mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 5bf3953d7e
			
		
	
	5bf3953d7e
	
	
	
		
			
			* cuda : improve cuda pool efficiency using virtual memory * fix mixtral * fix cmake build * check for vmm support, disable for hip ggml-ci * fix hip build * clarify granularity * move all caps to g_device_caps * refactor error checking * add cuda_pool_alloc, refactor most pool allocations ggml-ci * fix hip build * CUBLAS_TF32_TENSOR_OP_MATH is not a macro * more hip crap * llama : fix msvc warnings * ggml : fix msvc warnings * minor * minor * cuda : fallback to CPU on host buffer alloc fail * Update ggml-cuda.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Update ggml-cuda.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * ensure allocations are always aligned * act_size -> actual_size --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
		
			
				
	
	
		
			1607 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1607 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
 | |
| #include "ggml.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cassert>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| #if defined(__GNUC__)
 | |
| #pragma GCC diagnostic ignored "-Wdouble-promotion"
 | |
| #endif
 | |
| 
 | |
| #define MAX_NARGS 3
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| 
 | |
| #define GGML_SILU_FP16
 | |
| 
 | |
| //
 | |
| // logging
 | |
| //
 | |
| 
 | |
| #if (GGML_DEBUG >= 1)
 | |
| #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 5)
 | |
| #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_5(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 10)
 | |
| #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_10(...)
 | |
| #endif
 | |
| 
 | |
| #define GGML_PRINT(...) printf(__VA_ARGS__)
 | |
| 
 | |
| static float frand(void) {
 | |
|     return (float)rand()/(float)RAND_MAX;
 | |
| }
 | |
| 
 | |
| static int irand(int n) {
 | |
|     if (n == 0) return 0;
 | |
|     return rand()%n;
 | |
| }
 | |
| 
 | |
| static void get_random_dims(int64_t * dims, int ndims) {
 | |
|     dims[0] = dims[1] = dims[2] = dims[3] = 1;
 | |
| 
 | |
|     for (int i = 0; i < ndims; i++) {
 | |
|         dims[i] = 1 + irand(4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_random_tensor_f32(
 | |
|         struct ggml_context * ctx0,
 | |
|         int ndims,
 | |
|         int64_t ne[],
 | |
|         float fmin,
 | |
|         float fmax) {
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
 | |
| 
 | |
|     switch (ndims) {
 | |
|         case 1:
 | |
|             for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                 ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                     ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                         ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             for (int i3 = 0; i3 < ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                             ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_random_tensor_f16(
 | |
|         struct ggml_context * ctx0,
 | |
|         int ndims,
 | |
|         int64_t ne[],
 | |
|         float fmin,
 | |
|         float fmax) {
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F16, ndims, ne);
 | |
| 
 | |
|     switch (ndims) {
 | |
|         case 1:
 | |
|             for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                 ((ggml_fp16_t *)result->data)[i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                     ((ggml_fp16_t *)result->data)[i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                         ((ggml_fp16_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             for (int i3 = 0; i3 < ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                             ((ggml_fp16_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_random_tensor_i32(
 | |
|         struct ggml_context * ctx0,
 | |
|         int ndims,
 | |
|         int64_t ne[],
 | |
|         int32_t imin,
 | |
|         int32_t imax) {
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_I32, ndims, ne);
 | |
| 
 | |
|     switch (ndims) {
 | |
|         case 1:
 | |
|             for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                 ((int32_t *)result->data)[i0] = irand(imax - imin) + imin;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                     ((int32_t *)result->data)[i1*ne[0] + i0] = irand(imax - imin) + imin;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                         ((int32_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = irand(imax - imin) + imin;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             for (int i3 = 0; i3 < ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                             ((int32_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = irand(imax - imin) + imin;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static bool check_gradient(
 | |
|         const char * op_name,
 | |
|         struct ggml_context * ctx0,
 | |
|         struct ggml_tensor * x[],
 | |
|         struct ggml_tensor * f,
 | |
|         int ndims,
 | |
|         int nargs,
 | |
|         float eps,
 | |
|         float max_error_abs,
 | |
|         float max_error_rel) {
 | |
| 
 | |
|     static int n_threads = -1;
 | |
|     if (n_threads < 0) {
 | |
|         n_threads = GGML_DEFAULT_N_THREADS;
 | |
| 
 | |
|         const char *env = getenv("GGML_N_THREADS");
 | |
|         if (env) {
 | |
|             n_threads = atoi(env);
 | |
|         }
 | |
| 
 | |
|         printf("GGML_N_THREADS = %d\n", n_threads);
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true);
 | |
|     struct ggml_cgraph * gb = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true);
