mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 58ba655af0
			
		
	
	58ba655af0
	
	
	
		
			
			* ggml : disable fast-math for Metal (cmake build only) ggml-ci * metal : fix Metal API debug warnings * cmake : add -fno-inline for Metal build (#4545) * metal : fix API debug warnings * metal : fix compile warnings * metal : use uint64_t for strides * cmake : rename option to LLAMA_METAL_SHADER_DEBUG * metal : fix mat-vec Q8_0 kernel for BS > 1 * metal : normalize mat-vec kernel signatures * cmake : respect LLAMA_QKK_64 option * metal : fix mat-vec Q4_K kernel for QK_K == 64 ggml-ci
		
			
				
	
	
		
			1695 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1695 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <ggml.h>
 | |
| #include <ggml-alloc.h>
 | |
| #include <ggml-backend.h>
 | |
| #include <ggml-backend-impl.h>
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cfloat>
 | |
| #include <cstring>
 | |
| #include <functional>
 | |
| #include <memory>
 | |
| #include <random>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string>
 | |
| #include <thread>
 | |
| #include <vector>
 | |
| 
 | |
| static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
 | |
|     size_t size = ggml_nelements(tensor);
 | |
|     std::vector<float> data(size);
 | |
| 
 | |
| #if 0
 | |
|     static std::default_random_engine generator(1234);
 | |
|     std::uniform_real_distribution<float> distribution(min, max);
 | |
| 
 | |
|     for (size_t i = 0; i < size; i++) {
 | |
|         data[i] = distribution(generator);
 | |
|     }
 | |
| #else
 | |
|     auto init_thread = [&](size_t start, size_t end) {
 | |
|         std::random_device rd;
 | |
|         std::default_random_engine generator(rd());
 | |
|         std::uniform_real_distribution<float> distribution(min, max);
 | |
| 
 | |
|         for (size_t i = start; i < end; i++) {
 | |
|             data[i] = distribution(generator);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     size_t n_threads = std::thread::hardware_concurrency();
 | |
|     std::vector<std::thread> threads;
 | |
|     threads.reserve(n_threads);
 | |
|     for (size_t i = 0; i < n_threads; i++) {
 | |
|         size_t start =     i*size/n_threads;
 | |
|         size_t end   = (i+1)*size/n_threads;
 | |
|         threads.emplace_back(init_thread, start, end);
 | |
|     }
 | |
|     for (auto & t : threads) {
 | |
|         t.join();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
 | |
|         ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
 | |
|     } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
 | |
|         GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
 | |
|         std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
 | |
|         int64_t hist[16];
 | |
|         ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist);
 | |
|         ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::vector<float> tensor_to_float(const ggml_tensor * t) {
 | |
|     std::vector<float> tv;
 | |
|     tv.reserve(ggml_nelements(t));
 | |
| 
 | |
|     std::vector<uint8_t> buf(ggml_nbytes(t));
 | |
|     ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
 | |
| 
 | |
|     ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
 | |
|     size_t bs = ggml_blck_size(t->type);
 | |
|     std::vector<float> vq(ggml_blck_size(t->type));
 | |
|     bool quantized = ggml_is_quantized(t->type);
 | |
| 
 | |
|     // access elements by index to avoid gaps in views
 | |
|     for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
 | |
|         for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
 | |
|             for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
 | |
|                 for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
 | |
|                     size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
 | |
|                     if (t->type == GGML_TYPE_F16) {
 | |
|                         tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
 | |
|                     } else if (t->type == GGML_TYPE_F32) {
 | |
|                         tv.push_back(*(float *) &buf[i]);
 | |
|                     } else if (t->type == GGML_TYPE_I32) {
 | |
|                         tv.push_back((float)*(int32_t *) &buf[i]);
 | |
|                     } else if (quantized) {
 | |
|                         tt.to_float(&buf[i], vq.data(), bs);
 | |
|                         tv.insert(tv.end(), vq.begin(), vq.end());
 | |
|                     } else {
 | |
|                         GGML_ASSERT(false);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return tv;
 | |
| }
 | |
| 
 | |
| /*
 | |
| static double cosine_similarity(const float * v1, const float * v2, size_t n) {
 | |
|     double dot = 0.0;
 | |
|     double mag1 = 0.0;
 | |
|     double mag2 = 0.0;
 | |
| 
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|         if (std::isnan(v1[i]) || std::isnan(v2[i])) {
 | |
|             return -1.0f;
 | |
|         }
 | |
|         if (std::isinf(v1[i]) && std::isinf(v2[i])) {
 | |
|             continue;
 | |
|         }
 | |
|         dot  += v1[i]*v2[i];
 | |
|         mag1 += v1[i]*v1[i];
 | |
|         mag2 += v2[i]*v2[i];
 | |
|     }
 | |
| 
 | |
|     return dot/sqrt(mag1*mag2);
 | |
| }
 | |
| 
 | |
| static float distance(const float * v1, const float * v2, size_t n) {
 | |
|     double d = 0.0;
 | |
| 
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|         if (std::isnan(v1[i]) || std::isnan(v2[i])) {
 | |
|             return INFINITY;
 | |
|         }
 | |
|         if (std::isinf(v1[i]) && std::isinf(v2[i])) {
 | |
|             continue;
 | |
|         }
 | |
|         d += (v1[i] - v2[i])*(v1[i] - v2[i]);
 | |
|     }
 | |
| 
 | |
|     return sqrt(d);
 | |
| }
 | |
| 
 | |
| static float vec_len(const float * v, size_t n) {
 | |
|     double d = 0.0;
 | |
| 
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|         if (std::isnan(v[i])) {
 | |
|             return INFINITY;
 | |
|         }
 | |
|         if (std::isinf(v[i])) {
 | |
|             continue;
 | |
|         }
 | |
|         d += v[i]*v[i];
 | |
|     }
 | |
| 
 | |
|     return sqrt(d);
 | |
| }
 | |
| */
 | |
| 
 | |
| // normalized mean squared error = mse(a, b) / mse(a, 0)
 | |
