mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			902 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			902 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| //
 | |
| // GGML Tensor Library
 | |
| //
 | |
| // This documentation is still a work in progress.
 | |
| // If you wish some specific topics to be covered, feel free to drop a comment:
 | |
| //
 | |
| //   https://github.com/ggerganov/whisper.cpp/issues/40
 | |
| //
 | |
| // ## Overview
 | |
| //
 | |
| // This library implements:
 | |
| //
 | |
| //  - a set of tensor operations
 | |
| //  - automatic differentiation
 | |
| //  - basic optimization algorithms
 | |
| //
 | |
| // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
 | |
| // but is not limited to, the following:
 | |
| //
 | |
| //  - linear regression
 | |
| //  - support vector machines
 | |
| //  - neural networks
 | |
| //
 | |
| // The library allows the user to define a certain function using the available tensor operations. This function
 | |
| // definition is represented internally via a computation graph. Each tensor operation in the function definition
 | |
| // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
 | |
| // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
 | |
| // using one of the available optimization algorithms.
 | |
| //
 | |
| // For example, here we define the function: f(x) = a*x^2 + b
 | |
| //
 | |
| //   {
 | |
| //       struct ggml_init_params params = {
 | |
| //           .mem_size   = 16*1024*1024,
 | |
| //           .mem_buffer = NULL,
 | |
| //       };
 | |
| //
 | |
| //       // memory allocation happens here
 | |
| //       struct ggml_context * ctx = ggml_init(params);
 | |
| //
 | |
| //       struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
 | |
| //
 | |
| //       ggml_set_param(ctx, x); // x is an input variable
 | |
| //
 | |
| //       struct ggml_tensor * a  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
 | |
| //       struct ggml_tensor * b  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
 | |
| //       struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
 | |
| //       struct ggml_tensor * f  = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
 | |
| //
 | |
| //       ...
 | |
| //   }
 | |
| //
 | |
| // Notice that the function definition above does not involve any actual computation. The computation is performed only
 | |
| // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
 | |
| //
 | |
| //   {
 | |
| //       ...
 | |
| //
 | |
| //       struct ggml_cgraph gf = ggml_build_forward(f);
 | |
| //
 | |
| //       // set the input variable and parameter values
 | |
| //       ggml_set_f32(x, 2.0f);
 | |
| //       ggml_set_f32(a, 3.0f);
 | |
| //       ggml_set_f32(b, 4.0f);
 | |
| //
 | |
| //       ggml_graph_compute(ctx0, &gf);
 | |
| //
 | |
| //       printf("f = %f\n", ggml_get_f32_1d(f, 0));
 | |
| //
 | |
| //       ...
 | |
| //   }
 | |
| //
 | |
| // The actual computation is performed in the ggml_graph_compute() function.
 | |
| //
 | |
| // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
 | |
| // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
 | |
| // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
 | |
| // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
 | |
| // actually needed.
 | |
| //
 | |
| // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
 | |
| // differentiation and optimization algorithms.
 | |
| //
 | |
| // The described approach allows to define the function graph once and then compute its forward or backward graphs
 | |
| // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
 | |
| // the user can avoid the memory allocation overhead at runtime.
 | |
| //
 | |
| // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
 | |
| // citizens, but in theory the library can be extended to support FP8 and integer data types.
 | |
| //
 | |
| // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
 | |
| // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
 | |
| // clear that the library needs to support more complex operations. The way to support these operations is not clear
 | |
| // yet, but a few examples are demonstrated in the following operations:
 | |
| //
 | |
| //   - ggml_permute()
 | |
| //   - ggml_conv_1d_1s()
 | |
| //   - ggml_conv_1d_2s()
 | |
| //
 | |
| // For each tensor operator, the library implements a forward and backward computation function. The forward function
 | |
| // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
 | |
| // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
 | |
| // calculus class, or watch the following video:
 | |
| //
 | |
| //   What is Automatic Differentiation?