 | |
|     ggml_build_forward_expand(gf, f);
 | |
|     ggml_graph_cpy(gf, gb);
 | |
|     ggml_build_backward_expand(ctx0, gf, gb, false);
 | |
| 
 | |
|     ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
 | |
| 
 | |
|     ggml_graph_reset  (gf);
 | |
|     ggml_set_f32      (f->grad, 1.0f);
 | |
| 
 | |
|     ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
 | |
| 
 | |
|     // ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot");
 | |
|     // ggml_graph_dump_dot(gb, gf,  "test-grad0-backward.dot");
 | |
| 
 | |
|     for (int i = 0; i < nargs; ++i) {
 | |
|         const int nelements = ggml_nelements(x[i]);
 | |
|         for (int k = 0; k < nelements; ++k) {
 | |
|             // compute gradient using finite differences
 | |
|             const float x0 = ggml_get_f32_1d(x[i], k);
 | |
|             const float xm = x0 - eps;
 | |
|             const float xp = x0 + eps;
 | |
|             ggml_set_f32_1d(x[i], k, xp);
 | |
| 
 | |
|             ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
 | |
| 
 | |
|             const double f0 = ggml_get_f32_1d(f, 0);
 | |
| 
 | |
|             ggml_set_f32_1d(x[i], k, xm);
 | |
| 
 | |
|             ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
 | |
| 
 | |
|             const double f1 = ggml_get_f32_1d(f, 0);
 | |
|             const double g0 = (f0 - f1)/(2.0*(double) eps);
 | |
| 
 | |
|             ggml_set_f32_1d(x[i], k, x0);
 | |
| 
 | |
|             // compute gradient using backward graph
 | |
|             ggml_graph_reset  (gf);
 | |
|             ggml_set_f32      (f->grad, 1.0f);
 | |
| 
 | |
|             ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
 | |
| 
 | |
|             const double g1 = ggml_get_f32_1d(x[i]->grad, k);
 | |
| 
 | |
|             const double error_abs = fabs(g0 - g1);
 | |
|             const double error_rel = g0 != 0 ? fabs(g0 - g1)/fabs(g0) : 0;
 | |
| 
 | |
|             if (error_abs > max_error_abs || error_rel > max_error_rel) {
 | |
|                 printf("%s: ndims=%d, i=%d, k=%d, x0=%f, xm=%f, xp=%f, f0=%f, f1=%f, g0=%f, g1=%f, eps=%f, error_abs=%f, error_rel=%f\n",
 | |
|                             op_name, ndims, i, k, x0, xm, xp, f0, f1, g0, g1, eps, error_abs, error_rel);
 | |
|                 //assert(false);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // TODO: clean-up this ..
 | |
| static bool check_mat_mul(
 | |
|         const struct ggml_tensor * y,
 | |
|         const struct ggml_tensor * x0,
 | |
|         const struct ggml_tensor * x1) {
 | |
|     float * dst  = (float *) y->data;
 | |
|     float * src0 = (float *) x0->data;
 | |
|     float * src1 = (float *) x1->data;
 | |
| 
 | |
|     const int nc = x0->ne[1];
 | |
|     const int nr = x1->ne[1];
 | |
|     const int nk = x0->ne[0];
 | |
| 
 | |
|     GGML_PRINT_DEBUG("check_mat_mul: nc=%d, nr=%d, nk=%d\n", nc, nr, nk);
 | |
| 
 | |
|     GGML_PRINT_DEBUG("x0:\n");
 | |
|     for (int j = 0; j < x0->ne[1]; ++j) {
 | |
|         for (int i = 0; i < x0->ne[0]; ++i) {
 | |
|             GGML_PRINT_DEBUG("%6.3f ", src0[j*nk + i]);
 | |
|         }
 | |
|         GGML_PRINT_DEBUG("\n");
 | |
|     }
 | |
|     GGML_PRINT_DEBUG("\n");
 | |
| 
 | |
|     GGML_PRINT_DEBUG("x1:\n");
 | |
|     for (int j = 0; j < x1->ne[1]; ++j) {
 | |
|         for (int i = 0; i < x1->ne[0]; ++i) {
 | |
|             GGML_PRINT_DEBUG("%6.3f ", src1[j*nk + i]);
 | |
|         }
 | |
|         GGML_PRINT_DEBUG("\n");
 | |
|     }
 | |
|     GGML_PRINT_DEBUG("\n");
 | |
| 
 | |
|     GGML_PRINT_DEBUG("y: n_dims = %d, (%lld, %lld)\n", y->n_dims, y->ne[0], y->ne[1]);
 | |
|     for (int j = 0; j < y->ne[1]; ++j) {
 | |
|         for (int i = 0; i < y->ne[0]; ++i) {
 | |
|             GGML_PRINT_DEBUG("%6.3f ", dst[j*nr + i]);
 | |
|         }
 | |
|         GGML_PRINT_DEBUG("\n");
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < nr; ++i) {
 | |
|         for (int j = 0; j < nc; ++j) {
 | |
|             float sum = 0.0f;
 | |
| 
 | |
|             for (int k = 0; k < nk; ++k) {
 | |
|                 sum += src0[j*nk + k]*src1[i*nk + k];
 | |
|             }
 | |
| 
 | |
|             if (fabsf(dst[i*nc + j] - sum) > 1e-5f) {
 | |
|                 fprintf(stderr, "check_mat_mul: dst[%d] = %f, sum = %f\n", i*nc + j, dst[i*nc + j], sum);
 | |
|                 assert(false);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #define NUM_PERMUTATIONS (4*3*2*1)
 | |
| 
 | |
| int main(int argc, const char ** argv) {
 | |
|     struct ggml_init_params params = {
 | |
|         /* .mem_size   = */ 256*1024*1024,
 | |
|         /* .mem_buffer = */ NULL,
 | |
|         /* .no_alloc   = */ false,
 | |
|     };
 | |
| 
 | |
|     int64_t ne[4];
 | |
| 
 | |
|     int all_permutations[4 * NUM_PERMUTATIONS];
 | |
|     {
 | |
|         int count = 0;
 | |
|         for (int ax0=0; ax0<4; ++ax0) {
 | |
|             for (int ax1=0; ax1<4; ++ax1) {
 | |
|                 if (ax1 == ax0) continue;
 | |
|                 for (int ax2=0; ax2<4; ++ax2) {
 | |
|                     if (ax2 == ax0) continue;
 | |
|                     if (ax2 == ax1) continue;
 | |
|                     for (int ax3=0; ax3<4; ++ax3) {
 | |
|                         if (ax3 == ax0) continue;
 | |
|                         if (ax3 == ax1) continue;
 | |
|                         if (ax3 == ax2) continue;
 | |
|                         assert(count < NUM_PERMUTATIONS);
 | |
|                         all_permutations[count*4+0] = ax0;
 | |
|                         all_permutations[count*4+1] = ax1;
 | |
|                         all_permutations[count*4+2] = ax2;
 | |
|                         all_permutations[count*4+3] = ax3;
 | |