| static double nmse(const float * a, const float * b, size_t n) {
 | |
|     double mse_a_b = 0.0;
 | |
|     double mse_a_0 = 0.0;
 | |
| 
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|         float a_i = a[i];
 | |
|         float b_i = b[i];
 | |
| 
 | |
|         mse_a_b += (a_i - b_i) * (a_i - b_i);
 | |
|         mse_a_0 += a_i * a_i;
 | |
|     }
 | |
| 
 | |
|     return mse_a_b / mse_a_0;
 | |
| }
 | |
| 
 | |
| // utils for printing the variables of the test cases
 | |
| #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
 | |
| 
 | |
| template<typename T>
 | |
| static std::string var_to_str(const T & x) {
 | |
|     return std::to_string(x);
 | |
| }
 | |
| 
 | |
| template<typename T, size_t N>
 | |
| static std::string var_to_str(const T (&x)[N]) {
 | |
|     std::string s = "[";
 | |
|     for (size_t i = 0; i < N; i++) {
 | |
|         if (i > 0) {
 | |
|             s += ",";
 | |
|         }
 | |
|         s += var_to_str(x[i]);
 | |
|     }
 | |
|     s += "]";
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| template<typename T, size_t N>
 | |
| static std::string var_to_str(const std::array<T, N> & x) {
 | |
|     std::string s = "[";
 | |
|     for (size_t i = 0; i < N; i++) {
 | |
|         if (i > 0) {
 | |
|             s += ",";
 | |
|         }
 | |
|         s += var_to_str(x[i]);
 | |
|     }
 | |
|     s += "]";
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| //static std::string var_to_str(ggml_unary_op unary_op) {
 | |
| //    return ggml_unary_op_name(unary_op);
 | |
| //}
 | |
| 
 | |
| static std::string var_to_str(ggml_type type) {
 | |
|     return ggml_type_name(type);
 | |
| }
 | |
| 
 | |
| #define VARS_TO_STR1(a) VAR_TO_STR(a)
 | |
| #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
 | |
| #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
 | |
| #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
 | |
| #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
 | |
| #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
 | |
| #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
 | |
| #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
 | |
| #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
 | |
| #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
 | |
| #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
 | |
| 
 | |
| 
 | |
| // accept FLT_MAX as infinity
 | |
| static bool isinf_or_max(float f) {
 | |
|     return std::isinf(f) || f == FLT_MAX || f == -FLT_MAX;
 | |
| }
 | |
| 
 | |
| static bool ggml_is_view_op(enum ggml_op op) {
 | |
|     return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
 | |
| }
 | |
| 
 | |
| enum test_mode {
 | |
|     MODE_TEST,
 | |
|     MODE_PERF,
 | |
| };
 | |
| 
 | |
| struct test_case {
 | |
|     virtual ~test_case() {}
 | |
| 
 | |
|     virtual std::string op_desc(ggml_tensor * t) {
 | |
|         return ggml_op_desc(t);
 | |
|     }
 | |
| 
 | |
|     virtual std::string vars() {
 | |
|         return "";
 | |
|     }
 | |
| 
 | |
|     virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
 | |
| 
 | |
|     virtual double max_nmse_err() {
 | |
|         return 1e-7;
 | |
|     }
 | |
| 
 | |
|     virtual void initialize_tensors(ggml_context * ctx) {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             init_tensor_uniform(t);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     virtual size_t op_size(ggml_tensor * t) {
 | |
|         size_t size = ggml_nbytes(t);
 | |
|         // add source tensors
 | |
|         for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|             if (t->src[i] != NULL) {
 | |
|                 size += ggml_nbytes(t->src[i]);
 | |
|             }
 | |
|         }
 | |
|         return size;
 | |
|     }
 | |
| 
 | |
|     ggml_cgraph * gf = nullptr;
 | |
| 
 | |
|     static const int sentinel_size = 1024;
 | |
| 
 | |
|     test_mode mode;
 | |
| 
 | |
|     std::vector<ggml_tensor *> sentinels;
 | |
| 
 | |
|     void add_sentinel(ggml_context * ctx) {
 | |
|         if (mode == MODE_PERF) {
 | |
|             return;
 | |
|         }
 | |
|         ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
 | |
|         ggml_format_name(sentinel, "sent_%zu", sentinels.size());
 | |
|         sentinels.push_back(sentinel);
 | |
|     }
 | |
| 
 | |
|     // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
 | |
|         mode = MODE_TEST;
 | |
| 
 | |
|         ggml_init_params params = {
 | |
|             /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
 | |
|             /* .mem_base = */ NULL,
 | |
|             /* .no_alloc = */ true,
 | |
|         };
 | |
|         ggml_context * ctx = ggml_init(params);
 | |
| 
 | |
|         gf = ggml_new_graph(ctx);
 | |
| 
 | |
|         // pre-graph sentinel
 | |
|         add_sentinel(ctx);
 | |
| 
 | |
|         ggml_tensor * out = build_graph(ctx);
 | |
| 
 | |
|         if (op_name != nullptr && op_desc(out) != op_name) {
 | |
|             //printf("  %s: skipping\n", op_desc(out).c_str());
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         printf("  %s(%s): ", op_desc(out).c_str(), vars().c_str());
 | |
|         fflush(stdout);
 | |
| 
 | |
|         // check if backends support op
 | |
|         bool supported = true;
 | |
|         for (ggml_backend_t backend : {backend1, backend2}) {
 | |
|             if (!ggml_backend_supports_op(backend, out)) {
 | |
|                 printf("not supported [%s] ", ggml_backend_name(backend));
 | |
|                 supported = false;
 | |
|             }
 | |
|         }
 | |
|         if (!supported) {
 | |
|             printf("\n");
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // post-graph sentinel
 | |
|         add_sentinel(ctx);
 | |
| 
 | |
|         // allocate
 | |
|         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
 | |
| 
 | |
|         // build graph
 | |
|         ggml_build_forward_expand(gf, out);
 | |
| 
 | |
|         // add sentinels as graph nodes so that they are checked in the callback
 | |
|         for (ggml_tensor * sentinel : sentinels) {
 | |
|             gf->nodes[gf->n_nodes++] = sentinel;
 | |
|         }
 | |
| 
 | |
|         // randomize tensors
 | |
|         initialize_tensors(ctx);
 | |
| 
 | |
|         // compare
 | |
|         struct callback_userdata {