 | |
| //   https://www.youtube.com/watch?v=wG_nF1awSSY
 | |
| //
 | |
| //
 | |
| // ## Tensor data (struct ggml_tensor)
 | |
| //
 | |
| // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
 | |
| // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
 | |
| // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
 | |
| //
 | |
| //   {
 | |
| //       struct ggml_tensor * c = ggml_add(ctx, a, b);
 | |
| //
 | |
| //       assert(c->src[0] == a);
 | |
| //       assert(c->src[1] == b);
 | |
| //   }
 | |
| //
 | |
| // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
 | |
| // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
 | |
| // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
 | |
| // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
 | |
| // contiguous in memory.
 | |
| //
 | |
| // The data of the tensor is accessed via the "data" pointer. For example:
 | |
| //
 | |
| //   {
 | |
| //       struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
 | |
| //
 | |
| //       // a[1, 2] = 1.0f;
 | |
| //       *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
 | |
| //
 | |
| //       // a[2, 0] = 2.0f;
 | |
| //       *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
 | |
| //
 | |
| //       ...
 | |
| //   }
 | |
| //
 | |
| // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
 | |
| //
 | |
| // ## The matrix multiplication operator (ggml_mul_mat)
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| // ## Multi-threading
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| // ## Overview of ggml.c
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| // ## SIMD optimizations
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| // ## Debugging ggml
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| 
 | |
| #ifdef GGML_SHARED
 | |
| #    if defined(_WIN32) && !defined(__MINGW32__)
 | |
| #        ifdef GGML_BUILD
 | |
| #            define GGML_API __declspec(dllexport)
 | |
| #        else
 | |
| #            define GGML_API __declspec(dllimport)
 | |
| #        endif
 | |
| #    else
 | |
| #        define GGML_API __attribute__ ((visibility ("default")))
 | |
| #    endif
 | |
| #else
 | |
| #    define GGML_API
 | |
| #endif
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stddef.h>
 | |
| #include <stdbool.h>
 | |
| 
 | |
| #define GGML_FILE_MAGIC   0x67676d6c // "ggml"
 | |
| #define GGML_FILE_VERSION 1
 | |
| 
 | |
| #define GGML_MAX_DIMS          4
 | |
| #define GGML_MAX_NODES         4096
 | |
| #define GGML_MAX_PARAMS        16
 | |
| #define GGML_MAX_CONTEXTS      64
 | |
| #define GGML_MAX_OPT           4
 | |
| #define GGML_DEFAULT_N_THREADS 4
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     // we use the built-in 16-bit float type
 | |
|     typedef __fp16 ggml_fp16_t;
 | |
| #else
 | |
|     typedef uint16_t ggml_fp16_t;
 | |
| #endif
 | |
| 
 | |
|     // convert FP16 <-> FP32
 | |
|     GGML_API float       ggml_fp16_to_fp32(ggml_fp16_t x);
 | |
|     GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
 | |
| 
 | |
|     struct ggml_object;
 | |
|     struct ggml_context;
 | |
| 
 | |
|     enum ggml_type {
 | |
|         GGML_TYPE_F32  = 0,
 | |
|         GGML_TYPE_F16  = 1,
 | |
|         GGML_TYPE_Q4_0 = 2,
 | |
|         GGML_TYPE_Q4_1 = 3,
 | |
|         GGML_TYPE_Q4_2 = 4,
 | |
|         // GGML_TYPE_Q4_3 (5) support has been removed
 | |
|         GGML_TYPE_Q5_0 = 6,
 | |
|         GGML_TYPE_Q5_1 = 7,
 | |
|         GGML_TYPE_Q8_0 = 8,
 | |
|         GGML_TYPE_Q8_1 = 9,
 | |
|         GGML_TYPE_I8,
 | |
|         GGML_TYPE_I16,
 | |
|         GGML_TYPE_I32,
 | |
|         GGML_TYPE_COUNT,
 | |
|     };
 | |
| 
 | |
|     // available tensor operations:
 | |
|     enum ggml_op {
 | |
|         GGML_OP_NONE = 0,
 | |
| 
 | |
|         GGML_OP_DUP,
 | |
|         GGML_OP_ADD,
 | |
|         GGML_OP_SUB,
 | |
|         GGML_OP_MUL,
 | |
|         GGML_OP_DIV,
 | |
|         GGML_OP_SQR,
 | |
|         GGML_OP_SQRT,
 | |