|                         ++count;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     unsigned seed_iter = 1;
 | |
| 
 | |
|     // original loop: 1000
 | |
|     int niter = 4;
 | |
|     const char *env = getenv("GGML_NLOOP");
 | |
|     if (env != NULL) {
 | |
|         niter = atoi(env);
 | |
|     }
 | |
|     if (argc > 1) {
 | |
|         niter = atoi(argv[1]);
 | |
|     }
 | |
|     for (int iter = 0; iter < niter; ++iter) {
 | |
|         srand(seed_iter);
 | |
|         seed_iter = rand();
 | |
|         unsigned seed = rand();
 | |
| 
 | |
|         printf("test-grad0: iter:%d/%d\n", iter, niter);
 | |
|         struct ggml_context * ctx0 = ggml_init(params);
 | |
| 
 | |
|         get_random_dims(ne, 4);
 | |
| 
 | |
|         struct ggml_tensor * x[MAX_NARGS];
 | |
| 
 | |
|         // add f32
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 2;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
 | |
| 
 | |
|                 check_gradient("add f32", ctx0, x, f, ndims, nargs, 1e-3f, 2e-3f, 2e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // add f16
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 2;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
 | |
| 
 | |
|                 check_gradient("add f16", ctx0, x, f, ndims, nargs, 1e-1f, 2e-1f, 2e-1f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // sub
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 2;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_sub(ctx0, x[0], x[1]));
 | |
| 
 | |
|                 check_gradient("sub", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // mul
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 2;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_mul(ctx0, x[0], x[1]));
 | |
| 
 | |
|                 check_gradient("mul", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // div
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 2;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, 0.5f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_div(ctx0, x[0], x[1]));
 | |
| 
 | |
|                 check_gradient("div", ctx0, x, f, ndims, nargs, 1e-3f, 1e-1f, 1e-1f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // sqr
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("sqr", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // sqrt
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, 2e-2f, 1e-1f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // log
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_log(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("log", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // sum
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, x[0]);
 | |
| 
 | |
|                 check_gradient("sum", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // sum_rows
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sum_rows(ctx0, x[0])));
 | |
| 
 | |
|                 check_gradient("sum_rows", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // mean, not yet fully implemented
 | |
|         if(0)
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_mean(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("mean", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // argmax
 | |
|         if (0)
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_argmax(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("argmax", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // repeat
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4];
 | |
|             get_random_dims(ne2, 4);
 | |
| 
 | |
|             ne2[0] = ne[0] * ne2[0];
 | |
|             ne2[1] = ne[1] * ne2[1];
 | |
|             ne2[2] = 1;
 | |
|             ne2[3] = 1;
 | |
| 
 | |
|             const int nargs = 1;
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[1], ggml_repeat(ctx0, x[0], x[1]))));
 | |
| 
 | |
|                 check_gradient("repeat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // repeat back
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4];
 | |
|             get_random_dims(ne2, 4);
 | |
| 
 | |
|             ne2[0] = ne[0] * ne2[0];
 | |
|             ne2[1] = ne[1] * ne2[1];
 | |
|             ne2[2] = 1;
 | |
|             ne2[3] = 1;
 | |
| 
 | |
|             const int nargs = 1;
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[0], ggml_repeat_back(ctx0, x[1], x[0]))));
 | |
| 
 | |
|                 check_gradient("repeat back", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // abs (finite differences do not work)
 | |
|         //{
 | |
|         //    const int nargs = 1;
 | |
| 
 | |
|         //    for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|         //        for (int i = 0; i < nargs; ++i) {
 | |
|         //            x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|         //            ggml_set_param(ctx0, x[i]);
 | |
|         //        }
 | |
| 
 | |
|         //        struct ggml_tensor * f = ggml_sum(ctx0, ggml_abs(ctx0, x[0]));
 | |
| 
 | |
|         //        check_gradient("abs", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-3f);
 | |
|         //    }
 | |
|         //}
 | |
| 
 | |
|         // sgn
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor* f = ggml_sum(ctx0, ggml_sgn(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("sgn", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // neg
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor* f = ggml_sum(ctx0, ggml_neg(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("neg", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // step
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor* f = ggml_sum(ctx0, ggml_step(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("step", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // tanh, not yet fully implemented