 | |
|             bool   ok;
 | |
|             double max_err;
 | |
|         };
 | |
| 
 | |
|         callback_userdata ud {
 | |
|             true,
 | |
|             max_nmse_err(),
 | |
|         };
 | |
| 
 | |
|         auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
 | |
|             callback_userdata * ud = (callback_userdata *) user_data;
 | |
| 
 | |
|             if (t1->op == GGML_OP_NONE) {
 | |
|                 // sentinels must be unchanged
 | |
|                 std::vector<uint8_t> t1_data(ggml_nbytes(t1));
 | |
|                 std::vector<uint8_t> t2_data(ggml_nbytes(t2));
 | |
|                 ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
 | |
|                 ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
 | |
| 
 | |
|                 if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
 | |
|                     printf("sentinel mismatch: %s ", t1->name);
 | |
|                     ud->ok = false;
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             std::vector<float> f1 = tensor_to_float(t1);
 | |
|             std::vector<float> f2 = tensor_to_float(t2);
 | |
| 
 | |
|             for (size_t i = 0; i < f1.size(); i++) {
 | |
|                 // check for nans
 | |
|                 if (std::isnan(f1[i]) || std::isnan(f2[i])) {
 | |
|                     printf("[%s] NaN at index %zu (%f %f) ", ggml_op_desc(t1), i, f1[i], f2[i]);
 | |
|                     ud->ok = false;
 | |
|                     return true;
 | |
|                 }
 | |
|                 // check for infs: both must be inf of the same sign, or both must be finite
 | |
|                 if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
 | |
|                     if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
 | |
|                         if (std::signbit(f1[i]) != std::signbit(f2[i])) {
 | |
|                             printf("[%s] inf sign mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
 | |
|                             ud->ok = false;
 | |
|                             return true;
 | |
|                         }
 | |
|                     } else {
 | |
|                         printf("[%s] inf mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
 | |
|                         ud->ok = false;
 | |
|                         return true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             double err = nmse(f1.data(), f2.data(), f1.size());
 | |
|             if (err > ud->max_err) {
 | |
|                 printf("[%s] NMSE = %f ", ggml_op_desc(t1), err);
 | |
|                 //for (int i = 0; i < (int) f1.size(); i++) {
 | |
|                 //    printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
 | |
|                 //}
 | |
|                 //printf("\n");
 | |
|                 //exit(1);
 | |
|                 ud->ok = false;
 | |
|             }
 | |
|             return true;
 | |
| 
 | |
|             GGML_UNUSED(index);
 | |
|         };
 | |
| 
 | |
|         ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
 | |
| 
 | |
|         if (ud.ok) {
 | |
|             printf("\033[1;32mOK\033[0m\n");
 | |
|         } else {
 | |
|             printf("\033[1;31mFAIL\033[0m\n");
 | |
|         }
 | |
| 
 | |
|         ggml_backend_buffer_free(buf);
 | |
| 
 | |
|         ggml_free(ctx);
 | |
| 
 | |
|         return ud.ok;
 | |
|     }
 | |
| 
 | |
|     bool eval_perf(ggml_backend_t backend, const char * op_name) {
 | |
|         mode = MODE_PERF;
 | |
| 
 | |
|         static const size_t graph_nodes = 8192;
 | |
| 
 | |
|         ggml_init_params params = {
 | |
|             /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
 | |
|             /* .mem_base = */ NULL,
 | |
|             /* .no_alloc = */ true,
 | |
|         };
 | |
|         ggml_context * ctx = ggml_init(params);
 | |
| 
 | |
|         ggml_tensor * out = build_graph(ctx);
 | |
| 
 | |
|         if (op_name != nullptr && op_desc(out) != op_name) {
 | |
|             //printf("  %s: skipping\n", op_desc(out).c_str());
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         int len = printf("  %s(%s): ", op_desc(out).c_str(), vars().c_str());
 | |
|         fflush(stdout);
 | |
| 
 | |
|         // check if backends support op
 | |
|         if (!ggml_backend_supports_op(backend, out)) {
 | |
|             printf("not supported\n");
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // align while also leaving some margin for variations in parameters
 | |
|         int align = 20;
 | |
|         int last = (len + align - 1) / align * align;
 | |
|         if (last - len < 5) {
 | |
|             last += align;
 | |
|         }
 | |
|         last = std::max(last, 60);
 | |
|         printf("%*s", last - len, "");
 | |
| 
 | |
|         // allocate
 | |
|         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
 | |
| 
 | |
|         // randomize tensors
 | |
|         initialize_tensors(ctx);
 | |
| 
 | |
|         // build graph
 | |
|         ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
 | |
|         ggml_build_forward_expand(gf, out);
 | |
| 
 | |
|         // warmup run
 | |
|         ggml_backend_graph_compute(backend, gf);
 | |
| 
 | |
|         // duplicate the op
 | |
|         size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
 | |
|         int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
 | |
|         for (int i = 1; i < n_runs; i++) {
 | |
|             gf->nodes[gf->n_nodes++] = out;
 | |
|         }
 | |
| 
 | |
|         // calculate memory
 | |
|         size_t mem = n_runs * op_size(out);
 | |
|         auto tensor_op_size = [](ggml_tensor * t) {
 | |
|             size_t size = ggml_nbytes(t);
 | |
|             // add source tensors
 | |
|             for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|                 if (t->src[i] != NULL) {
 | |
|                     size += ggml_nbytes(t->src[i]);
 | |
|                 }
 | |
|             }
 | |
|             return size;
 | |
|         };
 | |
|         for (int i = 0; i < gf->n_nodes; i++) {
 | |
|             if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
 | |
|                 continue;
 | |
|             }
 | |
|             mem += tensor_op_size(gf->nodes[i]);
 | |
|         }
 | |
