mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 f5cd27b71d
			
		
	
	f5cd27b71d
	
	
	
		
			
			* add common_json w/ support for truncated json healing * add common_chat_msg_diff * partial common_chat_parse * refactor parser w/ optionals * server: wire chat diffs in stream mode * fix trigger of thinking models (must happen after thoughts are closed) * fix functionary v3.2 raw python! * rename: common_chat_syntax (now contains format) * rm common_regex.at_start * don't return empty <think></think> * accommodate yet another deepseek r1 distill fantasy syntax (`<|tool▁calls|>`) * fix QwQ 32B tool call parsing after thoughts (hermes2) * better logs for grammar triggers * consume spaces after parse_json_tool_calls * fix required tool calls w/ thinking models that have pre-opened thinking tags * fix thinking model's initial trigger + test qwq's template * run most test_tool_call tests in stream + non-stream modes * make functionary v3.2 parsing more strict (differentiate first match from others) * send final diff from server, to close off raw python arguments * support partial content streaming in Generic mode * tool-call: allow content prelude before hermes2 tool calls (for Qwen2.5) * Update function-calling.md * Update tool_bench.py * chat-parser: remove input from exception (llm output may contain PII) --------- Co-authored-by: ochafik <ochafik@google.com> Co-authored-by: Olivier Chafik <ochafik@users.noreply.github.com>
		
			
				
	
	
		
			580 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			580 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "sampling.h"
 | |
| 
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <unordered_map>
 | |
| #include <algorithm>
 | |
| 
 | |
| // the ring buffer works similarly to std::deque, but with a fixed capacity
 | |
| // TODO: deduplicate with llama-impl.h
 | |
| template<typename T>
 | |
| struct ring_buffer {
 | |
|     ring_buffer(size_t cap) : capacity(cap), data(cap) {}
 | |
| 
 | |
|     T & front() {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         return data[first];
 | |
|     }
 | |
| 
 | |
|     const T & front() const {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         return data[first];
 | |
|     }
 | |
| 
 | |
|     T & back() {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         return data[pos];
 | |
|     }
 | |
| 
 | |
|     const T & back() const {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         return data[pos];
 | |
|     }
 | |
| 
 | |
|     void push_back(const T & value) {
 | |
|         if (sz == capacity) {
 | |
|             // advance the start when buffer is full
 | |
|             first = (first + 1) % capacity;
 | |
|         } else {
 | |
|             sz++;
 | |
|         }
 | |
|         data[pos] = value;
 | |
|         pos = (pos + 1) % capacity;
 | |
|     }
 | |
| 
 | |
|     T pop_front() {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         T value = data[first];
 | |
|         first = (first + 1) % capacity;
 | |
|         sz--;
 | |
|         return value;
 | |
|     }
 | |
| 
 | |
|     const T & rat(size_t i) const {
 | |
|         if (i >= sz) {
 | |
|             throw std::runtime_error("ring buffer: index out of bounds");
 | |
|         }
 | |
|         return data[(first + sz - i - 1) % capacity];
 | |
|     }
 | |
| 
 | |
|     std::vector<T> to_vector() const {
 | |
|         std::vector<T> result;
 | |
|         result.reserve(sz);
 | |
|         for (size_t i = 0; i < sz; i++) {
 | |
|             result.push_back(data[(first + i) % capacity]);
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     void clear() {
 | |
|         // here only reset the status of the buffer
 | |
|         sz = 0;
 | |
|         first = 0;
 | |
|         pos = 0;
 | |
|     }
 | |
| 
 | |
|     bool empty() const {
 | |
|         return sz == 0;
 | |
|     }
 | |
| 
 | |
|     size_t size() const {
 | |
|         return sz;
 | |
|     }
 | |
| 
 | |
|     size_t capacity = 0;
 | |
|     size_t sz = 0;
 | |
|     size_t first = 0;
 | |
|     size_t pos = 0;
 | |
|     std::vector<T> data;
 | |
| };
 | |
| 
 | |
| struct common_sampler {
 | |
|     common_params_sampling params;
 | |
| 
 | |
|     struct llama_sampler * grmr;
 | |
|     struct llama_sampler * chain;
 | |
| 
 | |
|     ring_buffer<llama_token> prev;
 | |
| 
 | |
|     std::vector<llama_token_data> cur;
 | |
| 
 | |
|     llama_token_data_array cur_p;
 | |
| 
 | |
|     void set_logits(struct llama_context * ctx, int idx) {
 | |
|         const auto * logits = llama_get_logits_ith(ctx, idx);
 | |
| 
 | |