 | |
|         if(0)
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor* f = ggml_sum(ctx0, ggml_tanh(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("tanh", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // mul_mat
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 2;
 | |
| 
 | |
|             for (int ndims = 2; ndims <= 4; ++ndims) {
 | |
|                 int max_nrep = (ndims >= 3) ? 2 : 1;
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 for (int nrep2 = 1; nrep2 < max_nrep; ++nrep2) {
 | |
|                     for (int nrep3 = 1; nrep3 < max_nrep; ++nrep3) {
 | |
|                         {
 | |
|                             int64_t ne2[4];
 | |
|                             get_random_dims(ne2, 4);
 | |
|                             ne2[0] = ne[0];
 | |
|                             ne2[2] = nrep2 * ne[2];
 | |
|                             ne2[3] = nrep3 * ne[3];
 | |
|                             x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
 | |
|                         }
 | |
| 
 | |
|                         ggml_set_param(ctx0, x[0]);
 | |
|                         ggml_set_param(ctx0, x[1]);
 | |
| 
 | |
|                         struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
 | |
|                         struct ggml_tensor * f = ggml_sum(ctx0, m);
 | |
| 
 | |
|                         GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims);
 | |
| 
 | |
|                         check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|                         if (ndims == 2) {
 | |
|                             // check_mat_mul does not support ndims > 2
 | |
|                             check_mat_mul(m, x[1], x[0]);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // elu, not yet fully implemented
 | |
|         if(0)
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor* f = ggml_sum(ctx0, ggml_elu(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("elu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // relu
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor* f = ggml_sum(ctx0, ggml_relu(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("relu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // gelu, not yet fully implemented
 | |
|         if(0)
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor* f = ggml_sum(ctx0, ggml_gelu(ctx0, x[0]));
 | |
| 
 | |
|                 check_gradient("gelu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // silu
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_silu(ctx0, x[0]));
 | |
| 
 | |
| #ifdef GGML_SILU_FP16
 | |
|                 // due to GGML_SILU_FP16 the finite difference method will be slightly wrong -> increase error bounds.
 | |
|                 check_gradient("silu", ctx0, x, f, ndims, nargs, 1e-3f, 0.5, INFINITY);
 | |
| #else
 | |
|                 check_gradient("silu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // rms_norm
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_rms_norm(ctx0, x[0], 1e-6f));
 | |
| 
 | |
|                 check_gradient("rms_norm", ctx0, x, f, ndims, nargs, 1e-4f, 1.0f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // scale
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
| 
 | |
|                 const float s = -1.0f + 2.0f*frand();
 | |
| 
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_scale(ctx0, x[0], s));
 | |
| 
 | |
|                 check_gradient("scale", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // cpy f32
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 2;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
|                 // x[1] is overwritten by x[0], so the gradients don't propagate to x[1]
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1]));
 | |
| 
 | |
|                 check_gradient("cpy f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // cpy f16
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 2;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 for (int i = 0; i < nargs; ++i) {
 | |
|                     x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                     ggml_set_param(ctx0, x[i]);
 | |
|                 }
 | |
|                 // x[1] is overwritten by x[0], so the gradients don't propagate to x[1]
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1]));
 | |
| 
 | |
|                 check_gradient("cpy f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // reshape (1d->nd)
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 int64_t ne2[4];
 | |
|                 ne2[0] = 1;
 | |
|                 ne2[1] = 1;
 | |
|                 ne2[2] = 1;
 | |
|                 ne2[3] = 1;
 | |
|                 for (int i = 0; i < ndims; ++i) {
 | |
|                     ne2[0] *= ne[i];
 | |
|                 }
 | |
|                 x[0] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
 | |
|                 x[1] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_reshape(ctx0, x[0], x[1]));
 | |
|                 check_gradient("reshape", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // reshape (nd->1d)
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 2; ++ndims) {
 | |
|                 int64_t ne2[4];
 | |
|                 ne2[0] = 1;
 | |
|                 ne2[1] = 1;
 | |
|                 ne2[2] = 1;
 | |
|                 ne2[3] = 1;
 | |
|                 for (int i = 0; i < ndims; ++i) {
 | |
|                     ne2[0] *= ne[i];
 | |
|                 }
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_reshape(ctx0, x[0], x[1]));
 | |
|                 check_gradient("reshape", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // acc 1d
