mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 7fc50c051a
			
		
	
	7fc50c051a
	
	
	
		
			
			* cuBLAS: dequantize simultaneously while copying memory * cuBLAS: use host pinned memory * cuBLAS: improve ggml_compute_forward_mul_mat_f16_f32 with pinned memory * cuBLAS: also pin kv cache * fix rebase
		
			
				
	
	
		
			366 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			366 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <cuda_fp16.h>
 | |
| #include <atomic>
 | |
| #include "ggml-cuda.h"
 | |
| 
 | |
| typedef uint16_t ggml_fp16_t;
 | |
| static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | |
| 
 | |
| #define QK4_0 32
 | |
| typedef struct {
 | |
|     float   d;              // delta
 | |
|     uint8_t qs[QK4_0 / 2];  // nibbles / quants
 | |
| } block_q4_0;
 | |
| static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
 | |
| 
 | |
| #define QK4_1 32
 | |
| typedef struct {
 | |
|     float   d;              // delta
 | |
|     float   m;              // min
 | |
|     uint8_t qs[QK4_1 / 2];  // nibbles / quants
 | |
| } block_q4_1;
 | |
| static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
 | |
| 
 | |
| #define QK4_2 16
 | |
| typedef struct {
 | |
|     __half  d;              // delta
 | |
|     uint8_t qs[QK4_2 / 2];  // nibbles / quants
 | |
| } block_q4_2;
 | |
| static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
 | |
| 
 | |
| #define QK5_0 32
 | |
| typedef struct {
 | |
|     __half d;               // delta
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_0 / 2];  // nibbles / quants
 | |
| } block_q5_0;
 | |
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
 | |
| 
 | |
| #define QK5_1 32
 | |
| typedef struct {
 | |
|     __half d;               // delta
 | |
|     __half m;               // min
 | |
|     uint32_t qh;            // 5-th bit of quants
 | |
|     uint8_t qs[QK5_1 / 2];  // nibbles / quants
 | |
| } block_q5_1;
 | |
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
 | |
| 
 | |
| #define QK8_0 32
 | |
| typedef struct {
 | |
|     float   d;              // delta
 | |
|     int8_t  qs[QK8_0];      // quants
 | |
| } block_q8_0;
 | |
| static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
 | |
| 
 | |
| static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
 | |
|     const block_q4_0 * x = (const block_q4_0 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     for (int l = 0; l < QK4_0; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vi0 = vi & 0xf;
 | |
|         const int8_t vi1 = vi >> 4;
 | |
| 
 | |
|         const float v0 = (vi0 - 8)*d;
 | |
|         const float v1 = (vi1 - 8)*d;
 | |
| 
 | |
|         y[i*QK4_0 + l + 0] = v0;
 | |
|         y[i*QK4_0 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
 | |
|     const block_q4_1 * x = (const block_q4_1 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
|     const float m = x[i].m;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     for (int l = 0; l < QK4_1; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vi0 = vi & 0xf;
 | |
|         const int8_t vi1 = vi >> 4;
 | |
| 
 | |
|         const float v0 = vi0*d + m;
 | |
|         const float v1 = vi1*d + m;
 | |
| 
 | |
|         y[i*QK4_1 + l + 0] = v0;
 | |
|         y[i*QK4_1 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q4_2(const void * vx, float * y) {
 | |
|     const block_q4_2 * x = (const block_q4_2 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     for (int l = 0; l < QK4_2; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vi0 = vi & 0xf;
 | |
|         const int8_t vi1 = vi >> 4;
 | |
| 
 | |
|         const float v0 = (vi0 - 8)*d;
 | |
|         const float v1 = (vi1 - 8)*d;
 | |
| 
 | |
|         y[i*QK4_2 + l + 0] = v0;
 | |
|         y[i*QK4_2 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
 | |
|     const block_q5_0 * x = (const block_q5_0 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|     for (int l = 0; l < QK5_0; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
 | |
|         const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
 | |
| 
 | |
|         const int8_t vi0 = ((vi & 0xf) | vh0);
 | |
|         const int8_t vi1 = ((vi >>  4) | vh1);
 | |
| 
 | |
|         const float v0 = (vi0 - 16)*d;
 | |
|         const float v1 = (vi1 - 16)*d;
 | |
| 
 | |
|         y[i*QK5_0 + l + 0] = v0;
 | |
|         y[i*QK5_0 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
 | |
|     const block_q5_1 * x = (const block_q5_1 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
|     const float m = x[i].m;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     const uint32_t qh = x[i].qh;
 | |
| 
 | |
|     for (int l = 0; l < QK5_1; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
 | |
|         const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
 | |
| 
 | |
|         const int8_t vi0 = (vi & 0xf) | vh0;
 | |
|         const int8_t vi1 = (vi >>  4) | vh1;
 | |
| 
 | |
|         const float v0 = vi0*d + m;
 | |
|         const float v1 = vi1*d + m;
 | |
| 
 | |
|         y[i*QK5_1 + l + 0] = v0;
 | |
|         y[i*QK5_1 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
 | |
