mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2937 lines
		
	
	
		
			117 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2937 lines
		
	
	
		
			117 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//
 | 
						|
// MIT license
 | 
						|
// Copyright (C) 2024 Intel Corporation
 | 
						|
// SPDX-License-Identifier: MIT
 | 
						|
//
 | 
						|
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
 | 
						|
#ifndef GGML_SYCL_DPCT_HELPER_HPP
 | 
						|
#define GGML_SYCL_DPCT_HELPER_HPP
 | 
						|
 | 
						|
#include <sycl/sycl.hpp>
 | 
						|
#include <sycl/half_type.hpp>
 | 
						|
#include <oneapi/mkl.hpp>
 | 
						|
#include <map>
 | 
						|
 | 
						|
#include "ggml.h"
 | 
						|
 | 
						|
#if defined(__linux__)
 | 
						|
#include <sys/mman.h>
 | 
						|
#elif defined(_WIN64)
 | 
						|
#ifndef NOMINMAX
 | 
						|
#define NOMINMAX
 | 
						|
#endif
 | 
						|
#include <windows.h>
 | 
						|
#else
 | 
						|
#error "Only support Windows and Linux."
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__linux__)
 | 
						|
#include <unistd.h>
 | 
						|
#include <sys/syscall.h>
 | 
						|
#endif
 | 
						|
#if defined(_WIN64)
 | 
						|
#ifndef NOMINMAX
 | 
						|
#define NOMINMAX
 | 
						|
#endif
 | 
						|
#include <windows.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#define DPCT_COMPATIBILITY_TEMP (900)
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#define __dpct_align__(n) __declspec(align(n))
 | 
						|
#define __dpct_inline__ __forceinline
 | 
						|
#else
 | 
						|
#define __dpct_align__(n) __attribute__((aligned(n)))
 | 
						|
#define __dpct_inline__ __inline__ __attribute__((always_inline))
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#define __dpct_noinline__ __declspec(noinline)
 | 
						|
#else
 | 
						|
#define __dpct_noinline__ __attribute__((noinline))
 | 
						|
#endif
 | 
						|
 | 
						|
inline std::string get_device_type_name(const sycl::device &Device) {
 | 
						|
    auto DeviceType = Device.get_info<sycl::info::device::device_type>();
 | 
						|
    switch (DeviceType) {
 | 
						|
    case sycl::info::device_type::cpu:
 | 
						|
        return "cpu";
 | 
						|
    case sycl::info::device_type::gpu:
 | 
						|
        return "gpu";
 | 
						|
    case sycl::info::device_type::host:
 | 
						|
        return "host";
 | 
						|
    case sycl::info::device_type::accelerator:
 | 
						|
        return "acc";
 | 
						|
    default:
 | 
						|
        return "unknown";
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
inline std::string get_device_backend_and_type(const sycl::device &device) {
 | 
						|
    std::stringstream device_type;
 | 
						|
    sycl::backend backend = device.get_backend();
 | 
						|
    device_type <<  backend << ":" << get_device_type_name(device);
 | 
						|
    return device_type.str();
 | 
						|
}
 | 
						|
 | 
						|
namespace dpct
 | 
						|
{
 | 
						|
    typedef sycl::queue *queue_ptr;
 | 
						|
    typedef sycl::event *event_ptr;
 | 
						|
    typedef char *device_ptr;
 | 
						|
    typedef uint8_t byte_t;
 | 
						|
    typedef sycl::buffer<byte_t> buffer_t;
 | 
						|
 | 
						|
    /// SYCL default exception handler
 | 
						|
    inline auto exception_handler = [](sycl::exception_list exceptions)
 | 
						|
    {
 | 
						|
        for (std::exception_ptr const &e : exceptions)
 | 
						|
        {
 | 
						|
            try
 | 
						|
            {
 | 
						|
                std::rethrow_exception(e);
 | 
						|
            }
 | 
						|
            catch (sycl::exception const &e)
 | 
						|
            {
 | 
						|
                std::cerr << "Caught asynchronous SYCL exception:" << std::endl
 | 
						|
                          << e.what() << std::endl
 | 
						|
                          << "Exception caught at file:" << __FILE__
 | 
						|
                          << ", line:" << __LINE__ << std::endl;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    enum error_code
 | 
						|
    {
 | 
						|
        success = 0,
 | 
						|
        default_error = 999
 | 
						|
    };
 | 
						|
 | 
						|
    enum memcpy_direction
 | 
						|
    {
 | 
						|
        host_to_host,
 | 
						|
        host_to_device,
 | 
						|
        device_to_host,
 | 
						|
        device_to_device,
 | 
						|
        automatic
 | 
						|
    };
 | 
						|
 | 
						|
    enum memory_region
 | 
						|
    {
 | 
						|
        global = 0, // device global memory
 | 
						|
        constant,   // device constant memory
 | 
						|
        local,      // device local memory
 | 
						|
        shared,     // memory which can be accessed by host and device
 | 
						|
    };
 | 
						|
 | 
						|
    enum class library_data_t : unsigned char
 | 
						|
    {
 | 
						|
        real_float = 0,
 | 
						|
        complex_float,
 | 
						|
        real_double,
 | 
						|
        complex_double,
 | 
						|
        real_half,
 | 
						|
        complex_half,
 | 
						|
        real_bfloat16,
 | 
						|
        complex_bfloat16,
 | 
						|
        real_int4,
 | 
						|
        complex_int4,
 | 
						|
        real_uint4,
 | 
						|
        complex_uint4,
 | 
						|
        real_int8,
 | 
						|
        complex_int8,
 | 
						|
        real_uint8,
 | 
						|
        complex_uint8,
 | 
						|
        real_int16,
 | 
						|
        complex_int16,
 | 
						|
        real_uint16,
 | 
						|
        complex_uint16,
 | 
						|
        real_int32,
 | 
						|
        complex_int32,
 | 
						|
        real_uint32,
 | 
						|
        complex_uint32,
 | 
						|
        real_int64,
 | 
						|
        complex_int64,
 | 
						|
        real_uint64,
 | 
						|
        complex_uint64,
 | 
						|
        real_int8_4,
 | 
						|
        real_int8_32,
 | 
						|
        real_uint8_4,
 | 
						|
        library_data_t_size
 | 
						|
    };
 | 
						|
 | 
						|
    template <typename T>
 | 
						|
    struct DataType
 | 
						|
    {
 | 
						|
        using T2 = T;
 | 
						|
    };
 | 
						|
    template <typename T>
 | 
						|
    struct DataType<sycl::vec<T, 2>>
 | 
						|
    {
 | 
						|
        using T2 = std::complex<T>;
 | 
						|
    };
 | 
						|
 | 
						|
    static void destroy_event(event_ptr event)
 | 
						|
    {
 | 
						|
        delete event;
 | 
						|
    }
 | 
						|
 | 
						|
    static inline unsigned int get_tid()
 | 
						|
    {
 | 
						|
#if defined(__linux__)
 | 
						|
        return syscall(SYS_gettid);
 | 
						|
#elif defined(_WIN64)
 | 
						|
        return GetCurrentThreadId();
 | 
						|
#else
 | 
						|
#error "Only support Windows and Linux."
