mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* py : add XLMRobertaForSequenceClassification [no ci] * py : fix scalar-tensor conversion [no ci] * py : fix position embeddings chop [no ci] * llama : read new cls tensors [no ci] * llama : add classigication head (wip) [no ci] * llama : add "rank" pooling type ggml-ci * server : add rerank endpoint ggml-ci * llama : aboud ggml_repeat during classification * rerank : cleanup + comments * server : accept /rerank endpoint in addition to /v1/rerank [no ci] * embedding : parse special tokens * jina : support v1 reranker * vocab : minor style ggml-ci * server : initiate tests for later ggml-ci * server : add docs * llama : add comment [no ci] * llama : fix uninitialized tensors * ci : add rerank tests ggml-ci * add reranking test * change test data * Update examples/server/server.cpp Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * add `--reranking` argument * update server docs * llama : fix comment [no ci] ggml-ci --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co> Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
		
			
				
	
	
		
			114 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Gherkin
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Gherkin
		
	
	
	
	
	
@llama.cpp
 | 
						|
@embeddings
 | 
						|
Feature: llama.cpp server
 | 
						|
 | 
						|
  Background: Server startup
 | 
						|
    Given a server listening on localhost:8080
 | 
						|
    And   a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf
 | 
						|
    And   a model file bert-bge-small.gguf
 | 
						|
    And   a model alias bert-bge-small
 | 
						|
    And   42 as server seed
 | 
						|
    And   2 slots
 | 
						|
    # the bert-bge-small model has context size of 512
 | 
						|
    # since the generated prompts are as big as the batch size, we need to set the batch size to <= 512
 | 
						|
    # ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20
 | 
						|
    And   128 as batch size
 | 
						|
    And   128 as ubatch size
 | 
						|
    And   512 KV cache size
 | 
						|
    And   enable embeddings endpoint
 | 
						|
    Then  the server is starting
 | 
						|
    Then  the server is healthy
 | 
						|
 | 
						|
  Scenario: Embedding
 | 
						|
    When embeddings are computed for:
 | 
						|
    """
 | 
						|
    What is the capital of Bulgaria ?
 | 
						|
    """
 | 
						|
    Then embeddings are generated
 | 
						|
 | 
						|
  Scenario: Embedding (error: prompt too long)
 | 
						|
    When embeddings are computed for:
 | 
						|
    """
 | 
						|
    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
 | 
						|
    Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
 | 
						|
    Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
 | 
						|
    Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
 | 
						|
    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
 | 
						|
    Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
 | 
						|
    Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
 | 
						|
    Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
 | 
						|
    """
 | 
						|
    And  embeddings request with 500 api error
 | 
						|
 | 
						|
  Scenario: OAI Embeddings compatibility
 | 
						|
    Given a model bert-bge-small
 | 
						|
    When an OAI compatible embeddings computation request for:
 | 
						|
    """
 | 
						|
    What is the capital of Spain ?
 | 
						|
    """
 | 
						|
    Then embeddings are generated
 | 
						|
 | 
						|
  Scenario: OAI Embeddings compatibility with multiple inputs
 | 
						|
    Given a model bert-bge-small
 | 
						|
    Given a prompt:
 | 
						|
      """
 | 
						|
      In which country Paris is located ?
 | 
						|
      """
 | 
						|
    And a prompt:
 | 
						|
      """
 | 
						|
      Is Madrid the capital of Spain ?
 | 
						|
      """
 | 
						|
    When an OAI compatible embeddings computation request for multiple inputs
 | 
						|
    Then embeddings are generated
 | 
						|
 | 
						|
  Scenario: Multi users embeddings
 | 
						|
    Given a prompt:
 | 
						|
      """
 | 
						|
      Write a very long story about AI.
 | 
						|
      """
 | 
						|
    And a prompt:
 | 
						|
      """
 | 
						|
      Write another very long music lyrics.
 | 
						|
      """
 | 
						|
    And a prompt:
 | 
						|
      """
 | 
						|
      Write a very long poem.
 | 
						|
      """
 | 
						|
    And a prompt:
 | 
						|
      """
 | 
						|
      Write a very long joke.
 | 
						|
      """
 | 
						|
    Given concurrent embedding requests
 | 
						|
    Then the server is busy
 | 
						|
    Then the server is idle
 | 
						|
    Then all embeddings are generated
 | 
						|
 | 
						|
  Scenario: Multi users OAI compatibility embeddings
 | 
						|
    Given a prompt:
 | 
						|
      """
 | 
						|
      In which country Paris is located ?
 | 
						|
      """
 | 
						|
    And a prompt:
 | 
						|
      """
 | 
						|
      Is Madrid the capital of Spain ?
 | 
						|
      """
 | 
						|
    And a prompt:
 | 
						|
      """
 | 
						|
      What is the biggest US city ?
 | 
						|
      """
 | 
						|
    And a prompt:
 | 
						|
      """
 | 
						|
      What is the capital of Bulgaria ?
 | 
						|
      """
 | 
						|
    And   a model bert-bge-small
 | 
						|
    Given concurrent OAI embedding requests
 | 
						|
    Then the server is busy
 | 
						|
    Then the server is idle
 | 
						|
    Then all embeddings are generated
 | 
						|
 | 
						|
  Scenario: All embeddings should be the same
 | 
						|
    Given 10 fixed prompts
 | 
						|
    And   a model bert-bge-small
 | 
						|
    Given concurrent OAI embedding requests
 | 
						|
    Then all embeddings are the same
 |