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4] = { 1, 1, 1, 1 };
 | |
| 
 | |
|             const int nargs = 2;
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 get_random_dims(ne2, 1);
 | |
|                 while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) {
 | |
|                     get_random_dims(ne2, 1);
 | |
|                 }
 | |
| 
 | |
|                 x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[1]);
 | |
| 
 | |
|                 const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
 | |
|                 const int offset = irand(max_offset) * ggml_element_size(x[0]);
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
 | |
| 
 | |
|                 check_gradient("acc 1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // acc 2d
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4]         = { 1, 1, 1, 1 };
 | |
|             int64_t max_offsets[4] = { 0, 0, 0, 0 };
 | |
|             int64_t offsets[4]     = { 0, 0, 0, 0 };
 | |
| 
 | |
|             const int nargs = 2;
 | |
|             for (int ndims = 2; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 get_random_dims(ne2, 2);
 | |
|                 while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) {
 | |
|                     get_random_dims(ne2, 2);
 | |
|                 }
 | |
| 
 | |
|                 x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[1]);
 | |
| 
 | |
|                 max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
 | |
|                 max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
 | |
|                 offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
 | |
|                 offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
 | |
|                 const int offset = offsets[0] + offsets[1];
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
 | |
| 
 | |
|                 check_gradient("acc 2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // acc 3d
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4]         = { 1, 1, 1, 1 };
 | |
|             int64_t max_offsets[4] = { 0, 0, 0, 0 };
 | |
|             int64_t offsets[4]     = { 0, 0, 0, 0 };
 | |
| 
 | |
|             const int nargs = 2;
 | |
|             for (int ndims = 3; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 get_random_dims(ne2, 3);
 | |
|                 while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0]))) {
 | |
|                     get_random_dims(ne2, 3);
 | |
|                 }
 | |
| 
 | |
|                 x[1] = get_random_tensor_f32(ctx0, 3, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[1]);
 | |
| 
 | |
|                 max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
 | |
|                 max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
 | |
|                 max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]);
 | |
|                 offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
 | |
|                 offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
 | |
|                 offsets[2] = irand(max_offsets[2]) * x[0]->nb[2];
 | |
|                 const int offset = offsets[0] + offsets[1] + offsets[2];
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
 | |
| 
 | |
|                 check_gradient("acc 3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // acc 4d
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4]         = { 1, 1, 1, 1 };
 | |
|             int64_t max_offsets[4] = { 0, 0, 0, 0 };
 | |
|             int64_t offsets[4]     = { 0, 0, 0, 0 };
 | |
| 
 | |
|             const int nargs = 2;
 | |
|             for (int ndims = 4; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 get_random_dims(ne2, 4);
 | |
|                 while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[3] > ne[3]) || (ne2[0]*ne2[1]*ne2[2]*ne2[3] > ggml_nelements(x[0]))) {
 | |
|                     get_random_dims(ne2, 4);
 | |
|                 }
 | |
| 
 | |
|                 x[1] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[1]);
 | |
| 
 | |
|                 max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
 | |
|                 max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
 | |
|                 max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]);
 | |
|                 max_offsets[3] = MAX(0, x[0]->ne[3] - x[1]->ne[3]);
 | |
|                 offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
 | |
|                 offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
 | |
|                 offsets[2] = irand(max_offsets[2]) * x[0]->nb[2];
 | |
|                 offsets[3] = irand(max_offsets[3]) * x[0]->nb[3];
 | |
|                 const int offset = offsets[0] + offsets[1] + offsets[2] + offsets[3];
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
 | |
| 
 | |
|                 check_gradient("acc 4d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // set_1d
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4];
 | |
| 
 | |
|             const int nargs = 2;
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 get_random_dims(ne2, 1);
 | |
|                 while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) {
 | |
|                     get_random_dims(ne2, 1);
 | |
|                 }
 | |
| 
 | |
|                 x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[1]);
 | |
| 
 | |
|                 const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
 | |
|                 const int offset = irand(max_offset) * ggml_element_size(x[0]);
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_1d(ctx0, x[0], x[1], offset));
 | |
| 
 | |
|                 check_gradient("set_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // set_2d