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    namespace detail
 | 
						|
    {
 | 
						|
        static void get_version(const sycl::device &dev, int &major, int &minor)
 | 
						|
        {
 | 
						|
            // Version string has the following format:
 | 
						|
            // a. OpenCL<space><major.minor><space><vendor-specific-information>
 | 
						|
            // b. <major.minor>
 | 
						|
            // c. <AmdGcnArchName> e.g gfx1030
 | 
						|
            std::string ver;
 | 
						|
            ver = dev.get_info<sycl::info::device::version>();
 | 
						|
            std::string::size_type i = 0;
 | 
						|
            while (i < ver.size()) {
 | 
						|
              if (isdigit(ver[i]))
 | 
						|
                break;
 | 
						|
              i++;
 | 
						|
            }
 | 
						|
            major = std::stoi(&(ver[i]));
 | 
						|
            while (i < ver.size()) {
 | 
						|
              if (ver[i] == '.')
 | 
						|
                break;
 | 
						|
              i++;
 | 
						|
            }
 | 
						|
            if (i < ver.size()) {
 | 
						|
              // a. and b.
 | 
						|
              i++;
 | 
						|
              minor = std::stoi(&(ver[i]));
 | 
						|
            } else {
 | 
						|
              // c.
 | 
						|
              minor = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        template <typename tag, typename T>
 | 
						|
        class generic_error_type
 | 
						|
        {
 | 
						|
        public:
 | 
						|
            generic_error_type() = default;
 | 
						|
            generic_error_type(T value) : value{value} {}
 | 
						|
            operator T() const { return value; }
 | 
						|
 | 
						|
        private:
 | 
						|
            T value;
 | 
						|
        };
 | 
						|
 | 
						|
    } // namespace detail
 | 
						|
 | 
						|
    /// Pitched 2D/3D memory data.
 | 
						|
    class pitched_data
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        pitched_data() : pitched_data(nullptr, 0, 0, 0) {}
 | 
						|
        pitched_data(void *data, size_t pitch, size_t x, size_t y)
 | 
						|
            : _data(data), _pitch(pitch), _x(x), _y(y) {}
 | 
						|
 | 
						|
        void *get_data_ptr() { return _data; }
 | 
						|
        void set_data_ptr(void *data) { _data = data; }
 | 
						|
 | 
						|
        size_t get_pitch() { return _pitch; }
 | 
						|
        void set_pitch(size_t pitch) { _pitch = pitch; }
 | 
						|
 | 
						|
        size_t get_x() { return _x; }
 | 
						|
        void set_x(size_t x) { _x = x; };
 | 
						|
 | 
						|
        size_t get_y() { return _y; }
 | 
						|
        void set_y(size_t y) { _y = y; }
 | 
						|
 | 
						|
    private:
 | 
						|
        void *_data;
 | 
						|
        size_t _pitch, _x, _y;
 | 
						|
    };
 | 
						|
 | 
						|
    class device_info
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        // get interface
 | 
						|
        const char *get_name() const { return _name; }
 | 
						|
        char *get_name() { return _name; }
 | 
						|
        template <typename WorkItemSizesTy = sycl::range<3>,
 | 
						|
                  std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
 | 
						|
                                       std::is_same_v<WorkItemSizesTy, int *>,
 | 
						|
                                   int> = 0>
 | 
						|
        auto get_max_work_item_sizes() const
 | 
						|
        {
 | 
						|
            if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
 | 
						|
                return sycl::range<3>(_max_work_item_sizes_i[0],
 | 
						|
                                      _max_work_item_sizes_i[1],
 | 
						|
                                      _max_work_item_sizes_i[2]);
 | 
						|
            else
 | 
						|
            {
 | 
						|
                return _max_work_item_sizes_i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        template <typename WorkItemSizesTy = sycl::range<3>,
 | 
						|
                  std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
 | 
						|
                                       std::is_same_v<WorkItemSizesTy, int *>,
 | 
						|
                                   int> = 0>
 | 
						|
        auto get_max_work_item_sizes()
 | 
						|
        {
 | 
						|
            if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
 | 
						|
                return sycl::range<3>(_max_work_item_sizes_i[0],
 | 
						|
                                      _max_work_item_sizes_i[1],
 | 
						|
                                      _max_work_item_sizes_i[2]);
 | 
						|
            else
 | 
						|
            {
 | 
						|
                return _max_work_item_sizes_i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        bool get_host_unified_memory() const { return _host_unified_memory; }
 | 
						|
        int get_major_version() const { return _major; }
 | 
						|
        int get_minor_version() const { return _minor; }
 | 
						|
        int get_integrated() const { return _integrated; }
 | 
						|
        int get_max_clock_frequency() const { return _frequency; }
 | 
						|
        int get_max_compute_units() const { return _max_compute_units; }
 | 
						|
        int get_max_work_group_size() const { return _max_work_group_size; }
 | 
						|
        int get_max_sub_group_size() const { return _max_sub_group_size; }
 | 
						|
        int get_max_work_items_per_compute_unit() const
 | 
						|
        {
 | 
						|
            return _max_work_items_per_compute_unit;
 | 
						|
        }
 | 
						|
        int get_max_register_size_per_work_group() const
 | 
						|
        {
 | 
						|
            return _max_register_size_per_work_group;
 | 
						|
        }
 | 
						|
        template <typename NDRangeSizeTy = size_t *,
 | 
						|
                  std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
 | 
						|
                                       std::is_same_v<NDRangeSizeTy, int *>,
 | 
						|
                                   int> = 0>
 | 
						|
        auto get_max_nd_range_size() const
 | 
						|
        {
 | 
						|
            if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
 | 
						|
                return _max_nd_range_size;
 | 
						|
            else
 | 
						|
                return _max_nd_range_size_i;
 | 
						|
        }
 | 
						|
        template <typename NDRangeSizeTy = size_t *,
 | 
						|
                  std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
 | 
						|
                                       std::is_same_v<NDRangeSizeTy, int *>,
 | 
						|
                                   int> = 0>
 | 
						|
        auto get_max_nd_range_size()
 | 
						|
        {
 | 
						|
            if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
 | 
						|
                return _max_nd_range_size;
 | 
						|
            else
 | 
						|
                return _max_nd_range_size_i;
 | 
						|
        }
 | 
						|
        size_t get_global_mem_size() const { return _global_mem_size; }
 | 
						|
        size_t get_local_mem_size() const { return _local_mem_size; }
 | 
						|
        size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
 | 
						|
        /// Returns the maximum clock rate of device's global memory in kHz. If
 | 
						|
        /// compiler does not support this API then returns default value 3200000 kHz.
