Files
llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp
Ervin Áron Tasnádi 0d3984424f ggml-vulkan: adds support for op CONV_TRANSPOSE_1D (#13813)
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D

* test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D

* Missing barrier added to shader.
Number of additional tests reduced to 108.

* * Fixes typo in variable name.

* Removes extra whitespaces.

* Adds int64->int32 casts to prevent possible warnings.

* Problem size reduced in tests to pass tests with llvmpipe.

* supports_op condition moved from unintended position
2025-06-04 22:02:00 +02:00

99 lines
3.0 KiB
Plaintext

#version 450
#include "types.comp"
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; // src0 - kernel: [K, Cout, Cin]
layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; // src1 - input: [L, Cin]
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; // dst - result [KL, Cout]
layout(local_size_x = 128 , local_size_y = 1, local_size_z = 1) in;
layout (push_constant) uniform parameter {
uint32_t Cout;
uint32_t Cin;
uint32_t K;
uint32_t L;
uint32_t KL;
uint32_t nb01;
uint32_t nb02;
uint32_t nb11;
uint32_t nb1;
int32_t s0;
} p;
uint32_t Cout_idx = gl_WorkGroupID.x;
const uint32_t bs = gl_WorkGroupSize.x;
uint32_t tid = gl_LocalInvocationID.x;
// Code is more straightforward if we assume it is bs*s0+K instead of (bs-1)*s0+K.
uint32_t tmp_len = bs*p.s0+p.K;
shared D_TYPE tmp[4096];
uint splitWork(uint workSize){
return (bs + workSize -1) / bs;
}
void main(){
for(uint32_t i = 0; i < splitWork(tmp_len); i++){
uint32_t idx = i*bs+tid;
if(idx < tmp_len){
tmp[idx] = 0.0;
}
}
uint32_t L_blocks = splitWork(p.L);
for(uint32_t L_block_id = 0; L_block_id < L_blocks; L_block_id++){
if(L_block_id > 0){
barrier();
// Shift values in tmp to the current processing window
for(int i = 0; i < splitWork(tmp_len); i++){
uint32_t idx = i*bs+tid;
if(idx >= bs*p.s0 && idx < tmp_len){
tmp[idx-bs*p.s0] = tmp[idx];
tmp[idx] = 0.0;
}else if(idx >= p.K && idx < bs*p.s0){
tmp[idx] = 0.0;
}
}
}
barrier();
// Save contributions of the block to tmp
uint32_t L_idx = L_block_id*bs + tid;
for(uint32_t K_idx = 0; K_idx < p.K; K_idx++){
D_TYPE dp = 0.0;
for(uint32_t Cin_idx = 0; Cin_idx < p.Cin; Cin_idx++){
A_TYPE elemKrn = data_a[K_idx + Cout_idx * p.nb01 + Cin_idx * p.nb02];
if(L_idx < p.L){
B_TYPE elemInp = data_b[L_idx + Cin_idx*p.nb11];
dp = fma(elemKrn, elemInp, dp);
}
}
tmp[tid*p.s0 + K_idx] += dp;
barrier();
}
// Save the computed values except the last block that can have different size
uint32_t KLb_idx = L_block_id*bs*p.s0;
if(L_block_id < L_blocks-1){
for(uint32_t s0_idx = 0; s0_idx < p.s0; s0_idx++){
uint32_t sh_idx = p.s0*tid+s0_idx;
uint32_t KL_idx = KLb_idx+sh_idx;
if(KL_idx < p.KL){
data_d[KL_idx + Cout_idx*p.nb1] = tmp[sh_idx];
}
}
}
}
for(uint32_t i = 0; i < splitWork(tmp_len); i++){
uint32_t idx = i*bs+tid;
uint32_t KL_idx = (L_blocks-1)*bs*p.s0+idx;
if(KL_idx < p.KL){
data_d[KL_idx + Cout_idx*p.nb1] = tmp[idx];
}
}
}