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4];
 | |
|             int64_t max_offsets[4] = { 0, 0, 0, 0 };
 | |
|             int64_t offsets[4]     = { 0, 0, 0, 0 };
 | |
| 
 | |
|             const int nargs = 1;
 | |
|             for (int ndims = 2; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 get_random_dims(ne2, 2);
 | |
|                 while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) {
 | |
|                     get_random_dims(ne2, 2);
 | |
|                 }
 | |
| 
 | |
|                 x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[1]);
 | |
| 
 | |
|                 max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
 | |
|                 max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
 | |
|                 offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
 | |
|                 offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
 | |
|                 const int offset = offsets[0] + offsets[1];
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_2d(ctx0, x[0], x[1], x[1]->nb[1], offset));
 | |
| 
 | |
|                 check_gradient("set_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // view_1d
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
| 
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 const int k0 = irand(ggml_nelements(x[0]));
 | |
|                 const int k1 = irand(ggml_nelements(x[0]));
 | |
|                 const int i0 = MIN(k0, k1);
 | |
|                 const int i1 = MAX(k0, k1);
 | |
| 
 | |
|                 const int offset = i0 * sizeof(float);
 | |
|                 const int nelem  = i1 - i0;
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_1d(ctx0, x[0], nelem, offset));
 | |
| 
 | |
|                 check_gradient("view_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // view_2d
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4];
 | |
|             int64_t nb2[4];
 | |
| 
 | |
|             const int nargs = 1;
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
| 
 | |
|                 get_random_dims(ne2, 2);
 | |
|                 while (ne2[0]*ne2[1] > ggml_nelements(x[0])) {
 | |
|                     get_random_dims(ne2, 2);
 | |
|                 }
 | |
|                 const int count = ne2[0]*ne2[1];
 | |
| 
 | |
|                 nb2[0] = sizeof(float);
 | |
|                 nb2[1] = nb2[0]*ne2[0];
 | |
| 
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 const int max_offset = ggml_nelements(x[0]) - count;
 | |
|                 const int offset = irand(max_offset+1) * sizeof(float);
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_2d(ctx0, x[0], ne2[0], ne2[1], nb2[1], offset));
 | |
| 
 | |
|                 check_gradient("view_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // view_3d
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4] = {1,1,1,1};
 | |
|             int64_t nb2[4] = {0,0,0,0};
 | |
| 
 | |
|             const int nargs = 1;
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
| 
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
| 
 | |
|                 get_random_dims(ne2, 3);
 | |
|                 while (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0])) {
 | |
|                     get_random_dims(ne2, 3);
 | |
|                 }
 | |
|                 const int count = ne2[0]*ne2[1]*ne2[2];
 | |
| 
 | |
|                 nb2[0] = sizeof(float);
 | |
|                 nb2[1] = nb2[0]*ne2[0];
 | |
|                 nb2[2] = nb2[1]*ne2[1];
 | |
| 
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 const int max_offset = ggml_nelements(x[0]) - count;
 | |
|                 const int offset = irand(max_offset+1) * sizeof(float);
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_3d(ctx0, x[0], ne2[0], ne2[1], ne2[2], nb2[1], nb2[2], offset));
 | |
| 
 | |
|                 check_gradient("view_3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // permute
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4];
 | |
| 
 | |
|             const int nargs = 1;
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims)
 | |
|             {
 | |
|                 // ggml_permute will set axes of dimensions below n_dims to 1.
 | |
|                 // to make ggml_permute work correctly on all axes,
 | |
|                 // the input tensor needs maximal n_dim of 4.
 | |
|                 for (int i=0; i<ndims; ++i) {
 | |
|                     ne2[i] = ne[i];
 | |
|                 }
 | |
|                 for (int i=ndims; i<4; ++i) {
 | |
|                     ne2[i] = 1;
 | |
|                 }
 | |
|                 x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
 | |
| 
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 const int p = irand(NUM_PERMUTATIONS);
 | |
|                 const int ax0 = all_permutations[p*4+0];
 | |
|                 const int ax1 = all_permutations[p*4+1];
 | |
|                 const int ax2 = all_permutations[p*4+2];
 | |
|                 const int ax3 = all_permutations[p*4+3];
 | |
| 
 | |
|                 // sum requires contiguous tensor rows
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_cont(ctx0, ggml_permute(ctx0, x[0], ax0, ax1, ax2, ax3)));
 | |
| 
 | |
|                 check_gradient("permute", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // transpose
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4];
 | |
| 
 | |
|             const int nargs = 1;
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims)
 | |
|             {
 | |
|                 // ggml_transpose will set axes of dimensions below n_dims to 1.
 | |
|                 // to make ggml_transpose work correctly on all axes,
 | |
|                 // the input tensor needs maximal n_dim of 4.