 | 
						|
        unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
 | 
						|
        /// Returns the maximum bus width between device and memory in bits. If
 | 
						|
        /// compiler does not support this API then returns default value 64 bits.
 | 
						|
        unsigned int get_memory_bus_width() const { return _memory_bus_width; }
 | 
						|
        uint32_t get_device_id() const { return _device_id; }
 | 
						|
        std::array<unsigned char, 16> get_uuid() const { return _uuid; }
 | 
						|
        /// Returns global memory cache size in bytes.
 | 
						|
        unsigned int get_global_mem_cache_size() const
 | 
						|
        {
 | 
						|
            return _global_mem_cache_size;
 | 
						|
        }
 | 
						|
 | 
						|
        // set interface
 | 
						|
        void set_name(const char *name)
 | 
						|
        {
 | 
						|
            size_t length = strlen(name);
 | 
						|
            if (length < 256)
 | 
						|
            {
 | 
						|
                std::memcpy(_name, name, length + 1);
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                std::memcpy(_name, name, 255);
 | 
						|
                _name[255] = '\0';
 | 
						|
            }
 | 
						|
        }
 | 
						|
        void set_max_work_item_sizes(const sycl::range<3> max_work_item_sizes)
 | 
						|
        {
 | 
						|
            for (int i = 0; i < 3; ++i)
 | 
						|
                _max_work_item_sizes_i[i] = max_work_item_sizes[i];
 | 
						|
        }
 | 
						|
        [[deprecated]] void
 | 
						|
        set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes)
 | 
						|
        {
 | 
						|
            for (int i = 0; i < 3; ++i)
 | 
						|
            {
 | 
						|
                _max_work_item_sizes_i[i] = max_work_item_sizes[i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        void set_host_unified_memory(bool host_unified_memory)
 | 
						|
        {
 | 
						|
            _host_unified_memory = host_unified_memory;
 | 
						|
        }
 | 
						|
        void set_major_version(int major) { _major = major; }
 | 
						|
        void set_minor_version(int minor) { _minor = minor; }
 | 
						|
        void set_integrated(int integrated) { _integrated = integrated; }
 | 
						|
        void set_max_clock_frequency(int frequency) { _frequency = frequency; }
 | 
						|
        void set_max_compute_units(int max_compute_units)
 | 
						|
        {
 | 
						|
            _max_compute_units = max_compute_units;
 | 
						|
        }
 | 
						|
        void set_global_mem_size(size_t global_mem_size)
 | 
						|
        {
 | 
						|
            _global_mem_size = global_mem_size;
 | 
						|
        }
 | 
						|
        void set_local_mem_size(size_t local_mem_size)
 | 
						|
        {
 | 
						|
            _local_mem_size = local_mem_size;
 | 
						|
        }
 | 
						|
        void set_max_mem_alloc_size(size_t max_mem_alloc_size)
 | 
						|
        {
 | 
						|
            _max_mem_alloc_size = max_mem_alloc_size;
 | 
						|
        }
 | 
						|
        void set_max_work_group_size(int max_work_group_size)
 | 
						|
        {
 | 
						|
            _max_work_group_size = max_work_group_size;
 | 
						|
        }
 | 
						|
        void set_max_sub_group_size(int max_sub_group_size)
 | 
						|
        {
 | 
						|
            _max_sub_group_size = max_sub_group_size;
 | 
						|
        }
 | 
						|
        void
 | 
						|
        set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit)
 | 
						|
        {
 | 
						|
            _max_work_items_per_compute_unit = max_work_items_per_compute_unit;
 | 
						|
        }
 | 
						|
        void set_max_nd_range_size(int max_nd_range_size[])
 | 
						|
        {
 | 
						|
            for (int i = 0; i < 3; i++)
 | 
						|
            {
 | 
						|
                _max_nd_range_size[i] = max_nd_range_size[i];
 | 
						|
                _max_nd_range_size_i[i] = max_nd_range_size[i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        void set_memory_clock_rate(unsigned int memory_clock_rate)
 | 
						|
        {
 | 
						|
            _memory_clock_rate = memory_clock_rate;
 | 
						|
        }
 | 
						|
        void set_memory_bus_width(unsigned int memory_bus_width)
 | 
						|
        {
 | 
						|
            _memory_bus_width = memory_bus_width;
 | 
						|
        }
 | 
						|
        void
 | 
						|
        set_max_register_size_per_work_group(int max_register_size_per_work_group)
 | 
						|
        {
 | 
						|
            _max_register_size_per_work_group = max_register_size_per_work_group;
 | 
						|
        }
 | 
						|
        void set_device_id(uint32_t device_id)
 | 
						|
        {
 | 
						|
            _device_id = device_id;
 | 
						|
        }
 | 
						|
        void set_uuid(std::array<unsigned char, 16> uuid)
 | 
						|
        {
 | 
						|
            _uuid = std::move(uuid);
 | 
						|
        }
 | 
						|
        void set_global_mem_cache_size(unsigned int global_mem_cache_size)
 | 
						|
        {
 | 
						|
            _global_mem_cache_size = global_mem_cache_size;
 | 
						|
        }
 | 
						|
 | 
						|
    private:
 | 
						|
        char _name[256];
 | 
						|
        int _max_work_item_sizes_i[3];
 | 
						|
        bool _host_unified_memory = false;
 | 
						|
        int _major;
 | 
						|
        int _minor;
 | 
						|
        int _integrated = 0;
 | 
						|
        int _frequency;
 | 
						|
        // Set estimated value 3200000 kHz as default value.
 | 
						|
        unsigned int _memory_clock_rate = 3200000;
 | 
						|
        // Set estimated value 64 bits as default value.