| 
 | |
|         // run
 | |
|         ggml_backend_synchronize(backend);
 | |
| 
 | |
|         int64_t start_time = ggml_time_us();
 | |
|         ggml_backend_graph_compute(backend, gf);
 | |
|         ggml_backend_synchronize(backend);
 | |
|         int64_t end_time = ggml_time_us();
 | |
|         double time_us = end_time - start_time;
 | |
| 
 | |
|         printf("    %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
 | |
|             n_runs,
 | |
|             time_us / n_runs,
 | |
|             op_size(out) / 1024,
 | |
|             mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
 | |
| 
 | |
|         ggml_backend_buffer_free(buf);
 | |
| 
 | |
|         ggml_free(ctx);
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_UNARY
 | |
| struct test_unary : public test_case {
 | |
|     const ggml_unary_op op;
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_unary(ggml_unary_op op,
 | |
|             ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {128, 10, 10, 10})
 | |
|         : op(op), type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_unary(ctx, in, op);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_GET_ROWS
 | |
| struct test_get_rows : public test_case {
 | |
|     const ggml_type type;
 | |
|     const int n; // cols
 | |
|     const int m; // rows
 | |
|     const int r; // rows to get
 | |
|     const int b; // batch size
 | |
|     const bool v; // view (non-contiguous src1)
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR6(type, n, m, r, b, v);
 | |
|     }
 | |
| 
 | |
|     test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
 | |
|         : type(type), n(n), m(m), r(r), b(b), v(v) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
 | |
|         ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
 | |
|         if (v) {
 | |
|             rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
 | |
|         }
 | |
|         ggml_tensor * out = ggml_get_rows(ctx, in, rows);
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 if (ggml_is_view_op(t->op)) { continue; }
 | |
|                 // rows
 | |
|                 std::vector<int> data(r*b);
 | |
|                 for (int i = 0; i < r*b; i++) {
 | |
|                     data[i] = rand() % m;
 | |
|                 }
 | |
|                 ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_REPEAT
 | |
| struct test_repeat : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const std::array<int, 4> nr;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, nr);
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         return ggml_nbytes(t) * 2;
 | |
|     }
 | |
| 
 | |
|     test_repeat(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10},
 | |
|             std::array<int, 4> nr = {2, 2, 2, 2})
 | |
|         : type(type), ne(ne), nr(nr) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_repeat(ctx, src, target);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_DUP
 | |
| struct test_dup : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_dup(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 1})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_dup(ctx, src);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CPY
 | |
| struct test_cpy : public test_case {
 | |
|     const ggml_type type_src;
 | |
|     const ggml_type type_dst;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type_src, type_dst, ne);
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
 | |
|     }
 | |
| 
 | |
|     test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 1})
 | |
|         : type_src(type_src), type_dst(type_dst), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
 | |
|         ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_cpy(ctx, src, dst);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CONT
 | |
| struct test_cont : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_cont(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 1})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         src = ggml_transpose(ctx, src);
 | |
|         ggml_tensor * out = ggml_cont(ctx, src);
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ADD
 | |
| // GGML_OP_MUL
 | |
| // GGML_OP_DIV
 | |
| struct test_bin_bcast : public test_case {
 | |
|     using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
 | |
|     op_t op;
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const std::array<int, 4> nr;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, nr);
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         return ggml_nbytes(t) * 3;
 | |
|     }
 | |
| 
 | |
|     test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 1, 1},
 | |
|             std::array<int, 4> nr = {1, 2, 1, 1})
 | |
|         : op(op), type(type), ne(ne), nr(nr) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
 | |
|         ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = op(ctx, a, b);
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (op == ggml_div) {
 | |
|                 // avoid division by zero
 | |
|                 init_tensor_uniform(t, 1.0f, 2.0f);
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SCALE
 | |
| struct test_scale : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     float scale;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, scale);
 | |
|     }
 | |
| 
 | |
|     test_scale(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10},
 | |
|             float scale = 2.0f)
 | |
|         : type(type), ne(ne), scale(scale) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_scale(ctx, a, scale);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_NORM
 | |
| struct test_norm : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     float eps;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, eps);
 | |
|     }
 | |
| 
 | |
|     test_norm(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {64, 10, 10, 10},
 | |
|             float eps = 1e-6f)
 | |
|         : type(type), ne(ne), eps(eps) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_norm(ctx, a, eps);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_RMS_NORM
 | |
| struct test_rms_norm : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     float eps;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, eps);