|         const llama_model * model = llama_get_model(ctx);
 | |
|         const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
| 
 | |
|         const int n_vocab = llama_vocab_n_tokens(vocab);
 | |
| 
 | |
|         cur.resize(n_vocab);
 | |
| 
 | |
|         for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|             cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
 | |
|         }
 | |
| 
 | |
|         cur_p = { cur.data(), cur.size(), -1, false };
 | |
|     }
 | |
| };
 | |
| 
 | |
| std::string common_params_sampling::print() const {
 | |
|     char result[1024];
 | |
| 
 | |
|     snprintf(result, sizeof(result),
 | |
|             "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
 | |
|             "\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
 | |
|             "\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
 | |
|             "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
 | |
|             penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
 | |
|             dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
 | |
|             top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
 | |
|             mirostat, mirostat_eta, mirostat_tau);
 | |
| 
 | |
|     return std::string(result);
 | |
| }
 | |
| 
 | |
| struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
| 
 | |
|     llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
 | |
| 
 | |
|     lparams.no_perf = params.no_perf;
 | |
| 
 | |
|     struct llama_sampler * grmr;
 | |
|     if (params.grammar.compare(0, 11, "%llguidance") == 0) {
 | |
| #ifdef LLAMA_USE_LLGUIDANCE
 | |
|         grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
 | |
| #else
 | |
|         GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
 | |
| #endif // LLAMA_USE_LLGUIDANCE
 | |
|     } else {
 | |
|         std::vector<std::string> trigger_patterns;
 | |
|         std::vector<std::string> patterns_anywhere;
 | |
|         std::vector<llama_token> trigger_tokens;
 | |
|         for (const auto & trigger : params.grammar_triggers) {
 | |
|             switch (trigger.type) {
 | |
|                 case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
 | |
|                 {
 | |
|                     const auto & word = trigger.value;
 | |
|                     patterns_anywhere.push_back(regex_escape(word));
 | |
|                     break;
 | |
|                 }
 | |
|                 case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
 | |
|                 {
 | |
|                     patterns_anywhere.push_back(trigger.value);
 | |
|                     break;
 | |
|                 }
 | |
|                 case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
 | |
|                 {
 | |
|                     trigger_patterns.push_back(trigger.value);
 | |
|                     break;
 | |
|                 }
 | |
|                 case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
 | |
|                 {
 | |
|                     const auto token = trigger.token;
 | |
|                     trigger_tokens.push_back(token);
 | |
|                     break;
 | |
|                 }
 | |
|                 default:
 | |
|                     GGML_ASSERT(false && "unknown trigger type");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!patterns_anywhere.empty()) {
 | |
|             trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
 | |
|         }
 | |
| 
 | |
|         std::vector<const char *> trigger_patterns_c;
 | |
|         trigger_patterns_c.reserve(trigger_patterns.size());
 | |
|         for (const auto & regex : trigger_patterns) {
 | |
|             trigger_patterns_c.push_back(regex.c_str());
 | |
|         }
 | |
| 
 | |
|         grmr = params.grammar_lazy
 | |
|              ? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
 | |
|                                                         trigger_patterns_c.data(), trigger_patterns_c.size(),
 | |
|                                                         trigger_tokens.data(), trigger_tokens.size())
 | |
|              :      llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
 | |
|         if (!grmr) {
 | |
|             return nullptr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto * result = new common_sampler {
 | |
|         /* .params = */ params,
 | |
|         /* .grmr   = */ grmr,
 | |
|         /* .chain  = */ llama_sampler_chain_init(lparams),
 | |
|         /* .prev   = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
 | |
|         /* .cur    = */ {},
 | |
|         /* .cur_p  = */ {},
 | |