 | 
						|
        unsigned int _memory_bus_width = 64;
 | 
						|
        unsigned int _global_mem_cache_size;
 | 
						|
        int _max_compute_units;
 | 
						|
        int _max_work_group_size;
 | 
						|
        int _max_sub_group_size;
 | 
						|
        int _max_work_items_per_compute_unit;
 | 
						|
        int _max_register_size_per_work_group;
 | 
						|
        size_t _global_mem_size;
 | 
						|
        size_t _local_mem_size;
 | 
						|
        size_t _max_mem_alloc_size;
 | 
						|
        size_t _max_nd_range_size[3];
 | 
						|
        int _max_nd_range_size_i[3];
 | 
						|
        uint32_t _device_id;
 | 
						|
        std::array<unsigned char, 16> _uuid;
 | 
						|
    };
 | 
						|
 | 
						|
    static int get_major_version(const sycl::device &dev)
 | 
						|
    {
 | 
						|
        int major, minor;
 | 
						|
        detail::get_version(dev, major, minor);
 | 
						|
        return major;
 | 
						|
    }
 | 
						|
 | 
						|
    static int get_minor_version(const sycl::device &dev)
 | 
						|
    {
 | 
						|
        int major, minor;
 | 
						|
        detail::get_version(dev, major, minor);
 | 
						|
        return minor;
 | 
						|
    }
 | 
						|
 | 
						|
    static void get_device_info(device_info &out, const sycl::device &dev)
 | 
						|
    {
 | 
						|
        device_info prop;
 | 
						|
        prop.set_name(dev.get_info<sycl::info::device::name>().c_str());
 | 
						|
 | 
						|
        int major, minor;
 | 
						|
        detail::get_version(dev, major, minor);
 | 
						|
        prop.set_major_version(major);
 | 
						|
        prop.set_minor_version(minor);
 | 
						|
 | 
						|
        prop.set_max_work_item_sizes(
 | 
						|
#if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION < 20220902)
 | 
						|
            // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes
 | 
						|
            // is an enum class element
 | 
						|
            dev.get_info<sycl::info::device::max_work_item_sizes>());
 | 
						|
#else
 | 
						|
            // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by
 | 
						|
            // an int
 | 
						|
            dev.get_info<sycl::info::device::max_work_item_sizes<3>>());
 | 
						|
#endif
 | 
						|
        prop.set_host_unified_memory(dev.has(sycl::aspect::usm_host_allocations));
 | 
						|
 | 
						|
        prop.set_max_clock_frequency(
 | 
						|
            dev.get_info<sycl::info::device::max_clock_frequency>() * 1000);
 | 
						|
 | 
						|
        prop.set_max_compute_units(
 | 
						|
            dev.get_info<sycl::info::device::max_compute_units>());
 | 
						|
        prop.set_max_work_group_size(
 | 
						|
            dev.get_info<sycl::info::device::max_work_group_size>());
 | 
						|
        prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
 | 
						|
        prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
 | 
						|
        prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());
 | 
						|
 | 
						|
#if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
 | 
						|
        if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
 | 
						|
        {
 | 
						|
            unsigned int tmp =
 | 
						|
                dev.get_info<sycl::ext::intel::info::device::memory_clock_rate>();
 | 
						|
            if (tmp != 0)
 | 
						|
                prop.set_memory_clock_rate(1000 * tmp);
 | 
						|
        }
 | 
						|
        if (dev.has(sycl::aspect::ext_intel_memory_bus_width))
 | 
						|
        {
 | 
						|
            prop.set_memory_bus_width(
 | 
						|
                dev.get_info<sycl::ext::intel::info::device::memory_bus_width>());
 | 
						|
        }
 | 
						|
        if (dev.has(sycl::aspect::ext_intel_device_id))
 | 
						|
        {
 | 
						|
            prop.set_device_id(
 | 
						|
                dev.get_info<sycl::ext::intel::info::device::device_id>());
 | 
						|
        }
 | 
						|
        if (dev.has(sycl::aspect::ext_intel_device_info_uuid))
 | 
						|
        {
 | 
						|
            prop.set_uuid(dev.get_info<sycl::ext::intel::info::device::uuid>());
 | 
						|
        }
 | 
						|
#elif defined(_MSC_VER) && !defined(__clang__)
 | 
						|
#pragma message("get_device_info: querying memory_clock_rate and \
 | 
						|
        memory_bus_width are not supported by the compiler used. \
 | 
						|
        Use 3200000 kHz as memory_clock_rate default value. \
 | 
						|
        Use 64 bits as memory_bus_width default value.")
 | 
						|
#else
 | 
						|
#warning "get_device_info: querying memory_clock_rate and \
 | 
						|
        memory_bus_width are not supported by the compiler used. \
 | 
						|
        Use 3200000 kHz as memory_clock_rate default value. \
 | 
						|
        Use 64 bits as memory_bus_width default value."
 | 
						|
#endif
 | 
						|
 | 
						|
        size_t max_sub_group_size = 1;
 | 
						|
        std::vector<size_t> sub_group_sizes =
 | 
						|
            dev.get_info<sycl::info::device::sub_group_sizes>();
 | 
						|
 | 
						|
        for (const auto &sub_group_size : sub_group_sizes)
 | 
						|
        {
 | 
						|
            if (max_sub_group_size < sub_group_size)
 | 
						|
                max_sub_group_size = sub_group_size;
 | 
						|
        }
 | 
						|
 | 
						|
        prop.set_max_sub_group_size(max_sub_group_size);
 | 
						|
 | 
						|
        prop.set_max_work_items_per_compute_unit(
 | 
						|
            dev.get_info<sycl::info::device::max_work_group_size>());
 | 
						|
        int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
 | 
						|
        prop.set_max_nd_range_size(max_nd_range_size);
 | 
						|
 | 
						|
        // Estimates max register size per work group, feel free to update the value
 | 
						|
        // according to device properties.
 | 
						|
        prop.set_max_register_size_per_work_group(65536);
 | 
						|
 | 
						|
        prop.set_global_mem_cache_size(
 | 
						|
            dev.get_info<sycl::info::device::global_mem_cache_size>());
 | 
						|
        out = prop;
 | 
						|
    }
 | 
						|
 | 
						|
   /// dpct device extension
 | 
						|
    class device_ext : public sycl::device {
 | 
						|
      typedef std::mutex mutex_type;
 | 
						|
 | 
						|
     public:
 | 
						|
      device_ext() : sycl::device() {}
 | 
						|
      ~device_ext() {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        clear_queues();
 | 
						|
      }
 | 
						|
      device_ext(const sycl::device &base) : sycl::device(base) {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        init_queues();
 | 
						|
      }
 | 
						|
 | 
						|
      int is_native_atomic_supported() { return 0; }
 | 
						|
      int get_major_version() const { return dpct::get_major_version(*this); }
 | 
						|
 | 
						|
      int get_minor_version() const { return dpct::get_minor_version(*this); }
 | 
						|
 | 
						|
      int get_max_compute_units() const {
 | 
						|
        return get_device_info().get_max_compute_units();
 | 
						|
      }
 | 
						|
 | 
						|
      /// Return the maximum clock frequency of this device in KHz.
