mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 9c405c9f9a
			
		
	
	9c405c9f9a
	
	
	
		
			
			* server: use llama_chat_apply_template * server: remove trailing space * server: fix format_chat * server: fix help message Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * server: fix formatted_chat --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			226 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <set>
 | |
| #include <mutex>
 | |
| #include <condition_variable>
 | |
| #include <unordered_map>
 | |
| 
 | |
| #include "json.hpp"
 | |
| #include "utils.hpp"
 | |
| 
 | |
| #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
 | |
| 
 | |
| using json = nlohmann::json;
 | |
| 
 | |
| inline static json oaicompat_completion_params_parse(
 | |
|     const struct llama_model * model,
 | |
|     const json &body, /* openai api json semantics */
 | |
|     const std::string &chat_template)
 | |
| {
 | |
|     json llama_params;
 | |
| 
 | |
|     llama_params["__oaicompat"] = true;
 | |
| 
 | |
|     // Map OpenAI parameters to llama.cpp parameters
 | |
|     //
 | |
|     // For parameters that are defined by the OpenAI documentation (e.g.
 | |
|     // temperature), we explicitly specify OpenAI's intended default; we
 | |
|     // need to do that because sometimes OpenAI disagrees with llama.cpp
 | |
|     //
 | |
|     // https://platform.openai.com/docs/api-reference/chat/create
 | |
|     llama_sampling_params default_sparams;
 | |
|     llama_params["model"]             = json_value(body, "model", std::string("unknown"));
 | |
|     llama_params["prompt"]            = format_chat(model, chat_template, body["messages"]);
 | |
|     llama_params["cache_prompt"]      = json_value(body, "cache_prompt", false);
 | |
|     llama_params["temperature"]       = json_value(body, "temperature", 0.0);
 | |
|     llama_params["top_k"]             = json_value(body, "top_k", default_sparams.top_k);
 | |
|     llama_params["top_p"]             = json_value(body, "top_p", 1.0);
 | |
|     llama_params["n_predict"]         = json_value(body, "max_tokens", -1);
 | |
|     llama_params["logit_bias"]        = json_value(body, "logit_bias",json::object());
 | |
|     llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
 | |
|     llama_params["presence_penalty"]  = json_value(body, "presence_penalty", 0.0);
 | |
|     llama_params["seed"]              = json_value(body, "seed", LLAMA_DEFAULT_SEED);
 | |
|     llama_params["stream"]            = json_value(body, "stream", false);
 | |
|     llama_params["mirostat"]          = json_value(body, "mirostat", default_sparams.mirostat);
 | |
|     llama_params["mirostat_tau"]      = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
 | |
|     llama_params["mirostat_eta"]      = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
 | |
|     llama_params["penalize_nl"]       = json_value(body, "penalize_nl", default_sparams.penalize_nl);
 | |
|     llama_params["typical_p"]         = json_value(body, "typical_p", default_sparams.typical_p);
 | |
|     llama_params["repeat_last_n"]     = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
 | |
|     llama_params["ignore_eos"]        = json_value(body, "ignore_eos", false);
 | |
|     llama_params["tfs_z"]             = json_value(body, "tfs_z", default_sparams.tfs_z);
 | |
| 
 | |
|     if (body.count("grammar") != 0) {
 | |
|         llama_params["grammar"] = json_value(body, "grammar", json::object());
 | |
|     }
 | |
| 
 | |
|     // Handle 'stop' field
 | |
|     if (body.contains("stop") && body["stop"].is_string()) {
 | |
|         llama_params["stop"] = json::array({body["stop"].get<std::string>()});
 | |
|     } else {
 | |
|         llama_params["stop"] = json_value(body, "stop", json::array());
 | |
|     }
 | |
| 
 | |
|     // Ensure there is ChatML-specific end sequence among stop words
 | |
|     llama_params["stop"].push_back("<|im_end|>");
 | |
| 
 | |
|     return llama_params;
 | |
| }
 | |
| 
 | |
| inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
 | |
| {
 | |
|     json result = response.result_json;
 | |
| 
 | |
|     bool stopped_word        = result.count("stopped_word") != 0;
 | |
|     bool stopped_eos         = json_value(result, "stopped_eos", false);
 | |
|     int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
 | |
|     int num_prompt_tokens    = json_value(result, "tokens_evaluated", 0);
 | |
|     std::string content      = json_value(result, "content", std::string(""));
 | |
| 
 | |
|     std::string finish_reason = "length";
 | |
|     if (stopped_word || stopped_eos) {
 | |
|         finish_reason = "stop";
 | |
|     }
 | |
| 
 | |
|     json choices =
 | |
|         streaming ? json::array({json{{"finish_reason", finish_reason},
 | |
|                                         {"index", 0},
 | |
|                                         {"delta", json::object()}}})
 | |
|                   : json::array({json{{"finish_reason", finish_reason},
 | |
|                                         {"index", 0},
 | |
|                                         {"message", json{{"content", content},
 | |
|                                                          {"role", "assistant"}}}}});
 | |
| 
 | |
|     std::time_t t = std::time(0);
 | |
| 
 | |
|     json res =
 | |
|         json{{"choices", choices},
 | |
|             {"created", t},
 | |
|             {"model",
 | |