 | |
|     }
 | |
| 
 | |
|     test_rms_norm(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {64, 10, 10, 10},
 | |
|             float eps = 1e-6f)
 | |
|         : type(type), ne(ne), eps(eps) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_MUL_MAT
 | |
| struct test_mul_mat : public test_case {
 | |
|     const ggml_type type_a;
 | |
|     const ggml_type type_b;
 | |
|     const int64_t m;
 | |
|     const int64_t n;
 | |
|     const int64_t k;
 | |
|     const std::array<int64_t, 2> bs; // dims 3 and 4
 | |
|     const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 5e-4;
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
 | |
|         size_t b = ggml_nbytes(t->src[1]) * m;
 | |
|         size_t c  = ggml_nbytes(t);
 | |
|         return a + b + c;
 | |
| 
 | |
|         GGML_UNUSED(t);
 | |
|     }
 | |
| 
 | |
|     test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
 | |
|             int64_t m = 32, int64_t n = 32, int64_t k = 32,
 | |
|             std::array<int64_t, 2> bs = {10, 10},
 | |
|             std::array<int64_t, 2> nr = {2, 2})
 | |
|         : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         // C^T = A * B^T: (k, m) * (k, n) => (m, n)
 | |
|         ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0]      , bs[1]);
 | |
|         ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
 | |
|         ggml_tensor * out = ggml_mul_mat(ctx, a, b);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_MUL_MAT_ID
 | |
| struct test_mul_mat_id : public test_case {
 | |
|     const ggml_type type_a;
 | |
|     const ggml_type type_b;
 | |
|     const int n_mats;
 | |
|     const int id;
 | |
|     const int64_t m;
 | |
|     const int64_t n;
 | |
|     const int64_t k;
 | |
|     const bool v; // view (non-contiguous ids)
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR8(type_a, type_b, n_mats, id, m, n, k, v);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 5e-4;
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         size_t a = ggml_nbytes(t->src[2]) * n;
 | |
|         size_t b = ggml_nbytes(t->src[1]) * m;
 | |
|         size_t c  = ggml_nbytes(t);
 | |
|         return a + b + c;
 | |
| 
 | |
|         GGML_UNUSED(t);
 | |
|     }
 | |
| 
 | |
|     test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
 | |
|             int n_mats = 2, int id = 0,
 | |
|             int64_t m = 32, int64_t n = 32, int64_t k = 32, bool v = false)
 | |
|         : type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
 | |
|             m(m), n(n), k(k), v(v) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         // C^T = A * B^T: (k, m) * (k, n) => (m, n)
 | |
|         std::vector<ggml_tensor *> mats;
 | |
|         for (int i = 0; i < n_mats; i++) {
 | |
|             ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m);
 | |
|             mats.push_back(a);
 | |
|         }
 | |
|         ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
 | |
|         if (v) {
 | |
|             ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0);
 | |
|         }
 | |
|         ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n);
 | |
|         ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b);
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         std::random_device rd;
 | |
|         std::default_random_engine rng(rd());
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 if (ggml_is_view_op(t->op)) { continue; }
 | |
|                 // ids
 | |
|                 for (int64_t r = 0; r < ggml_nrows(t); r++) {
 | |
|                     std::vector<int32_t> data(t->ne[0]);
 | |
|                     for (int i = 0; i < t->ne[0]; i++) {
 | |
|                         data[i] = i % n_mats;
 | |
|                     }
 | |
|                     std::shuffle(data.begin(), data.end(), rng);
 | |
|                     ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
 | |
|                 }
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SQR
 | |
| struct test_sqr : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_sqr(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_sqr(ctx, a);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CLAMP
 | |
| struct test_clamp : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     float min;
 | |
|     float max;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type, ne, min, max);
 | |
|     }
 | |
| 
 | |
|     test_clamp(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10},
 | |
|             float min = -0.5f, float max = 0.5f)
 | |
|         : type(type), ne(ne), min(min), max(max) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_clamp(ctx, a, min, max);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_DIAG_MASK_INF
 | |
| struct test_diag_mask_inf : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const int n_past;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, n_past);
 | |
|     }
 | |
| 
 | |
|     test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10},
 | |
|             int n_past = 5)
 | |
|         : type(type), ne(ne), n_past(n_past) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SOFT_MAX
 | |
| struct test_soft_max : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_soft_max(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_soft_max(ctx, a);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ROPE
 | |
| struct test_rope : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     int n_dims;
 | |
|     int mode;
 | |
|     int n_ctx;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx);
 | |
|     }
 | |
| 
 | |
|     test_rope(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 1},
 | |
|             int n_dims = 10, int mode = 0, int n_ctx = 512)
 | |
|         : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
 | |
|         ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx);
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 // pos
 | |
|                 std::vector<int> data(ne[2]);
 | |
|                 for (int i = 0; i < ne[2]; i++) {
 | |
|                     data[i] = rand() % n_ctx;
 | |
|                 }
 | |
|                 ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ALIBI
 | |
| struct test_alibi : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     int n_past;