 | |
|                 for (int i=0; i<ndims; ++i) {
 | |
|                     ne2[i] = ne[i];
 | |
|                 }
 | |
|                 for (int i=ndims; i<4; ++i) {
 | |
|                     ne2[i] = 1;
 | |
|                 }
 | |
|                 x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
 | |
| 
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 // sum requires contiguous tensor rows
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, x[0])));
 | |
| 
 | |
|                 check_gradient("transpose", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // get_rows
 | |
|         {
 | |
|             srand(seed);
 | |
|             int64_t ne2[4] = {ne[0], ne[1], 1, 1};
 | |
|             int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1};
 | |
|             const int nargs = 1;
 | |
|             const int ndims = 2;
 | |
|             x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
 | |
|             x[1] = get_random_tensor_i32(ctx0, 1, ne3, 0, ne2[1]);
 | |
| 
 | |
|             ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|             struct ggml_tensor * f = ggml_sum(ctx0, ggml_get_rows(ctx0, x[0], x[1]));
 | |
| 
 | |
|             check_gradient("get_rows", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|         }
 | |
| 
 | |
|         // diag_mask_inf
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
|             const int ndims = 2;
 | |
| 
 | |
|             x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|             ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|             int n_past = irand(ne[0]);
 | |
| 
 | |
|             struct ggml_tensor * f = ggml_sum(ctx0, ggml_diag_mask_inf(ctx0, x[0], n_past));
 | |
| 
 | |
|             check_gradient("diag_mask_inf", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|         }
 | |
| 
 | |
|         // diag_mask_zero
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
|             const int ndims = 2;
 | |
| 
 | |
|             x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|             ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|             int n_past = irand(ne[0]);
 | |
| 
 | |
|             struct ggml_tensor * f = ggml_sum(ctx0, ggml_diag_mask_zero(ctx0, x[0], n_past));
 | |
| 
 | |
|             check_gradient("diag_mask_zero", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
 | |
|         }
 | |
| 
 | |
|         // softmax
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             int64_t ne2[4];
 | |
|             get_random_dims(ne2, 4);
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 3; ++ndims) {
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 float eps = 1e-6f;
 | |
|                 // dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
 | |
|                 // instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
 | |
|                 struct ggml_tensor * f = ggml_sum(ctx0,
 | |
|                                             ggml_log(ctx0,
 | |
|                                                 ggml_add1(ctx0,
 | |
|                                                     ggml_scale(ctx0,
 | |
|                                                         ggml_soft_max(ctx0, x[0]),
 | |
|                                                         1.0f - eps),
 | |
|                                                     ggml_new_f32(ctx0, eps))));
 | |
| 
 | |
|                 check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY);
 | |
|                 // NOTE: softmax forward is computed using f16 table lookup instead of using actual expf, but backward assumes actual expf.
 | |
|                 // this may result in different gradients too finite differences.
 | |
|                 // when this test reports errors, first try to replace the table lookup with actual expf and test again to see if just that was the cause.
 | |
|                 // if only the table lookup causes gradients to differ this is acceptable.
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // cross_entropy_loss
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             int64_t ne2[4];
 | |
|             get_random_dims(ne2, 4);
 | |
| 
 | |
|             for (int ndims = 1; ndims <= 4; ++ndims) {
 | |
|                 x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -0.1f, 0.1f);
 | |
|                 x[1] = get_random_tensor_f32(ctx0, ndims, ne2, 0.0f, 1.0f);
 | |
|                 // the second argument to cross_entropy_loss must sum up to 1 for each row
 | |
|                 int nr = ggml_nrows(x[1]);
 | |
|                 int nc = ggml_nelements(x[1]) / nr;
 | |
|                 for (int ir = 0; ir < nr; ++ir) {
 | |
|                     float sum = 0;
 | |
|                     for (int ic = 0; ic < nc; ++ic) {
 | |
|                         sum += ((float *) x[1]->data)[ic + ir*nc];
 | |
|                     }
 | |
|                     for (int ic = 0; ic < nc; ++ic) {
 | |
|                         ((float *) x[1]->data)[ic + ir*nc] /= sum;
 | |
|                     }
 | |
|                 }
 | |
|                 ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                 struct ggml_tensor * f = ggml_cross_entropy_loss(ctx0, x[0], x[1]);
 | |
| 
 | |
|                 check_gradient("cross_entropy_loss", ctx0, x, f, ndims, nargs, 1e-4f, 1e-3f, INFINITY);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // rope f32
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             int64_t ne2[4];
 | |
|             get_random_dims(ne2, 4);
 | |
|             ne2[0] += ne2[0] % 2;
 | |
|             int n_rot = ne2[0];
 | |
| 
 | |
|             for (int ndims = 3; ndims <= 4; ++ndims) {
 | |
|                 for (int mode = 0; mode < 4; ++mode) {
 | |
|                     for (int n_past = 1; n_past < ne2[2]; ++n_past) {
 | |
|                         x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
 | |
| 
 | |
|                         struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]);
 | |
|                         for (int i = 0; i < ne2[2]; ++i) {
 | |
|                             ((int32_t *) p->data)[i] = n_past + i;
 | |
|                         }
 | |
| 
 | |
|                         ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                         const bool skip_past = (mode & 1);
 | |
|                         if (skip_past) {
 | |
|                             // we have no past, so this would have to work on uninitialized memory.
 | |
|                             // we only test the gradients here;
 | |
|                             // skip_past should have no influence on gradient computation.
 | |
|                             // so when other modes work, we assume that this does as well.