|         GGML_OP_SUM,
 | |
|         GGML_OP_MEAN,
 | |
|         GGML_OP_REPEAT,
 | |
|         GGML_OP_ABS,
 | |
|         GGML_OP_SGN,
 | |
|         GGML_OP_NEG,
 | |
|         GGML_OP_STEP,
 | |
|         GGML_OP_RELU,
 | |
|         GGML_OP_GELU,
 | |
|         GGML_OP_SILU,
 | |
|         GGML_OP_NORM, // normalize
 | |
|         GGML_OP_RMS_NORM,
 | |
| 
 | |
|         GGML_OP_MUL_MAT,
 | |
| 
 | |
|         GGML_OP_SCALE,
 | |
|         GGML_OP_CPY,
 | |
|         GGML_OP_CONT,
 | |
|         GGML_OP_RESHAPE,
 | |
|         GGML_OP_VIEW,
 | |
|         GGML_OP_PERMUTE,
 | |
|         GGML_OP_TRANSPOSE,
 | |
|         GGML_OP_GET_ROWS,
 | |
|         GGML_OP_DIAG_MASK_INF,
 | |
|         GGML_OP_SOFT_MAX,
 | |
|         GGML_OP_ROPE,
 | |
|         GGML_OP_ALIBI,
 | |
|         GGML_OP_CONV_1D_1S,
 | |
|         GGML_OP_CONV_1D_2S,
 | |
| 
 | |
|         GGML_OP_FLASH_ATTN,
 | |
|         GGML_OP_FLASH_FF,
 | |
| 
 | |
|         GGML_OP_MAP_UNARY,
 | |
|         GGML_OP_MAP_BINARY,
 | |
| 
 | |
|         GGML_OP_COUNT,
 | |
|     };
 | |
| 
 | |
| 
 | |
|     // ggml object
 | |
|     struct ggml_object {
 | |
|         size_t offs;
 | |
|         size_t size;
 | |
| 
 | |
|         struct ggml_object * next;
 | |
| 
 | |
|         char padding[8];
 | |
|     };
 | |
| 
 | |
|     static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
 | |
| 
 | |
|     // n-dimensional tensor
 | |
|     struct ggml_tensor {
 | |
|         enum ggml_type type;
 | |
| 
 | |
|         int     n_dims;
 | |
|         int64_t ne[GGML_MAX_DIMS]; // number of elements
 | |
|         size_t  nb[GGML_MAX_DIMS]; // stride in bytes:
 | |
|                                    // nb[0] = sizeof(type)
 | |
|                                    // nb[1] = nb[0]   * ne[0] + padding
 | |
|                                    // nb[i] = nb[i-1] * ne[i-1]
 | |
| 
 | |
|         // compute data
 | |
|         enum ggml_op op;
 | |
| 
 | |
|         bool is_param;
 | |
| 
 | |
|         struct ggml_tensor * grad;
 | |
|         struct ggml_tensor * src0;
 | |
|         struct ggml_tensor * src1;
 | |
|         struct ggml_tensor * opt[GGML_MAX_OPT];
 | |
| 
 | |
|         // thread scheduling
 | |
|         int n_tasks;
 | |
| 
 | |
|         // performance
 | |
|         int     perf_runs;
 | |
|         int64_t perf_cycles;
 | |
|         int64_t perf_time_us;
 | |
| 
 | |
|         void * data;
 | |
|         char padding[8];
 | |
|     };
 | |
| 
 | |
|     // computation graph
 | |
|     struct ggml_cgraph {
 | |
|         int n_nodes;
 | |
|         int n_leafs;
 | |
|         int n_threads;
 | |
| 
 | |
|         size_t work_size;
 | |
|         struct ggml_tensor * work;
 | |
| 
 | |
|         struct ggml_tensor * nodes[GGML_MAX_NODES];
 | |
|         struct ggml_tensor * grads[GGML_MAX_NODES];
 | |
|         struct ggml_tensor * leafs[GGML_MAX_NODES];
 | |
| 
 | |
|         // performance
 | |
|         int     perf_runs;
 | |
|         int64_t perf_cycles;
 | |
|         int64_t perf_time_us;
 | |
|     };
 | |
| 
 | |
|     // scratch buffer
 | |
|     struct ggml_scratch {
 | |
|         size_t offs;
 | |
|         size_t size;
 | |
|         void * data;
 | |
|     };
 | |
| 
 | |
|     struct ggml_init_params {
 | |
|         // memory pool
 | |
|         size_t mem_size;   // bytes
 | |
|         void * mem_buffer; // if NULL, memory will be allocated internally
 | |
|         bool   no_alloc;   // don't allocate memory for the tensor data
 | |
|     };
 | |
| 
 | |
|     // misc
 | |
| 
 | |
|     GGML_API void    ggml_time_init(void); // call this once at the beginning of the program
 | |
|     GGML_API int64_t ggml_time_ms(void);
 | |
|     GGML_API int64_t ggml_time_us(void);
 | |
|     GGML_API int64_t ggml_cycles(void);
 | |
|     GGML_API int64_t ggml_cycles_per_ms(void);
 | |
| 
 | |
|     GGML_API void    ggml_print_object (const struct ggml_object * obj);
 | |
|     GGML_API void    ggml_print_objects(const struct ggml_context * ctx);