 | |
|     int n_head;
 | |
|     float bias_max;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR5(type, ne, n_past, n_head, bias_max);
 | |
|     }
 | |
| 
 | |
|     test_alibi(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10},
 | |
|             int n_past = 512, int n_head = 10, float bias_max = 0.5f)
 | |
|         : type(type), ne(ne), n_past(n_past), n_head(n_head), bias_max(bias_max) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_alibi(ctx, a, n_past, n_head, bias_max);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_IM2COL
 | |
| struct test_im2col : public test_case {
 | |
|     const ggml_type type_input;
 | |
|     const ggml_type type_kernel;
 | |
|     const std::array<int64_t, 4> ne_input;
 | |
|     const std::array<int64_t, 4> ne_kernel;
 | |
|     // stride
 | |
|     const int s0;
 | |
|     const int s1;
 | |
|     // padding
 | |
|     const int p0;
 | |
|     const int p1;
 | |
|     // dilatation
 | |
|     const int d0;
 | |
|     const int d1;
 | |
|     // mode
 | |
|     const bool is_2D;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR11(type_input, type_kernel, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
 | |
|     }
 | |
| 
 | |
|     test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16,
 | |
|             std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
 | |
|             std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
 | |
|             int s0 = 1, int s1 = 1,
 | |
|             int p0 = 1, int p1 = 1,
 | |
|             int d0 = 1, int d1 = 1,
 | |
|             bool is_2D = true)
 | |
|         : type_input(type_input), type_kernel(type_kernel), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
 | |
|         ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
 | |
|         ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CONCAT
 | |
| struct test_concat : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const int64_t b_ne2;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, b_ne2);
 | |
|     }
 | |
| 
 | |
|     test_concat(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10},
 | |
|             int64_t b_ne2 = 10)
 | |
|         : type(type), ne(ne), b_ne2(b_ne2) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
 | |
|         ggml_tensor * out = ggml_concat(ctx, a, b);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ARGSORT
 | |
| struct test_argsort : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     ggml_sort_order order;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, order);
 | |
|     }
 | |
| 
 | |
|     test_argsort(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {16, 10, 10, 10},
 | |
|             ggml_sort_order order = GGML_SORT_ASC)
 | |
|         : type(type), ne(ne), order(order) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_argsort(ctx, a, order);
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         std::random_device rd;
 | |
|         std::default_random_engine rng(rd());
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 // indices
 | |
|                 std::vector<int> data(ggml_nelements(t));
 | |
|                 for (int i = 0; i < ggml_nelements(t); i++) {
 | |
|                     data[i] = rand();
 | |
|                 }
 | |
|                 std::shuffle(data.begin(), data.end(), rng);
 | |
|                 ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
 | |
|             } else if (t->type == GGML_TYPE_F32) {
 | |
|                 // initialize with unique values to avoid ties
 | |
|                 for (int64_t r = 0; r < ggml_nrows(t); r++) {
 | |
|                     std::vector<float> data(t->ne[0]);
 | |
|                     for (int i = 0; i < t->ne[0]; i++) {
 | |
|                         data[i] = i;
 | |
|                     }
 | |
|                     std::shuffle(data.begin(), data.end(), rng);
 | |
|                     ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
 | |
|                 }
 | |
|             } else {
 | |
|                 GGML_ASSERT(false);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SUM_ROWS
 | |
| struct test_sum_rows : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_sum_rows(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_sum_rows(ctx, a);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_UPSCALE
 | |
| struct test_upscale : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const int32_t scale_factor;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, scale_factor);
 | |
|     }
 | |
| 
 | |
|     test_upscale(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {512, 512, 3, 1},
 | |
|             int32_t scale_factor = 2)
 | |
|         : type(type), ne(ne), scale_factor(scale_factor) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_GROUP_NORM
 | |
| struct test_group_norm : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const int32_t num_groups;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, num_groups);
 | |
|     }
 | |
| 
 | |
|     test_group_norm(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {64, 64, 320, 1},
 | |
|             int32_t num_groups = 32)
 | |
|         : type(type), ne(ne), num_groups(num_groups) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ACC
 | |
| struct test_acc : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const std::array<int64_t, 4> ne_b;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne_a, ne_b);
 | |
|     }
 | |
| 
 | |
|     test_acc(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
 | |
|             std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
 | |
|         : type(type), ne_a(ne_a), ne_b(ne_b) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|         ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
 | |
|         ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_PAD
 | |
| struct test_pad : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const int pad_0;
 | |
|     const int pad_1;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
 | |
|     }
 | |
| 
 | |
|     test_pad(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
 | |
|             int pad_0 = 1, int pad_1 = 1)
 | |
|         : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1)  {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|         ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_LEAKY_RELU