 | 
						|
      int get_max_clock_frequency() const {
 | 
						|
        return get_device_info().get_max_clock_frequency();
 | 
						|
      }
 | 
						|
 | 
						|
      int get_integrated() const { return get_device_info().get_integrated(); }
 | 
						|
 | 
						|
      int get_max_sub_group_size() const {
 | 
						|
        return get_device_info().get_max_sub_group_size();
 | 
						|
      }
 | 
						|
 | 
						|
      int get_max_register_size_per_work_group() const {
 | 
						|
        return get_device_info().get_max_register_size_per_work_group();
 | 
						|
      }
 | 
						|
 | 
						|
      int get_max_work_group_size() const {
 | 
						|
        return get_device_info().get_max_work_group_size();
 | 
						|
      }
 | 
						|
 | 
						|
      int get_mem_base_addr_align() const {
 | 
						|
        return get_info<sycl::info::device::mem_base_addr_align>();
 | 
						|
      }
 | 
						|
 | 
						|
      size_t get_global_mem_size() const {
 | 
						|
        return get_device_info().get_global_mem_size();
 | 
						|
      }
 | 
						|
 | 
						|
      size_t get_max_mem_alloc_size() const {
 | 
						|
        return get_device_info().get_max_mem_alloc_size();
 | 
						|
      }
 | 
						|
 | 
						|
      /// Get the number of bytes of free and total memory on the SYCL device.
 | 
						|
      /// \param [out] free_memory The number of bytes of free memory on the
 | 
						|
      /// SYCL device. \param [out] total_memory The number of bytes of total
 | 
						|
      /// memory on the SYCL device.
 | 
						|
      void get_memory_info(size_t &free_memory, size_t &total_memory) {
 | 
						|
        total_memory = get_device_info().get_global_mem_size();
 | 
						|
        const char *warning_info =
 | 
						|
            "get_memory_info: [warning] ext_intel_free_memory is not "
 | 
						|
            "supported (export/set ZES_ENABLE_SYSMAN=1 to support), "
 | 
						|
            "use total memory as free memory";
 | 
						|
#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
 | 
						|
        if (!has(sycl::aspect::ext_intel_free_memory)) {
 | 
						|
          std::cerr << warning_info << std::endl;
 | 
						|
          free_memory = total_memory;
 | 
						|
        } else {
 | 
						|
          free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
 | 
						|
        }
 | 
						|
#else
 | 
						|
        std::cerr << warning_info << std::endl;
 | 
						|
        free_memory = total_memory;
 | 
						|
#if defined(_MSC_VER) && !defined(__clang__)
 | 
						|
#pragma message("Querying the number of bytes of free memory is not supported")
 | 
						|
#else
 | 
						|
#warning "Querying the number of bytes of free memory is not supported"
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
      }
 | 
						|
 | 
						|
      void get_device_info(device_info &out) const {
 | 
						|
        dpct::get_device_info(out, *this);
 | 
						|
      }
 | 
						|
 | 
						|
      device_info get_device_info() const {
 | 
						|
        device_info prop;
 | 
						|
        dpct::get_device_info(prop, *this);
 | 
						|
        return prop;
 | 
						|
      }
 | 
						|
 | 
						|
      void reset() {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        clear_queues();
 | 
						|
        init_queues();
 | 
						|
      }
 | 
						|
 | 
						|
      sycl::queue &in_order_queue() { return _q_in_order; }
 | 
						|
 | 
						|
      sycl::queue &out_of_order_queue() { return _q_out_of_order; }
 | 
						|
 | 
						|
      sycl::queue &default_queue() { return in_order_queue(); }
 | 
						|
 | 
						|
      void queues_wait_and_throw() {
 | 
						|
        std::unique_lock<mutex_type> lock(m_mutex);
 | 
						|
        lock.unlock();
 | 
						|
        for (auto &q : _queues) {
 | 
						|
          q.wait_and_throw();
 | 
						|
        }
 | 
						|
        // Guard the destruct of current_queues to make sure the ref count is
 | 
						|
        // safe.
 | 
						|
        lock.lock();
 | 
						|
      }
 | 
						|
 | 
						|
      sycl::queue create_queue(bool enable_exception_handler = false) {
 | 
						|
        return create_in_order_queue(enable_exception_handler);
 | 
						|
      }
 | 
						|
 | 
						|
      sycl::queue create_queue(sycl::device device,
 | 
						|
                               bool enable_exception_handler = false) {
 | 
						|
        return create_in_order_queue(device, enable_exception_handler);
 | 
						|
      }
 | 
						|
 | 
						|
      sycl::queue create_in_order_queue(bool enable_exception_handler = false) {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        return create_queue_impl(enable_exception_handler,
 | 
						|
                                 sycl::property::queue::in_order());
 | 
						|
      }
 | 
						|
 | 
						|
      sycl::queue create_in_order_queue(sycl::device device,
 | 
						|
                                        bool enable_exception_handler = false) {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        return create_queue_impl(device, enable_exception_handler,
 | 
						|
                                 sycl::property::queue::in_order());
 | 
						|
      }
 | 
						|
 | 
						|
      sycl::queue create_out_of_order_queue(
 | 
						|
          bool enable_exception_handler = false) {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        return create_queue_impl(enable_exception_handler);
 | 
						|
      }
 | 
						|
 | 
						|
      void destroy_queue(sycl::queue queue) {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        _queues.clear();
 | 
						|
      }
 | 
						|
      void set_saved_queue(sycl::queue q) {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        _saved_queue = q;
 | 
						|
      }
 | 
						|
      sycl::queue get_saved_queue() const {
 | 
						|
        std::lock_guard<mutex_type> lock(m_mutex);
 | 
						|
        return _saved_queue;
 | 
						|
      }
 | 
						|
 | 
						|
     private:
 | 
						|
      void clear_queues() { _queues.clear(); }
 | 
						|
 | 
						|
      void init_queues() {
 | 
						|
        _q_in_order =
 | 
						|
            create_queue_impl(true, sycl::property::queue::in_order());
 | 
						|
        _q_out_of_order = create_queue_impl(true);
 | 
						|
        _saved_queue = default_queue();
 | 
						|
      }
 | 
						|
 | 
						|
      /// Caller should acquire resource \p m_mutex before calling this
 | 
						|
      /// function.