 | |
| 
 | |
|     GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
 | |
|     GGML_API size_t  ggml_nbytes   (const struct ggml_tensor * tensor);
 | |
| 
 | |
|     GGML_API int     ggml_blck_size (enum ggml_type type);
 | |
|     GGML_API size_t  ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
 | |
|     GGML_API float   ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
 | |
| 
 | |
|     GGML_API const char * ggml_type_name(enum ggml_type type);
 | |
| 
 | |
|     GGML_API size_t  ggml_element_size(const struct ggml_tensor * tensor);
 | |
| 
 | |
|     GGML_API bool    ggml_is_quantized(enum ggml_type type);
 | |
| 
 | |
|     // main
 | |
| 
 | |
|     GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
 | |
|     GGML_API void    ggml_free(struct ggml_context * ctx);
 | |
| 
 | |
|     GGML_API size_t  ggml_used_mem(const struct ggml_context * ctx);
 | |
| 
 | |
|     GGML_API size_t  ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int    n_dims,
 | |
|             const int64_t *ne);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor_1d(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int64_t ne0);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int64_t ne0,
 | |
|             int64_t ne1);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor_3d(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int64_t ne0,
 | |
|             int64_t ne1,
 | |
|             int64_t ne2);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor_4d(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int64_t ne0,
 | |
|             int64_t ne1,
 | |
|             int64_t ne2,
 | |
|             int64_t ne3);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
 | |
|     GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
 | |
|     GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
 | |
|     GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
 | |
|     GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
 | |
| 
 | |
|     GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
 | |
|     GGML_API void    ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
 | |
| 
 | |
|     GGML_API float   ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
 | |
|     GGML_API void    ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
 | |
| 
 | |
|     GGML_API void *  ggml_get_data    (const struct ggml_tensor * tensor);
 | |
|     GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
 | |
| 
 | |
|     //
 | |
|     // operations on tensors with backpropagation
 | |
|     //
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_dup(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_add(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_add_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sub(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_mul(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_div(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sqr(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sqrt(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // return scalar
 | |
|     // TODO: compute sum along rows
 | |
|     GGML_API struct ggml_tensor * ggml_sum(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // mean along rows
 | |
|     GGML_API struct ggml_tensor * ggml_mean(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // if a is the same shape as b, and a is not parameter, return a
 | |
|     // otherwise, return a new tensor: repeat(a) to fit in b
 | |
|     GGML_API struct ggml_tensor * ggml_repeat(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_abs(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sgn(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_neg(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_step(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_relu(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // TODO: double-check this computation is correct
 | |