 | |
| struct test_leaky_relu : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const float negative_slope;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne_a, negative_slope);
 | |
|     }
 | |
| 
 | |
|     test_leaky_relu(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
 | |
|             float negative_slope = 0.1f)
 | |
|         : type(type), ne_a(ne_a), negative_slope(negative_slope)  {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|         ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // Mixtral MOE
 | |
| struct test_moe : public test_case {
 | |
|     const int n_experts;
 | |
|     const int n_experts_per_tok;
 | |
|     const int n_tokens;
 | |
|     const int n_embd;
 | |
|     const int n_ff;
 | |
| 
 | |
|     std::string op_desc(ggml_tensor * t) override {
 | |
|         return "MOE";
 | |
| 
 | |
|         GGML_UNUSED(t);
 | |
|     }
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff);
 | |
|     }
 | |
| 
 | |
|     test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336)
 | |
|         : n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) {
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts);
 | |
| 
 | |
|         std::vector<ggml_tensor *> ffn_up_exp(n_experts);
 | |
|         std::vector<ggml_tensor *> ffn_gate_exp(n_experts);
 | |
|         std::vector<ggml_tensor *> ffn_down_exp(n_experts);
 | |
| 
 | |
|         for (int i = 0; i < n_experts; ++i) {
 | |
|             ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
 | |
|             ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
 | |
|             ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens);
 | |
| 
 | |
|         ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur);
 | |
|         ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, 1.0f/sqrtf(n_embd));
 | |
| 
 | |
|         // select experts
 | |
|         ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok);
 | |
| 
 | |
|         ggml_tensor * weights = ggml_get_rows(ctx,
 | |
|                 ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts);
 | |
| 
 | |
|         weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens);
 | |
| 
 | |
|         ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights);
 | |
| 
 | |
|         weights = ggml_div(ctx, weights, weights_sum);
 | |
| 
 | |
|         // compute expert outputs
 | |
|         ggml_tensor * moe_out = nullptr;
 | |
| 
 | |
|         for (int i = 0; i < n_experts_per_tok; ++i) {
 | |
|             ggml_tensor * cur_expert;
 | |
| 
 | |
|             ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur);
 | |
| 
 | |
|             ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur);
 | |
| 
 | |
|             cur_gate = ggml_silu(ctx, cur_gate);
 | |
| 
 | |
|             cur_expert = ggml_mul(ctx, cur_up, cur_gate);
 | |
| 
 | |
|             cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert);
 | |
| 
 | |
|             cur_expert = ggml_mul(ctx, cur_expert,
 | |
|                     ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
 | |
| 
 | |
|             if (i == 0) {
 | |
|                 moe_out = cur_expert;
 | |
|             } else {
 | |
|                 moe_out = ggml_add(ctx, moe_out, cur_expert);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         cur = moe_out;
 | |
| 
 | |
|         return cur;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
 | |
|     std::vector<std::unique_ptr<test_case>> test_cases;
 | |
| 
 | |
|     const ggml_type all_types[] = {
 | |
|         GGML_TYPE_F32, GGML_TYPE_F16,
 | |
|         GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
 | |
|         GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
 | |
|         GGML_TYPE_Q8_0,
 | |
|         GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
 | |
|         GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
 | |
|         GGML_TYPE_Q6_K
 | |
|     };
 | |
| 
 | |
|     // unary ops
 | |
|     for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
 | |
|         test_cases.emplace_back(new test_unary((ggml_unary_op) op));
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
 | |
|     for (ggml_type type : all_types) {
 | |
|         for (int b : {1, 7}) {
 | |
|             for (bool v : {false, true}) {
 | |
|                 test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
 | |
|     test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
 | |
|     test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
 | |
|     test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
 | |
|     test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
 | |
| 
 | |
|     test_cases.emplace_back(new test_dup());
 | |
| 
 | |
|     for (ggml_type type : all_types) {
 | |
|        test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_cont());
 | |
| 
 | |
|     auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
 | |
|         for (auto op : {ggml_add, ggml_mul, ggml_div}) {
 | |
|             test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
 | |
| 
 | |
|     // stable diffusion
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
 | |
|     //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
 | |
|     //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
 | |
| 
 | |
|     test_cases.emplace_back(new test_scale());
 | |
| 
 | |
|     for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
 | |
|         test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
 | |
|         test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
 | |
|     }
 | |
| 
 | |
|     for (ggml_type type_a : all_types) {
 | |
|         for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1,  1}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10,  1}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10,  1}, {2, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
 | |
| 
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1,  1}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10,  1}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10,  1}, {2, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ggml_type type_a : all_types) {
 | |
