
 | |
| GGML_API size_t gguf_type_size(enum gguf_type type);
 | |
| GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
 | |
| GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta);
 | |
| #endif // __cplusplus
 |