|     GGML_API struct ggml_tensor * ggml_gelu(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_silu(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // normalize along rows
 | |
|     // TODO: eps is hardcoded to 1e-5 for now
 | |
|     GGML_API struct ggml_tensor * ggml_norm(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_rms_norm(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // A: m rows, n columns
 | |
|     // B: p rows, n columns (i.e. we transpose it internally)
 | |
|     // result is m columns, p rows
 | |
|     GGML_API struct ggml_tensor * ggml_mul_mat(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     //
 | |
|     // operations on tensors without backpropagation
 | |
|     //
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_scale(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // a -> b, return view(b)
 | |
|     GGML_API struct ggml_tensor * ggml_cpy(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // make contiguous
 | |
|     GGML_API struct ggml_tensor * ggml_cont(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // return view(a), b specifies the new shape
 | |
|     // TODO: when we start computing gradient, make a copy instead of view
 | |
|     GGML_API struct ggml_tensor * ggml_reshape(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // return view(a)
 | |
|     // TODO: when we start computing gradient, make a copy instead of view
 | |
|     GGML_API struct ggml_tensor * ggml_reshape_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1);
 | |
| 
 | |
|     // return view(a)
 | |
|     // TODO: when we start computing gradient, make a copy instead of view
 | |
|     GGML_API struct ggml_tensor * ggml_reshape_3d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1,
 | |
|             int64_t               ne2);
 | |
| 
 | |
|     // offset in bytes
 | |
|     GGML_API struct ggml_tensor * ggml_view_1d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_view_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1,
 | |
|             size_t                nb1, // row stride in bytes
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_view_3d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1,
 | |
|             int64_t               ne2,
 | |
|             size_t                nb1, // row   stride in bytes
 | |
|             size_t                nb2, // slice stride in bytes
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_permute(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   axis0,
 | |
|             int                   axis1,
 | |
|             int                   axis2,
 | |
|             int                   axis3);
 | |
| 
 | |
|     // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
 | |
|     GGML_API struct ggml_tensor * ggml_transpose(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_get_rows(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // set elements above the diagonal to -INF
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_diag_mask_inf(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_soft_max(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // rotary position embedding
 | |
|     // in-place, returns view(a)
 | |
|     // if mode & 1 == 1, skip n_past elements
 | |
|     // if mode & 2 == 1, GPT-NeoX style
 | |
|     // TODO: avoid creating a new tensor every time
 | |
|     GGML_API struct ggml_tensor * ggml_rope(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past,
 | |
|             int                   n_dims,
 | |
|             int                   mode);
 | |
| 
 | |
|     // alibi position embedding
 | |
|     // in-place, returns view(a)
 | |
|     struct ggml_tensor * ggml_alibi(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past,
 | |
|             int                   n_head);
 | |
| 
 | |
|     // padding = 1
 | |
|     // TODO: we don't support extra parameters for now
 | |
|     //       that's why we are hard-coding the stride, padding, and dilation
 | |
|     //       not great ..