|     const block_q8_0 * x = (const block_q8_0 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const int8_t * pp = x[i].qs;
 | |
| 
 | |
|     for (int l = 0; l < QK8_0; l++) {
 | |
|         const int8_t vi = pp[l];
 | |
| 
 | |
|         y[i*QK8_0 + l] = vi*d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK4_0;
 | |
|     dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK4_1;
 | |
|     dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK4_2;
 | |
|     dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK5_0;
 | |
|     dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK5_1;
 | |
|     dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK8_0;
 | |
|     dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_row_q4_0_cuda;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_row_q4_1_cuda;
 | |
|         case GGML_TYPE_Q4_2:
 | |
|             return dequantize_row_q4_2_cuda;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_row_q5_0_cuda;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_row_q5_1_cuda;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_row_q8_0_cuda;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // buffer pool for cuda
 | |
| #define MAX_CUDA_BUFFERS 16
 | |
| 
 | |
| struct scoped_spin_lock {
 | |
|     std::atomic_flag& lock;
 | |
|     scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
 | |
|         while (lock.test_and_set(std::memory_order_acquire)) {
 | |
|             ; // spin
 | |
|         }
 | |
|     }
 | |
|     ~scoped_spin_lock() {
 | |
|         lock.clear(std::memory_order_release);
 | |
|     }
 | |
|     scoped_spin_lock(const scoped_spin_lock&) = delete;
 | |
|     scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
 | |
| };
 | |
| 
 | |
| struct cuda_buffer {
 | |
|     void * ptr = nullptr;
 | |
|     size_t size = 0;
 | |
| };
 | |
| 
 | |
| static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
 | |
| static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
 | |
| 
 | |
| void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[i];
 | |
|         if (b.size >= size && b.ptr != nullptr) {
 | |
|             void * ptr = b.ptr;
 | |
|             *actual_size = b.size;
 | |
|             b.ptr = nullptr;
 | |
|             b.size = 0;
 | |
|             return ptr;
 | |
|         }
 | |
|     }
 | |
|     void * ptr;
 | |
|     CUDA_CHECK(cudaMalloc((void **) &ptr, size));
 | |
|     *actual_size = size;
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_pool_free(void * ptr, size_t size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[i];
 | |
|         if (b.ptr == nullptr) {
 | |
|             b.ptr = ptr;
 | |
|             b.size = size;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
 | |
|     CUDA_CHECK(cudaFree(ptr));
 | |
| }
 | |
| 
 | |
| cublasHandle_t g_cublasH = nullptr;
 | |
| cudaStream_t g_cudaStream = nullptr;
 | |
| cudaStream_t g_cudaStream2 = nullptr;
 | |
| cudaEvent_t g_cudaEvent = nullptr;
 | |
| 
 | |
| void ggml_init_cublas() {
 | |
|     if (g_cublasH == nullptr) {
 | |
|         // create cublas handle, bind a stream
 | |
|         CUBLAS_CHECK(cublasCreate(&g_cublasH));
 | |
|         CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking));
 | |
|         CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream));
 | |
| 
 | |
|         // create additional stream and event for synchronization
 | |
|         CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking));
 | |
|         CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming));
 | |
| 
 | |
|         // configure logging to stdout
 | |
|         // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
 | |
|     }
 | |
| }
 | |
| 
 | |
| cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
 | |
|     const uint64_t ne0 = src->ne[0];
 | |
|     const uint64_t ne1 = src->ne[1];
 | |
|     const uint64_t nb0 = src->nb[0];
 | |
|     const uint64_t nb1 = src->nb[1];
 | |
|     const uint64_t nb2 = src->nb[2];
 | |
|     const uint64_t nb3 = src->nb[3];
 | |
|     const enum ggml_type type = src->type;
 | |
|     const size_t ts = ggml_type_size(type);
 | |
|     const size_t bs = ggml_blck_size(type);
 | |
| 
 | |
|     const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
 | |
|     if (nb0 == ts && nb1 == ts*ne0/bs) {
 | |
|         return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
 | |
|     } else if (nb0 == ts) {
 | |
|         return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
 | |
|     } else {
 | |
|         for (uint64_t i1 = 0; i1 < ne1; i1++) {
 | |
|             const void * rx = (const void *) ((const char *) x + i1*nb1);
 | |
|             void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
 | |
|             // pretend the row is a matrix with cols=1
 | |
|             cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
 | |
|             if (r != cudaSuccess) return r;
 | |
|         }
 | |
|         return cudaSuccess;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void * ggml_cuda_host_malloc(size_t size) {
 | |
|     void * ptr;
 | |
|     CUDA_CHECK(cudaMallocHost((void **) &ptr, size));
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_host_free(void * ptr) {
 | |
|     CUDA_CHECK(cudaFreeHost(ptr));
 | |
| }
 |