mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* added `llama_model_token_*` variants to all the `llama_token_*` functions. * added `LLAMA_API` * formatting Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * removed old `llama_token` functions * changed 3 more functions to take in model - `llama_token_get_text` - `llama_token_get_score` - `llama_token_get_type` * added back docs * fixed main.cpp * changed token functions to use new model variants * changed token functions to use new model variants --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			148 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#pragma once
 | 
						|
 | 
						|
// this one and clip lib will be eventually merged to a single lib, let's keep it this way for now
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <cstdio>
 | 
						|
#include <cstdlib>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) {
 | 
						|
    int n_embd  = llama_n_embd(llama_get_model(ctx_llama));
 | 
						|
 | 
						|
    for (int i = 0; i < N; i += n_batch) {
 | 
						|
        int n_eval = N - i;
 | 
						|
        if (n_eval > n_batch) {
 | 
						|
            n_eval = n_batch;
 | 
						|
        }
 | 
						|
        llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
 | 
						|
        if (llama_decode(ctx_llama, batch)) {
 | 
						|
            fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        *n_past += n_eval;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
 | 
						|
    int N = (int) tokens.size();
 | 
						|
    for (int i = 0; i < N; i += n_batch) {
 | 
						|
        int n_eval = (int) tokens.size() - i;
 | 
						|
        if (n_eval > n_batch) {
 | 
						|
            n_eval = n_batch;
 | 
						|
        }
 | 
						|
        if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
 | 
						|
            fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        *n_past += n_eval;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
 | 
						|
    std::vector<llama_token> tokens;
 | 
						|
    tokens.push_back(id);
 | 
						|
    return eval_tokens(ctx_llama, tokens, 1, n_past);
 | 
						|
}
 | 
						|
 | 
						|
inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
 | 
						|
    std::string              str2     = str;
 | 
						|
    std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
 | 
						|
    eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
// TODO: use common/sampling.h
 | 
						|
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
 | 
						|
    auto & sparams = params.sparams;
 | 
						|
 | 
						|
    // out of user input, sample next token
 | 
						|
    const float   temp      = sparams.temp;
 | 
						|
    const int32_t top_k     = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
 | 
						|
    const float   top_p     = sparams.top_p;
 | 
						|
    const float   tfs_z     = sparams.tfs_z;
 | 
						|
    const float   typical_p = sparams.typical_p;
 | 
						|
    // const int32_t repeat_last_n   = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
 | 
						|
    // const float   repeat_penalty  = sparams.repeat_penalty;
 | 
						|
    // const float   alpha_presence  = sparams.presence_penalty;
 | 
						|
    // const float   alpha_frequency = sparams.frequency_penalty;
 | 
						|
    const int     mirostat     = sparams.mirostat;
 | 
						|
    const float   mirostat_tau = sparams.mirostat_tau;
 | 
						|
    const float   mirostat_eta = sparams.mirostat_eta;
 | 
						|
    // const bool    penalize_nl     = sparams.penalize_nl;
 | 
						|
 | 
						|
    llama_token id = 0;
 | 
						|
    {
 | 
						|
        auto logits  = llama_get_logits(ctx_llama);
 | 
						|
        auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
 | 
						|
 | 
						|
        // Apply params.logit_bias map
 | 
						|
        for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
 | 
						|
            logits[it->first] += it->second;
 | 
						|
        }
 | 
						|
 | 
						|
        std::vector<llama_token_data> candidates;
 | 
						|
        candidates.reserve(n_vocab);
 | 
						|
        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | 
						|
            candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | 
						|
        }
 | 
						|
 | 
						|
        llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | 
						|
 | 
						|
        // TODO: Apply penalties
 | 
						|
        // float nl_logit = logits[llama_token_nl(ctx)];
 | 
						|
        // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
 | 
						|
        // llama_sample_repetition_penalty(ctx, &candidates_p,
 | 
						|
        //      last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | 
						|
        //      last_n_repeat, repeat_penalty);
 | 
						|
        // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
 | 
						|
        // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | 
						|
        // last_n_repeat, alpha_frequency, alpha_presence);
 | 
						|
        // if (!penalize_nl) {
 | 
						|
        //     logits[llama_token_nl(ctx)] = nl_logit;
 | 
						|
        // }
 | 
						|
 | 
						|
        if (temp <= 0) {
 | 
						|
              // Greedy sampling
 | 
						|
            id = llama_sample_token_greedy(ctx_llama, &candidates_p);
 | 
						|
        } else {
 | 
						|
            if (mirostat == 1) {
 | 
						|
                static float mirostat_mu = 2.0f * mirostat_tau;
 | 
						|
                const  int mirostat_m    = 100;
 | 
						|
                llama_sample_temp(ctx_llama, &candidates_p, temp);
 | 
						|
                id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
 | 
						|
            } else if (mirostat == 2) {
 | 
						|
                static float mirostat_mu = 2.0f * mirostat_tau;
 | 
						|
                llama_sample_temp(ctx_llama, &candidates_p, temp);
 | 
						|
                id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
 | 
						|
            } else {
 | 
						|
                  // Temperature sampling
 | 
						|
                llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
 | 
						|
                llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
 | 
						|
                llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
 | 
						|
                llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
 | 
						|
                llama_sample_temp(ctx_llama, &candidates_p, temp);
 | 
						|
                id = llama_sample_token(ctx_llama, &candidates_p);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return id;
 | 
						|
}
 | 
						|
 | 
						|
inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
 | 
						|
    int id = sample_id(ctx_llama, params);
 | 
						|
    static std::string ret;
 | 
						|
    if (id == llama_token_eos(llama_get_model(ctx_llama))) {
 | 
						|
        ret = "</s>";
 | 
						|
    } else {
 | 
						|
        ret = llama_token_to_piece(ctx_llama, id);
 | 
						|
    }
 | 
						|
    eval_id(ctx_llama, id, n_past);
 | 
						|
    return ret.c_str();
 | 
						|
}
 |