 | |
|     GGML_API struct ggml_tensor * ggml_conv_1d_1s(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_conv_1d_2s(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_flash_attn(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * q,
 | |
|             struct ggml_tensor  * k,
 | |
|             struct ggml_tensor  * v,
 | |
|             bool                  masked);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_flash_ff(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b0,
 | |
|             struct ggml_tensor  * b1,
 | |
|             struct ggml_tensor  * c0,
 | |
|             struct ggml_tensor  * c1);
 | |
| 
 | |
|     // Mapping operations
 | |
|     typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
 | |
|     typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_unary_f32(
 | |
|             struct ggml_context        * ctx,
 | |
|             struct ggml_tensor         * a,
 | |
|             const  ggml_unary_op_f32_t fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_binary_f32(
 | |
|             struct ggml_context         * ctx,
 | |
|             struct ggml_tensor          * a,
 | |
|             struct ggml_tensor          * b,
 | |
|             const  ggml_binary_op_f32_t fun);
 | |
| 
 | |
|     //
 | |
|     // automatic differentiation
 | |
|     //
 | |
| 
 | |
|     GGML_API void ggml_set_param(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor * tensor);
 | |
| 
 | |
|     GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
 | |
| 
 | |
|     GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
 | |
|     GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
 | |
| 
 | |
|     GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
 | |
|     GGML_API void ggml_graph_reset  (struct ggml_cgraph * cgraph);
 | |
| 
 | |
|     // print info and performance information for the graph
 | |
|     GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
 | |
| 
 | |
|     // dump the graph into a file using the dot format
 | |
|     GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
 | |
| 
 | |
|     //
 | |
|     // optimization
 | |
|     //
 | |
| 
 | |
|     // optimization methods
 | |
|     enum ggml_opt_type {
 | |
|         GGML_OPT_ADAM,
 | |
|         GGML_OPT_LBFGS,
 | |
|     };
 | |
| 
 | |
|     // linesearch methods
 | |
|     enum ggml_linesearch {
 | |
|         GGML_LINESEARCH_DEFAULT = 1,
 | |
| 
 | |
|         GGML_LINESEARCH_BACKTRACKING_ARMIJO       = 0,
 | |
|         GGML_LINESEARCH_BACKTRACKING_WOLFE        = 1,
 | |
|         GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
 | |
|     };
 | |
| 
 | |
|     // optimization return values
 | |
|     enum ggml_opt_result {
 | |
|         GGML_OPT_OK = 0,
 | |
|         GGML_OPT_DID_NOT_CONVERGE,
 | |
|         GGML_OPT_NO_CONTEXT,
 | |
|         GGML_OPT_INVALID_WOLFE,
 | |
|         GGML_OPT_FAIL,
 | |
| 
 | |
|         GGML_LINESEARCH_FAIL = -128,
 | |
|         GGML_LINESEARCH_MINIMUM_STEP,
 | |
|         GGML_LINESEARCH_MAXIMUM_STEP,
 | |
|         GGML_LINESEARCH_MAXIMUM_ITERATIONS,
 | |
|         GGML_LINESEARCH_INVALID_PARAMETERS,
 | |
|     };
 | |
| 
 | |
|     // optimization parameters
 | |
|     //
 | |
|     //   see ggml.c (ggml_opt_default_params) for default values
 | |
|     //
 | |
|     struct ggml_opt_params {
 | |
|         enum ggml_opt_type type;
 | |
| 
 | |
|         int n_threads;
 | |
| 
 | |
|         // delta-based convergence test
 | |
|         //
 | |
|         //   if past == 0 - disabled
 | |
|         //   if past > 0:
 | |
|         //     stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
 | |
|         //
 | |
|         int past;
 | |
|         float delta;
 | |
| 
 | |
|         // maximum number of iterations without improvement
 | |
|         //
 | |
|         //   if 0 - disabled