|     };
 | |
| 
 | |
|     llama_sampler_chain_add(result->chain,
 | |
|             llama_sampler_init_logit_bias(
 | |
|                 llama_vocab_n_tokens(vocab),
 | |
|                 params.logit_bias.size(),
 | |
|                 params.logit_bias.data()));
 | |
| 
 | |
|     if (params.mirostat == 0) {
 | |
|         for (const auto & cnstr : params.samplers) {
 | |
|             switch (cnstr) {
 | |
|                 case COMMON_SAMPLER_TYPE_DRY:
 | |
|                     {
 | |
|                         std::vector<const char *> c_breakers;
 | |
|                         c_breakers.reserve(params.dry_sequence_breakers.size());
 | |
|                         for (const auto & str : params.dry_sequence_breakers) {
 | |
|                             c_breakers.push_back(str.c_str());
 | |
|                         }
 | |
| 
 | |
|                         llama_sampler_chain_add(result->chain, llama_sampler_init_dry      (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
 | |
|                     }
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_TOP_K:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_top_k       (params.top_k));
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_TOP_P:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_top_p       (params.top_p, params.min_keep));
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_MIN_P:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_min_p       (params.min_p, params.min_keep));
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_XTC:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_xtc         (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_TYPICAL_P:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_typical     (params.typ_p, params.min_keep));
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_TEMPERATURE:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext    (params.temp, params.dynatemp_range, params.dynatemp_exponent));
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_INFILL:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_infill      (vocab));
 | |
|                     break;
 | |
|                 case COMMON_SAMPLER_TYPE_PENALTIES:
 | |
|                     llama_sampler_chain_add(result->chain, llama_sampler_init_penalties   (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
 | |
|                     break;
 | |
|                 default:
 | |
|                     GGML_ASSERT(false && "unknown sampler type");
 | |
|             }
 | |
|         }
 | |
|         llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
 | |
|     } else if (params.mirostat == 1) {
 | |
|         llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
 | |
|         llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
 | |
|     } else if (params.mirostat == 2) {
 | |
|         llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
 | |
|         llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
 | |
|     } else {
 | |
|         GGML_ASSERT(false && "unknown mirostat version");
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void common_sampler_free(struct common_sampler * gsmpl) {
 | |
|     if (gsmpl) {
 | |
|         llama_sampler_free(gsmpl->grmr);
 | |
| 
 | |
|         llama_sampler_free(gsmpl->chain);
 | |
| 
 | |
|         delete gsmpl;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
 | |
|     if (accept_grammar) {
 | |
|         llama_sampler_accept(gsmpl->grmr, token);
 | |
|     }
 | |
| 
 | |
|     llama_sampler_accept(gsmpl->chain, token);
 | |
| 
 | |
|     gsmpl->prev.push_back(token);
 | |
| }
 | |
| 
 | |
| void common_sampler_reset(struct common_sampler * gsmpl) {
 | |
|     llama_sampler_reset(gsmpl->grmr);
 | |
| 
 | |
|     llama_sampler_reset(gsmpl->chain);
 | |
| }
 | |
| 
 | |
| struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
 | |
|     return new common_sampler {
 | |
|         /* .params = */ gsmpl->params,
 | |
|         /* .grmr   = */ llama_sampler_clone(gsmpl->grmr),
 | |
|         /* .chain  = */ llama_sampler_clone(gsmpl->chain),
 | |
|         /* .prev   = */ gsmpl->prev,
 | |
|         /* .cur    = */ gsmpl->cur,
 | |
|         /* .cur_p  = */ gsmpl->cur_p,
 | |
|     };
 | |
| }
 | |
| 
 | |
| void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
 | |
|     // TODO: measure grammar performance
 | |
| 
 | |
|     if (gsmpl) {
 | |
|         llama_perf_sampler_print(gsmpl->chain);
 | |
|     }
 | |
|     if (ctx) {
 | |
|         llama_perf_context_print(ctx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
 | |
|     gsmpl->set_logits(ctx, idx);