|         for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
 | |
|             for (int n_mats : {2, 4, 8}) {
 | |
|                 for (int id = 0; id < n_mats; id++) {
 | |
|                     for (bool v : {false, true}) {
 | |
|                         test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, v));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_sqr());
 | |
|     test_cases.emplace_back(new test_clamp());
 | |
| 
 | |
|     test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10,  1,  1}, 5));
 | |
|     test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10,  1}, 5));
 | |
|     test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
 | |
| 
 | |
|     test_cases.emplace_back(new test_soft_max());
 | |
| 
 | |
|     for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
 | |
|         test_cases.emplace_back(new test_rope(type, {128,  32, 10, 1}, 128, 0, 512)); // llama 7B
 | |
|         test_cases.emplace_back(new test_rope(type, {128,  40, 10, 1}, 128, 0, 512)); // llama 13B
 | |
|         test_cases.emplace_back(new test_rope(type, {128,  52, 10, 1}, 128, 0, 512)); // llama 30B
 | |
|         test_cases.emplace_back(new test_rope(type, {128,  64, 10, 1}, 128, 0, 512)); // llama 65B
 | |
|         test_cases.emplace_back(new test_rope(type, { 64,   1, 10, 1},  64, 2, 512)); // neox (falcon 7B)
 | |
|         test_cases.emplace_back(new test_rope(type, { 64,  71, 10, 1},  64, 2, 512)); // neox (falcon 7B)
 | |
|         test_cases.emplace_back(new test_rope(type, { 64,   8, 10, 1},  64, 2, 512)); // neox (falcon 40B)
 | |
|         test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1},  64, 2, 512)); // neox (falcon 40B)
 | |
|         test_cases.emplace_back(new test_rope(type, { 80,  32, 10, 1},  20, 2, 512)); // neox (stablelm)
 | |
|         test_cases.emplace_back(new test_rope(type, { 80,  32, 10, 1},  32, 2, 512)); // neox (phi-2)
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_alibi());
 | |
|     test_cases.emplace_back(new test_im2col());
 | |
|     test_cases.emplace_back(new test_concat());
 | |
| 
 | |
|     for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
 | |
|         test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
 | |
|         test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_sum_rows());
 | |
|     test_cases.emplace_back(new test_upscale());
 | |
|     test_cases.emplace_back(new test_group_norm());
 | |
|     test_cases.emplace_back(new test_acc());
 | |
|     test_cases.emplace_back(new test_pad());
 | |
|     test_cases.emplace_back(new test_leaky_relu());
 | |
| 
 | |
| #if !defined(__SANITIZE_THREAD__)
 | |
|     // FIXME: these tests use too much memory with thread sanitizer
 | |
|     test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024));
 | |
|     //test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
 | |
| #endif
 | |
| 
 | |
|     // run tests
 | |
|     if (mode == MODE_TEST) {
 | |
|         ggml_backend_t backend_cpu = ggml_backend_cpu_init();
 | |
| 
 | |
|         size_t n_ok = 0;
 | |
|         for (auto & test : test_cases) {
 | |
|             if (test->eval(backend, backend_cpu, op_name)) {
 | |
|                 n_ok++;
 | |
|             }
 | |
|         }
 | |
|         printf("  %zu/%zu tests passed\n", n_ok, test_cases.size());
 | |
| 
 | |
|         ggml_backend_free(backend_cpu);
 | |
| 
 | |
|         return n_ok == test_cases.size();
 | |
|     }
 | |
| 
 | |
|     if (mode == MODE_PERF) {
 | |
|         for (auto & test : test_cases) {
 | |
|             test->eval_perf(backend, op_name);
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(false);
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void usage(char ** argv) {
 | |
|     printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
 | |
|     printf("  valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
 | |
|     printf("  op names are as given by ggml_op_desc()\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     test_mode mode = MODE_TEST;
 | |
|     const char * op_name = NULL;
 | |
|     const char * backend = NULL;
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         if (strcmp(argv[i], "test") == 0) {
 | |
|             mode = MODE_TEST;
 | |
|         } else if (strcmp(argv[i], "perf") == 0) {
 | |
|             mode = MODE_PERF;
 | |
|         } else if (strcmp(argv[i], "-o") == 0) {
 | |
|             if (i + 1 < argc) {
 | |
|                 op_name = argv[++i];
 | |
|             } else {
 | |
|                 usage(argv);
 | |
|                 return 1;
 | |
|             }
 | |
|         } else if (strcmp(argv[i], "-b") == 0) {
 | |
|             if (i + 1 < argc) {
 | |
|                 backend = argv[++i];
 | |
|             } else {
 | |
|                 usage(argv);
 | |
|                 return 1;
 | |
|             }
 | |
|         } else {
 | |
|             usage(argv);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // enumerate backends
 | |
|     printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
 | |
| 
 | |
|     size_t n_ok = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
 | |
|         printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
 | |
| 
 | |
|         if (backend != NULL && strcmp(backend, ggml_backend_reg_get_name(i)) != 0) {
 | |
|             printf("  Skipping\n");
 | |
|             n_ok++;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
 | |
|         GGML_ASSERT(backend != NULL);
 | |
|         printf("  Backend name: %s\n", ggml_backend_name(backend));
 | |
| 
 | |
|         bool ok = test_backend(backend, mode, op_name);
 | |
| 
 | |
|         printf("  Backend %s: ", ggml_backend_name(backend));
 | |
|         if (ok) {
 | |
|             printf("\033[1;32mOK\033[0m\n");
 | |
|             n_ok++;
 | |
|         } else {
 | |
|             printf("\033[1;31mFAIL\033[0m\n");
 | |
|         }
 | |
| 
 | |
|         printf("\n");
 | |
| 
 | |
|         ggml_backend_free(backend);
 | |
|     }
 | |
| 
 | |
|     printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
 | |
| 
 | |
|     if (n_ok != ggml_backend_reg_get_count()) {
 | |
|         printf("\033[1;31mFAIL\033[0m\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     printf("\033[1;32mOK\033[0m\n");
 | |
|     return 0;
 | |
| }
 |