 | |
|         //   if > 0:
 | |
|         //     assume convergence if no cost improvement in this number of iterations
 | |
|         //
 | |
|         int max_no_improvement;
 | |
| 
 | |
|         bool print_forward_graph;
 | |
|         bool print_backward_graph;
 | |
| 
 | |
|         // ADAM parameters
 | |
|         struct {
 | |
|             int n_iter;
 | |
| 
 | |
|             float alpha; // learning rate
 | |
|             float beta1;
 | |
|             float beta2;
 | |
|             float eps;   // epsilon for numerical stability
 | |
|             float eps_f; // epsilon for convergence test
 | |
|             float eps_g; // epsilon for convergence test
 | |
|         } adam;
 | |
| 
 | |
|         // LBFGS parameters
 | |
|         struct {
 | |
|             int m; // number of corrections to approximate the inv. Hessian
 | |
|             int n_iter;
 | |
|             int max_linesearch;
 | |
| 
 | |
|             float eps;      // convergence tolerance
 | |
|             float ftol;     // line search tolerance
 | |
|             float wolfe;
 | |
|             float min_step;
 | |
|             float max_step;
 | |
| 
 | |
|             enum ggml_linesearch linesearch;
 | |
|         } lbfgs;
 | |
|     };
 | |
| 
 | |
|     GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
 | |
| 
 | |
|     // optimize the function defined by the tensor f
 | |
|     GGML_API enum ggml_opt_result ggml_opt(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_opt_params params,
 | |
|             struct ggml_tensor * f);
 | |
| 
 | |
|     //
 | |
|     // quantization
 | |
|     //
 | |
| 
 | |
|     GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
| 
 | |
|     GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
 | |
| 
 | |
|     //
 | |
|     // system info
 | |
|     //
 | |
| 
 | |
|     GGML_API int ggml_cpu_has_avx        (void);
 | |
|     GGML_API int ggml_cpu_has_avx2       (void);
 | |
|     GGML_API int ggml_cpu_has_avx512     (void);
 | |
|     GGML_API int ggml_cpu_has_avx512_vbmi(void);
 | |
|     GGML_API int ggml_cpu_has_avx512_vnni(void);
 | |
|     GGML_API int ggml_cpu_has_fma        (void);
 | |
|     GGML_API int ggml_cpu_has_neon       (void);
 | |
|     GGML_API int ggml_cpu_has_arm_fma    (void);
 | |
|     GGML_API int ggml_cpu_has_f16c       (void);
 | |
|     GGML_API int ggml_cpu_has_fp16_va    (void);
 | |
|     GGML_API int ggml_cpu_has_wasm_simd  (void);
 | |
|     GGML_API int ggml_cpu_has_blas       (void);
 | |
|     GGML_API int ggml_cpu_has_cublas     (void);
 | |
|     GGML_API int ggml_cpu_has_clblast    (void);
 | |
|     GGML_API int ggml_cpu_has_gpublas    (void);
 | |
|     GGML_API int ggml_cpu_has_sse3       (void);
 | |
|     GGML_API int ggml_cpu_has_vsx        (void);
 | |
| 
 | |
|     //
 | |
|     // Internal types and functions exposed for tests and benchmarks
 | |
|     //
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
|     // restrict not standard in C++
 | |
| #define GGML_RESTRICT
 | |
| #else
 | |
| #define GGML_RESTRICT restrict
 | |
| #endif
 | |
|     typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
 | |
|     typedef void (*quantize_row_q_t)  (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
 | |
|     typedef void (*vec_dot_q_t)       (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
 | |
| 
 | |
|     typedef struct {
 | |
|         dequantize_row_q_t dequantize_row_q;
 | |
|         quantize_row_q_t   quantize_row_q;
 | |
|         quantize_row_q_t   quantize_row_q_reference;
 | |
|         quantize_row_q_t   quantize_row_q_dot;
 | |
|         vec_dot_q_t        vec_dot_q;
 | |
|         enum ggml_type     vec_dot_type;
 | |
|     } quantize_fns_t;
 | |
| 
 | |
|     quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| }
 | |
| #endif
 | 