 | 
						|
      template <class... Properties>
 | 
						|
      sycl::queue create_queue_impl(bool enable_exception_handler,
 | 
						|
                                    Properties... properties) {
 | 
						|
        sycl::async_handler eh = {};
 | 
						|
        if (enable_exception_handler) {
 | 
						|
          eh = exception_handler;
 | 
						|
        }
 | 
						|
        auto q = sycl::queue(*this, eh,
 | 
						|
                             sycl::property_list(
 | 
						|
#ifdef DPCT_PROFILING_ENABLED
 | 
						|
                                 sycl::property::queue::enable_profiling(),
 | 
						|
#endif
 | 
						|
                                 properties...));
 | 
						|
        _queues.push_back(q);
 | 
						|
 | 
						|
        return _queues.back();
 | 
						|
      }
 | 
						|
 | 
						|
      template <class... Properties>
 | 
						|
      sycl::queue create_queue_impl(sycl::device device,
 | 
						|
                                    bool enable_exception_handler,
 | 
						|
                                    Properties... properties) {
 | 
						|
        sycl::async_handler eh = {};
 | 
						|
        if (enable_exception_handler) {
 | 
						|
          eh = exception_handler;
 | 
						|
        }
 | 
						|
        _queues.push_back(
 | 
						|
            sycl::queue(device, eh,
 | 
						|
                        sycl::property_list(
 | 
						|
#ifdef DPCT_PROFILING_ENABLED
 | 
						|
                            sycl::property::queue::enable_profiling(),
 | 
						|
#endif
 | 
						|
                            properties...)));
 | 
						|
 | 
						|
        return _queues.back();
 | 
						|
      }
 | 
						|
 | 
						|
      void get_version(int &major, int &minor) const {
 | 
						|
        detail::get_version(*this, major, minor);
 | 
						|
      }
 | 
						|
      sycl::queue _q_in_order, _q_out_of_order;
 | 
						|
      sycl::queue _saved_queue;
 | 
						|
      std::vector<sycl::queue> _queues;
 | 
						|
      mutable mutex_type m_mutex;
 | 
						|
    };
 | 
						|
 | 
						|
 | 
						|
    /// device manager
 | 
						|
    class dev_mgr
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        device_ext ¤t_device()
 | 
						|
        {
 | 
						|
            unsigned int dev_id = current_device_id();
 | 
						|
            check_id(dev_id);
 | 
						|
            return *_devs[dev_id];
 | 
						|
        }
 | 
						|
        device_ext &cpu_device() const
 | 
						|
        {
 | 
						|
            std::lock_guard<std::recursive_mutex> lock(m_mutex);
 | 
						|
            if (_cpu_device == -1)
 | 
						|
            {
 | 
						|
                throw std::runtime_error("no valid cpu device");
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                return *_devs[_cpu_device];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        device_ext &get_device(unsigned int id) const
 | 
						|
        {
 | 
						|
            std::lock_guard<std::recursive_mutex> lock(m_mutex);
 | 
						|
            check_id(id);
 | 
						|
            return *_devs[id];
 | 
						|
        }
 | 
						|
        unsigned int current_device_id() const
 | 
						|
        {
 | 
						|
            std::lock_guard<std::recursive_mutex> lock(m_mutex);
 | 
						|
            auto it = _thread2dev_map.find(get_tid());
 | 
						|
            if (it != _thread2dev_map.end())
 | 
						|
                return it->second;
 | 
						|
            return DEFAULT_DEVICE_ID;
 | 
						|
        }
 | 
						|
 | 
						|
        /// Select device with a device ID.
 | 
						|
        /// \param [in] id The id of the device which can
 | 
						|
        /// be obtained through get_device_id(const sycl::device).
 | 
						|
        void select_device(unsigned int id)
 | 
						|
        {
 | 
						|
            std::lock_guard<std::recursive_mutex> lock(m_mutex);
 | 
						|
            check_id(id);
 | 
						|
            _thread2dev_map[get_tid()] = id;
 | 
						|
        }
 | 
						|
        unsigned int device_count() { return _devs.size(); }
 | 
						|
 | 
						|
        unsigned int get_device_id(const sycl::device &dev)
 | 
						|
        {
 | 
						|
            unsigned int id = 0;
 | 
						|
            for (auto dev_item : _devs)
 | 
						|
            {
 | 
						|
                if (*dev_item == dev)
 | 
						|
                {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                id++;
 | 
						|
            }
 | 
						|
            return id;
 | 
						|
        }
 | 
						|
 | 
						|
        template <class DeviceSelector>
 | 
						|
        std::enable_if_t<
 | 
						|
            std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>>
 | 
						|
        select_device(const DeviceSelector &selector = sycl::gpu_selector_v)
 | 
						|
        {
 | 
						|
            sycl::device selected_device = sycl::device(selector);
 | 
						|
            unsigned int selected_device_id = get_device_id(selected_device);
 | 
						|
            select_device(selected_device_id);
 | 
						|
        }
 | 
						|
 | 
						|
        /// Returns the instance of device manager singleton.
 | 
						|
        static dev_mgr &instance()
 | 
						|
        {
 | 
						|
            static dev_mgr d_m;
 | 
						|
            return d_m;
 | 
						|
        }
 | 
						|
        dev_mgr(const dev_mgr &) = delete;
 | 
						|
        dev_mgr &operator=(const dev_mgr &) = delete;
 | 
						|
        dev_mgr(dev_mgr &&) = delete;
 | 
						|
        dev_mgr &operator=(dev_mgr &&) = delete;
 | 
						|
 | 
						|
    private:
 | 
						|
        mutable std::recursive_mutex m_mutex;
 | 
						|
        static bool compare_dev(sycl::device &device1, sycl::device &device2)
 | 
						|
        {
 | 
						|
            sycl::backend backend1 = device1.get_backend();
 | 
						|
            sycl::backend backend2 = device2.get_backend();
 | 
						|
            // levelzero backends always come first
 | 
						|
            if(backend1 == sycl::backend::ext_oneapi_level_zero && backend2 != sycl::backend::ext_oneapi_level_zero) return true;
 | 
						|
            if(backend1 != sycl::backend::ext_oneapi_level_zero && backend2 == sycl::backend::ext_oneapi_level_zero) return false;
 | 
						|
            dpct::device_info prop1;
 | 
						|
            dpct::get_device_info(prop1, device1);
 | 
						|
            dpct::device_info prop2;
 | 
						|
            dpct::get_device_info(prop2, device2);
 | 
						|
            return prop1.get_max_compute_units() > prop2.get_max_compute_units();
 | 
						|
        }
 | 
						|
        static int convert_backend_index(std::string & backend) {
 | 
						|
            if (backend == "ext_oneapi_level_zero:gpu") return 0;
 | 
						|
            if (backend == "opencl:gpu") return 1;
 | 
						|
            if (backend == "ext_oneapi_cuda:gpu") return 2;
 | 
						|
            if (backend == "ext_oneapi_hip:gpu") return 3;
 | 
						|
            if (backend == "opencl:cpu") return 4;
 | 
						|
            if (backend == "opencl:acc") return 5;
 | 
						|
            printf("convert_backend_index: can't handle backend=%s\n", backend.c_str());
 | 
						|
            GGML_ASSERT(false);
 | 
						|
        }
 | 
						|
        static bool compare_backend(std::string &backend1, std::string &backend2) {
 | 
						|
            return convert_backend_index(backend1) < convert_backend_index(backend2);
 | 
						|
        }
 | 
						|
        dev_mgr()
 | 
						|
        {
 | 
						|
            sycl::device default_device =
 | 
						|
                sycl::device(sycl::default_selector_v);
 | 
						|
            _devs.push_back(std::make_shared<device_ext>(default_device));
 | 
						|
 | 
						|
            std::vector<sycl::device> sycl_all_devs;
 | 
						|
            // Collect other devices except for the default device.