 | |
| 
 | |
|     auto & grmr  = gsmpl->grmr;
 | |
|     auto & chain = gsmpl->chain;
 | |
|     auto & cur_p = gsmpl->cur_p; // initialized by set_logits
 | |
| 
 | |
|     if (grammar_first) {
 | |
|         llama_sampler_apply(grmr, &cur_p);
 | |
|     }
 | |
| 
 | |
|     llama_sampler_apply(chain, &cur_p);
 | |
| 
 | |
|     GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
 | |
| 
 | |
|     const llama_token id = cur_p.data[cur_p.selected].id;
 | |
| 
 | |
|     if (grammar_first) {
 | |
|         return id;
 | |
|     }
 | |
| 
 | |
|     // check if it the sampled token fits the grammar
 | |
|     {
 | |
|         llama_token_data       single_token_data       = { id, 1.0f, 0.0f };
 | |
|         llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
 | |
| 
 | |
|         llama_sampler_apply(grmr, &single_token_data_array);
 | |
| 
 | |
|         const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
 | |
|         if (is_valid) {
 | |
|             return id;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // resampling:
 | |
|     // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
 | |
|     gsmpl->set_logits(ctx, idx);
 | |
| 
 | |
|     llama_sampler_apply(grmr,  &cur_p);
 | |
|     llama_sampler_apply(chain, &cur_p);
 | |
| 
 | |
|     GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
 | |
| 
 | |
|     return cur_p.data[cur_p.selected].id;
 | |
| }
 | |
| 
 | |
| std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
 | |
|     GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
 | |
| 
 | |
|     std::vector<llama_token> result;
 | |
|     result.reserve(idxs.size());
 | |
| 
 | |
|     size_t i = 0;
 | |
|     for (; i < draft.size(); i++) {
 | |
|         const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
 | |
| 
 | |
|         common_sampler_accept(gsmpl, id, true);
 | |
| 
 | |
|         result.push_back(id);
 | |
| 
 | |
|         if (draft[i] != id) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (i == draft.size()) {
 | |
|         const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
 | |
| 
 | |
|         common_sampler_accept(gsmpl, id, true);
 | |
| 
 | |
|         result.push_back(id);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
 | |
|     std::vector<int> idxs(draft.size() + 1);
 | |
|     for (size_t i = 0; i < idxs.size(); ++i) {
 | |
|         idxs[i] = i;
 | |
|     }
 | |
| 
 | |
|     return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
 | |
| }
 | |
| 
 | |
| uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
 | |
|     return llama_sampler_get_seed(gsmpl->chain);
 | |
| }
 | |
| 
 | |
| // helpers
 | |
| 
 | |
| llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
 | |
|     return &gsmpl->cur_p;
 | |
| }
 | |
| 
 | |
| llama_token common_sampler_last(const struct common_sampler * gsmpl) {
 | |
|     return gsmpl->prev.rat(0);
 | |
| }
 | |
| 
 | |
| std::string common_sampler_print(const struct common_sampler * gsmpl) {
 | |
|     std::string result = "logits ";
 | |
| 
 | |
|     for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
 | |
|         const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
 | |
|         result += std::string("-> ") + llama_sampler_name(smpl) + " ";
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
 | |
|     n = std::min(n, (int) gsmpl->prev.size());
 | |
| 
 | |
|     if (n <= 0) {
 | |
|         return "";
 | |
|     }
 | |
| 
 | |
|     std::string result;
 | |
|     result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
 | |
| 
 | |
|     for (int i = n - 1; i >= 0; i--) {
 | |
|         const llama_token id = gsmpl->prev.rat(i);
 | |
| 
 | |
|         GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
 | |
| 
 | |
|         result += common_token_to_piece(ctx_main, id);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
 | |
|     switch (cnstr) {
 | |
|         case COMMON_SAMPLER_TYPE_DRY:         return 'd';
 | |
|         case COMMON_SAMPLER_TYPE_TOP_K:       return 'k';
 | |
|         case COMMON_SAMPLER_TYPE_TYPICAL_P:   return 'y';
 | |
|         case COMMON_SAMPLER_TYPE_TOP_P:       return 'p';
 | |
|         case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
 | |
|         case COMMON_SAMPLER_TYPE_MIN_P:       return 'm';
 | |
|         case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
 | |
|         case COMMON_SAMPLER_TYPE_XTC:         return 'x';
 | |
|         case COMMON_SAMPLER_TYPE_INFILL:      return 'i';
 | |
|         case COMMON_SAMPLER_TYPE_PENALTIES:   return 'e';
 | |
|         default : return '?';