 | |
|                             continue;
 | |
|                         }
 | |
| 
 | |
|                         struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode, 0));
 | |
| 
 | |
|                         GGML_PRINT_DEBUG("rope f32: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
 | |
|                         check_gradient("rope f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // rope f16
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 1;
 | |
| 
 | |
|             int64_t ne2[4];
 | |
|             get_random_dims(ne2, 4);
 | |
|             ne2[0] += ne2[0] % 2;
 | |
|             int n_rot = ne2[0];
 | |
| 
 | |
|             for (int ndims = 3; ndims <= 4; ++ndims) {
 | |
|                 for (int mode = 0; mode < 4; ++mode) {
 | |
|                     for (int n_past = 1; n_past < ne2[2]; ++n_past) {
 | |
|                         x[0] = get_random_tensor_f16(ctx0, ndims, ne2, -1.0f, 1.0f);
 | |
| 
 | |
|                         struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]);
 | |
|                         for (int i = 0; i < ne2[2]; ++i) {
 | |
|                             ((int32_t *) p->data)[i] = n_past + i;
 | |
|                         }
 | |
| 
 | |
|                         ggml_set_param(ctx0, x[0]);
 | |
| 
 | |
|                         const bool skip_past = (mode & 1);
 | |
|                         if (skip_past) {
 | |
|                             // we have no past, so this would have to work on uninitialized memory.
 | |
|                             // we only test the gradients here;
 | |
|                             // skip_past should have no influence on gradient computation.
 | |
|                             // so when other modes work, we assume that this does as well.
 | |
|                             continue;
 | |
|                         }
 | |
| 
 | |
|                         struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode, 0));
 | |
| 
 | |
|                         GGML_PRINT_DEBUG("rope f16: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
 | |
|                         check_gradient("rope f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // flash_attn f32
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 3;
 | |
| 
 | |
|             int64_t ne2[4];
 | |
| 
 | |
|             get_random_dims(ne2, 4);
 | |
|             int64_t D = ne2[0];
 | |
|             int64_t N = ne2[1];
 | |
|             int64_t M = ne2[2] + N;
 | |
|             int64_t B = ne2[3];
 | |
| 
 | |
|             for (int masked = 0; masked <= 1; ++masked) {
 | |
|                 for (int ndims = 2; ndims <= 4; ++ndims) {
 | |
|                     int max_nrep = (ndims >= 3) ? 2 : 1;
 | |
|                     for (int nrep = 1; nrep < max_nrep; ++nrep) {
 | |
|                         int64_t neq[4] = { D, N, B*nrep, ne[3] };
 | |
|                         int64_t nek[4] = { D, M, B, ne[3] };
 | |
|                         int64_t nev[4] = { M, D, B, ne[3] };
 | |
|                         if (ndims == 2) {
 | |
|                             neq[2] = 1; neq[3] = 1;
 | |
|                             nek[2] = 1; nek[3] = 1;
 | |
|                             nev[2] = 1; nev[3] = 1;
 | |
|                         } else if (ndims == 3) {
 | |
|                             neq[3] = 1;
 | |
|                             nek[3] = 1;
 | |
|                             nev[3] = 1;
 | |
|                         }
 | |
|                         x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
 | |
|                         x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
 | |
|                         x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
 | |
|                         ggml_set_param(ctx0, x[0]);
 | |
|                         ggml_set_param(ctx0, x[1]);
 | |
|                         ggml_set_param(ctx0, x[2]);
 | |
| 
 | |
|                         struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
 | |
| 
 | |
|                         check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // flash_attn f16, not yet fully implemented
 | |
|         if(0)
 | |
|         {
 | |
|             srand(seed);
 | |
|             const int nargs = 3;
 | |
| 
 | |
|             int64_t ne2[4];
 | |
| 
 | |
|             get_random_dims(ne2, 4);
 | |
|             int64_t D = ne2[0];
 | |
|             int64_t N = ne2[1];
 | |
|             int64_t M = ne2[2] + N;
 | |
|             int64_t B = ne2[3];
 | |
| 
 | |
|             for (int masked = 0; masked <= 1; ++masked) {
 | |
|                 for (int ndims = 2; ndims <= 4; ++ndims) {
 | |
|                     int64_t neq[4] = { D, N, B, ne[3] };
 | |
|                     int64_t nek[4] = { D, M, B, ne[3] };
 | |
|                     int64_t nev[4] = { M, D, B, ne[3] };
 | |
|                     if (ndims == 2) {
 | |
|                         neq[2] = 1; neq[3] = 1;
 | |
|                         nek[2] = 1; nek[3] = 1;
 | |
|                         nev[2] = 1; nev[3] = 1;
 | |
|                     } else if (ndims == 3) {
 | |
|                         neq[3] = 1;
 | |
|                         nek[3] = 1;
 | |
|                         nev[3] = 1;
 | |
|                     }
 | |
|                     x[0] = get_random_tensor_f16(ctx0, ndims, neq, -0.1250f, 0.1250f);
 | |
|                     x[1] = get_random_tensor_f16(ctx0, ndims, nek, -0.1250f, 0.1250f);
 | |
|                     x[2] = get_random_tensor_f16(ctx0, ndims, nev, -0.1250f, 0.1250f);
 | |
|                     ggml_set_param(ctx0, x[0]);
 | |
|                     ggml_set_param(ctx0, x[1]);
 | |
|                     ggml_set_param(ctx0, x[2]);
 | |
| 
 | |
|                     struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
 | |
| 
 | |
|                     check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         ggml_free(ctx0);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 |