 | 
						|
            if (default_device.is_cpu())
 | 
						|
                _cpu_device = 0;
 | 
						|
 | 
						|
            auto Platforms = sycl::platform::get_platforms();
 | 
						|
            // Keep track of the number of devices per backend
 | 
						|
            std::map<sycl::backend, size_t> DeviceNums;
 | 
						|
            std::map<std::string, std::vector<sycl::device>> backend_devices;
 | 
						|
 | 
						|
            while (!Platforms.empty()) {
 | 
						|
                auto Platform = Platforms.back();
 | 
						|
                Platforms.pop_back();
 | 
						|
                auto devices = Platform.get_devices();
 | 
						|
                std::string backend_type = get_device_backend_and_type(devices[0]);
 | 
						|
                for (const auto &device : devices) {
 | 
						|
                    backend_devices[backend_type].push_back(device);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            std::vector<std::string> keys;
 | 
						|
            for(auto it = backend_devices.begin(); it != backend_devices.end(); ++it) {
 | 
						|
                keys.push_back(it->first);
 | 
						|
            }
 | 
						|
            std::sort(keys.begin(), keys.end(), compare_backend);
 | 
						|
 | 
						|
            for (auto &key : keys) {
 | 
						|
                std::vector<sycl::device> devs = backend_devices[key];
 | 
						|
                std::sort(devs.begin(), devs.end(), compare_dev);
 | 
						|
                for (const auto &dev : devs) {
 | 
						|
                    sycl_all_devs.push_back(dev);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            for (auto &dev : sycl_all_devs)
 | 
						|
            {
 | 
						|
                if (dev == default_device)
 | 
						|
                {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                _devs.push_back(std::make_shared<device_ext>(dev));
 | 
						|
                if (_cpu_device == -1 && dev.is_cpu())
 | 
						|
                {
 | 
						|
                    _cpu_device = _devs.size() - 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        void check_id(unsigned int id) const
 | 
						|
        {
 | 
						|
            if (id >= _devs.size())
 | 
						|
            {
 | 
						|
                throw std::runtime_error("invalid device id");
 | 
						|
            }
 | 
						|
        }
 | 
						|
        std::vector<std::shared_ptr<device_ext>> _devs;
 | 
						|
        /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current
 | 
						|
        /// thread id in _thread2dev_map, which means default device should be used
 | 
						|
        /// for the current thread.
 | 
						|
        const unsigned int DEFAULT_DEVICE_ID = 0;
 | 
						|
        /// thread-id to device-id map.
 | 
						|
        std::map<unsigned int, unsigned int> _thread2dev_map;
 | 
						|
        int _cpu_device = -1;
 | 
						|
    };
 | 
						|
 | 
						|
    static inline sycl::queue &get_default_queue()
 | 
						|
    {
 | 
						|
        return dev_mgr::instance().current_device().default_queue();
 | 
						|
    }
 | 
						|
 | 
						|
    namespace detail
 | 
						|
    {
 | 
						|
        enum class pointer_access_attribute
 | 
						|
        {
 | 
						|
            host_only = 0,
 | 
						|
            device_only,
 | 
						|
            host_device,
 | 
						|
            end
 | 
						|
        };
 | 
						|
 | 
						|
        static pointer_access_attribute get_pointer_attribute(sycl::queue &q,
 | 
						|
                                                              const void *ptr)
 | 
						|
        {
 | 
						|
            switch (sycl::get_pointer_type(ptr, q.get_context()))
 | 
						|
            {
 | 
						|
            case sycl::usm::alloc::unknown:
 | 
						|
                return pointer_access_attribute::host_only;
 | 
						|
            case sycl::usm::alloc::device:
 | 
						|
                return pointer_access_attribute::device_only;
 | 
						|
            case sycl::usm::alloc::shared:
 | 
						|
            case sycl::usm::alloc::host:
 | 
						|
                return pointer_access_attribute::host_device;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        template <typename ArgT>
 | 
						|
        inline constexpr std::uint64_t get_type_combination_id(ArgT Val)
 | 
						|
        {
 | 
						|
            static_assert((unsigned char)library_data_t::library_data_t_size <=
 | 
						|
                              std::numeric_limits<unsigned char>::max() &&
 | 
						|
                          "library_data_t size exceeds limit.");
 | 
						|
            static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT");
 | 
						|
            return (std::uint64_t)Val;
 | 
						|
        }
 | 
						|
 | 
						|
        template <typename FirstT, typename... RestT>
 | 
						|
        inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal,
 | 
						|
                                                               RestT... RestVal)
 | 
						|
        {
 | 
						|
            static_assert((std::uint8_t)library_data_t::library_data_t_size <=
 | 
						|
                              std::numeric_limits<unsigned char>::max() &&
 | 
						|
                          "library_data_t size exceeds limit.");
 | 
						|
            static_assert(sizeof...(RestT) <= 8 && "Too many parameters");
 | 
						|
            static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT");
 | 
						|
            return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal);
 | 
						|
        }
 | 
						|
 | 
						|
        class mem_mgr
 | 
						|
        {
 | 
						|
            mem_mgr()
 | 
						|
            {
 | 
						|
                // Reserved address space, no real memory allocation happens here.
 | 
						|
#if defined(__linux__)
 | 
						|
                mapped_address_space =
 | 
						|
                    (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE,
 | 
						|
                                   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | 
						|
#elif defined(_WIN64)
 | 
						|
                mapped_address_space = (byte_t *)VirtualAlloc(
 | 
						|
                    NULL,               // NULL specified as the base address parameter
 | 
						|
                    mapped_region_size, // Size of allocation
 | 
						|
                    MEM_RESERVE,        // Allocate reserved pages
 | 
						|
                    PAGE_NOACCESS);     // Protection = no access
 | 
						|
#else
 | 
						|
#error "Only support Windows and Linux."