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
 | |
|     switch (cnstr) {
 | |
|         case COMMON_SAMPLER_TYPE_DRY:         return "dry";
 | |
|         case COMMON_SAMPLER_TYPE_TOP_K:       return "top_k";
 | |
|         case COMMON_SAMPLER_TYPE_TYPICAL_P:   return "typ_p";
 | |
|         case COMMON_SAMPLER_TYPE_TOP_P:       return "top_p";
 | |
|         case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
 | |
|         case COMMON_SAMPLER_TYPE_MIN_P:       return "min_p";
 | |
|         case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
 | |
|         case COMMON_SAMPLER_TYPE_XTC:         return "xtc";
 | |
|         case COMMON_SAMPLER_TYPE_INFILL:      return "infill";
 | |
|         case COMMON_SAMPLER_TYPE_PENALTIES:   return "penalties";
 | |
|         default : return "";
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
 | |
|     std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
 | |
|         { "dry",         COMMON_SAMPLER_TYPE_DRY },
 | |
|         { "top_k",       COMMON_SAMPLER_TYPE_TOP_K },
 | |
|         { "top_p",       COMMON_SAMPLER_TYPE_TOP_P },
 | |
|         { "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
 | |
|         { "typ_p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
 | |
|         { "min_p",       COMMON_SAMPLER_TYPE_MIN_P },
 | |
|         { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
 | |
|         { "xtc",         COMMON_SAMPLER_TYPE_XTC },
 | |
|         { "infill",      COMMON_SAMPLER_TYPE_INFILL },
 | |
|         { "penalties",   COMMON_SAMPLER_TYPE_PENALTIES },
 | |
|     };
 | |
| 
 | |
|     // since samplers names are written multiple ways
 | |
|     // make it ready for both system names and input names
 | |
|     std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
 | |
|         { "top-k",       COMMON_SAMPLER_TYPE_TOP_K },
 | |
|         { "top-p",       COMMON_SAMPLER_TYPE_TOP_P },
 | |
|         { "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
 | |
|         { "nucleus",     COMMON_SAMPLER_TYPE_TOP_P },
 | |
|         { "typical-p",   COMMON_SAMPLER_TYPE_TYPICAL_P },
 | |
|         { "typical",     COMMON_SAMPLER_TYPE_TYPICAL_P },
 | |
|         { "typ-p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
 | |
|         { "typ",         COMMON_SAMPLER_TYPE_TYPICAL_P },
 | |
|         { "min-p",       COMMON_SAMPLER_TYPE_MIN_P },
 | |
|         { "temp",        COMMON_SAMPLER_TYPE_TEMPERATURE },
 | |
|     };
 | |
| 
 | |
|     std::vector<common_sampler_type> samplers;
 | |
|     samplers.reserve(names.size());
 | |
| 
 | |
|     for (const auto & name : names) {
 | |
|         auto sampler = sampler_canonical_name_map.find(name);
 | |
|         if (sampler != sampler_canonical_name_map.end()) {
 | |
|             samplers.push_back(sampler->second);
 | |
|             continue;
 | |
|         }
 | |
|         if (allow_alt_names) {
 | |
|             sampler = sampler_alt_name_map.find(name);
 | |
|             if (sampler != sampler_alt_name_map.end()) {
 | |
|                 samplers.push_back(sampler->second);
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|         LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
 | |
|     }
 | |
| 
 | |
|     return samplers;
 | |
| }
 | |
| 
 | |
| std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
 | |
|     std::unordered_map<char, common_sampler_type> sampler_name_map = {
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY),         COMMON_SAMPLER_TYPE_DRY },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K),       COMMON_SAMPLER_TYPE_TOP_K },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P),   COMMON_SAMPLER_TYPE_TYPICAL_P },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P),       COMMON_SAMPLER_TYPE_TOP_P },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P),       COMMON_SAMPLER_TYPE_MIN_P },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC),         COMMON_SAMPLER_TYPE_XTC },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL),      COMMON_SAMPLER_TYPE_INFILL },
 | |
|         { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES),   COMMON_SAMPLER_TYPE_PENALTIES },
 | |
|     };
 | |
| 
 | |
|     std::vector<common_sampler_type> samplers;
 | |
|     samplers.reserve(chars.size());
 | |
| 
 | |
|     for (const auto & c : chars) {
 | |
|         const auto sampler = sampler_name_map.find(c);
 | |
|         if (sampler != sampler_name_map.end()) {
 | |
|             samplers.push_back(sampler->second);
 | |
|         } else {
 | |
|             LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return samplers;
 | |
| }
 |