|                 json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
 | |
|             {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
 | |
|             {"usage",
 | |
|                 json{{"completion_tokens", num_tokens_predicted},
 | |
|                      {"prompt_tokens",     num_prompt_tokens},
 | |
|                      {"total_tokens",      num_tokens_predicted + num_prompt_tokens}}},
 | |
|             {"id", gen_chatcmplid()}};
 | |
| 
 | |
|     if (server_verbose) {
 | |
|         res["__verbose"] = result;
 | |
|     }
 | |
| 
 | |
|     if (result.contains("completion_probabilities")) {
 | |
|         res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| // return value is vector as there is one case where we might need to generate two responses
 | |
| inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
 | |
|     json result = response.result_json;
 | |
| 
 | |
|     if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
 | |
|         return std::vector<json>({response.result_json});
 | |
|     }
 | |
| 
 | |
|     bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
 | |
|     std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
 | |
| 
 | |
|     bool stopped_word   = json_value(result, "stopped_word", false);
 | |
|     bool stopped_eos    = json_value(result, "stopped_eos", false);
 | |
|     bool stopped_limit  = json_value(result, "stopped_limit", false);
 | |
|     std::string content = json_value(result, "content", std::string(""));
 | |
| 
 | |
|     std::string finish_reason;
 | |
|     if (stopped_word || stopped_eos) {
 | |
|         finish_reason = "stop";
 | |
|     }
 | |
|     if (stopped_limit) {
 | |
|         finish_reason = "length";
 | |
|     }
 | |
| 
 | |
|     std::time_t t = std::time(0);
 | |
| 
 | |
|     json choices;
 | |
| 
 | |
|     if (!finish_reason.empty()) {
 | |
|         choices = json::array({json{{"finish_reason", finish_reason},
 | |
|                                     {"index", 0},
 | |
|                                     {"delta", json::object()}}});
 | |
|     } else {
 | |
|         if (first) {
 | |
|             if (content.empty()) {
 | |
|                 choices = json::array({json{{"finish_reason", nullptr},
 | |
|                                             {"index", 0},
 | |
|                                             {"delta", json{{"role", "assistant"}}}}});
 | |
|             } else {
 | |
|                 // We have to send this as two updates to conform to openai behavior
 | |
|                 json initial_ret = json{{"choices", json::array({json{
 | |
|                                         {"finish_reason", nullptr},
 | |
|                                         {"index", 0},
 | |
|                                         {"delta", json{
 | |
|                                             {"role", "assistant"}
 | |
|                                         }}}})},
 | |
|                             {"created", t},
 | |
|                             {"id", gen_chatcmplid()},
 | |
|                             {"model", modelname},
 | |
|                             {"object", "chat.completion.chunk"}};
 | |
| 
 | |
|                 json second_ret = json{
 | |
|                             {"choices", json::array({json{{"finish_reason", nullptr},
 | |
|                                                             {"index", 0},
 | |
|                                                             {"delta", json{
 | |
|                                                             {"content", content}}}
 | |
|                                                             }})},
 | |
|                             {"created", t},
 | |
|                             {"id", gen_chatcmplid()},
 | |
|                             {"model", modelname},
 | |
|                             {"object", "chat.completion.chunk"}};
 | |
| 
 | |
|                 return std::vector<json>({initial_ret, second_ret});
 | |
|             }
 | |
|         } else {
 | |
|             // Some idiosyncrasy in task processing logic makes several trailing calls
 | |
|             // with empty content, we ignore these at the calee site.
 | |
|             if (content.empty()) {
 | |
|                 return std::vector<json>({json::object()});
 | |
|             }
 | |
| 
 | |
|             choices = json::array({json{
 | |
|                 {"finish_reason", nullptr},
 | |
|                 {"index", 0},
 | |
|                 {"delta",
 | |
|                 json{
 | |
|                     {"content", content},
 | |
|                 }},
 | |
|             }});
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     json ret = json{{"choices", choices},
 | |
|                     {"created", t},
 | |
|                     {"id", gen_chatcmplid()},
 | |
|                     {"model", modelname},
 | |
|                     {"object", "chat.completion.chunk"}};
 | |
| 
 | |
|     return std::vector<json>({ret});
 | |
| }
 | |
| 
 | |
| inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings)
 | |
| {
 | |
|     json res =
 | |
|         json{
 | |
|             {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
 | |
|             {"object", "list"},
 | |
|             {"usage",
 | |
|                 json{{"prompt_tokens", 0},
 | |
|                      {"total_tokens", 0}}},
 | |
|             {"data", embeddings}
 | |
|         };
 | |
|     return res;
 | |
| }
 | |
| 
 |