 | 
						|
#endif
 | 
						|
                next_free = mapped_address_space;
 | 
						|
            };
 | 
						|
 | 
						|
        public:
 | 
						|
            using buffer_id_t = int;
 | 
						|
 | 
						|
            struct allocation
 | 
						|
            {
 | 
						|
                buffer_t buffer;
 | 
						|
                byte_t *alloc_ptr;
 | 
						|
                size_t size;
 | 
						|
            };
 | 
						|
 | 
						|
            ~mem_mgr()
 | 
						|
            {
 | 
						|
#if defined(__linux__)
 | 
						|
                munmap(mapped_address_space, mapped_region_size);
 | 
						|
#elif defined(_WIN64)
 | 
						|
                VirtualFree(mapped_address_space, 0, MEM_RELEASE);
 | 
						|
#else
 | 
						|
#error "Only support Windows and Linux."
 | 
						|
#endif
 | 
						|
            };
 | 
						|
 | 
						|
            mem_mgr(const mem_mgr &) = delete;
 | 
						|
            mem_mgr &operator=(const mem_mgr &) = delete;
 | 
						|
            mem_mgr(mem_mgr &&) = delete;
 | 
						|
            mem_mgr &operator=(mem_mgr &&) = delete;
 | 
						|
 | 
						|
            /// Allocate
 | 
						|
            void *mem_alloc(size_t size)
 | 
						|
            {
 | 
						|
                if (!size)
 | 
						|
                    return nullptr;
 | 
						|
                std::lock_guard<std::mutex> lock(m_mutex);
 | 
						|
                if (next_free + size > mapped_address_space + mapped_region_size)
 | 
						|
                {
 | 
						|
                    throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool");
 | 
						|
                }
 | 
						|
                // Allocation
 | 
						|
                sycl::range<1> r(size);
 | 
						|
                buffer_t buf(r);
 | 
						|
                allocation A{buf, next_free, size};
 | 
						|
                // Map allocation to device pointer
 | 
						|
                void *result = next_free;
 | 
						|
                m_map.emplace(next_free + size, A);
 | 
						|
                // Update pointer to the next free space.
 | 
						|
                next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1);
 | 
						|
 | 
						|
                return result;
 | 
						|
            }
 | 
						|
 | 
						|
            /// Deallocate
 | 
						|
            void mem_free(const void *ptr)
 | 
						|
            {
 | 
						|
                if (!ptr)
 | 
						|
                    return;
 | 
						|
                std::lock_guard<std::mutex> lock(m_mutex);
 | 
						|
                auto it = get_map_iterator(ptr);
 | 
						|
                m_map.erase(it);
 | 
						|
            }
 | 
						|
 | 
						|
            /// map: device pointer -> allocation(buffer, alloc_ptr, size)
 | 
						|
            allocation translate_ptr(const void *ptr)
 | 
						|
            {
 | 
						|
                std::lock_guard<std::mutex> lock(m_mutex);
 | 
						|
                auto it = get_map_iterator(ptr);
 | 
						|
                return it->second;
 | 
						|
            }
 | 
						|
 | 
						|
            /// Check if the pointer represents device pointer or not.
 | 
						|
            bool is_device_ptr(const void *ptr) const
 | 
						|
            {
 | 
						|
                std::lock_guard<std::mutex> lock(m_mutex);
 | 
						|
                return (mapped_address_space <= ptr) &&
 | 
						|
                       (ptr < mapped_address_space + mapped_region_size);
 | 
						|
            }
 | 
						|
 | 
						|
            /// Returns the instance of memory manager singleton.
 | 
						|
            static mem_mgr &instance()
 | 
						|
            {
 | 
						|
                static mem_mgr m;
 | 
						|
                return m;
 | 
						|
            }
 | 
						|
 | 
						|
        private:
 | 
						|
            std::map<byte_t *, allocation> m_map;
 | 
						|
            mutable std::mutex m_mutex;
 | 
						|
            byte_t *mapped_address_space;
 | 
						|
            byte_t *next_free;
 | 
						|
            const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024;
 | 
						|
            const size_t alignment = 256;
 | 
						|
            /// This padding may be defined to some positive value to debug
 | 
						|
            /// out of bound accesses.
 | 
						|
            const size_t extra_padding = 0;
 | 
						|
 | 
						|
            std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr)
 | 
						|
            {
 | 
						|
                auto it = m_map.upper_bound((byte_t *)ptr);
 | 
						|
                if (it == m_map.end())
 | 
						|
                {
 | 
						|
                    // Not a virtual pointer.
 | 
						|
                    throw std::runtime_error("can not get buffer from non-virtual pointer");
 | 
						|
                }
 | 
						|
                const allocation &alloc = it->second;
 | 
						|
                if (ptr < alloc.alloc_ptr)
 | 
						|
                {
 | 
						|
                    // Out of bound.
 | 
						|
                    // This may happen if there's a gap between allocations due to alignment
 | 
						|
                    // or extra padding and pointer points to this gap.
 | 
						|
                    throw std::runtime_error("invalid virtual pointer");
 | 
						|
                }
 | 
						|
                return it;
 | 
						|
            }
 | 
						|
        };
 | 
						|
 | 
						|
        template <class T, memory_region Memory, size_t Dimension>
 | 
						|
        class accessor;
 | 
						|
        template <memory_region Memory, class T = byte_t>
 | 
						|
        class memory_traits
 | 
						|
        {
 | 
						|
        public:
 | 
						|
            static constexpr sycl::access::target target =
 | 
						|
                sycl::access::target::device;
 | 
						|
            static constexpr sycl::access_mode mode =
 | 
						|
                (Memory == constant) ? sycl::access_mode::read
 | 
						|
                                     : sycl::access_mode::read_write;
 | 
						|
            static constexpr size_t type_size = sizeof(T);
 | 
						|
            using element_t =
 | 
						|
                typename std::conditional<Memory == constant, const T, T>::type;
 | 
						|
            using value_t = typename std::remove_cv<T>::type;
 | 
						|
            template <size_t Dimension = 1>
 | 
						|
            using accessor_t = typename std::conditional<
 | 
						|
                Memory == local, sycl::local_accessor<value_t, Dimension>,
 | 
						|
                sycl::accessor<T, Dimension, mode, target>>::type;
 | 
						|
            using pointer_t = T *;
 | 
						|
        };
 | 
						|
 | 
						|
        static inline void *dpct_malloc(size_t size, sycl::queue &q)
 | 
						|
        {
 | 
						|
            return sycl::malloc_device(size, q.get_device(), q.get_context());
 | 
						|
        }
 | 
						|
 | 
						|
#define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F))
 | 
						|
        static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z,
 | 
						|
                                        sycl::queue &q)
 | 
						|
        {
 | 
						|
            pitch = PITCH_DEFAULT_ALIGN(x);
 | 
						|
            return dpct_malloc(pitch * y * z, q);
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * @brief Sets \p value to the first \p size elements starting from \p dev_ptr in \p q.
 | 
						|
         * @tparam valueT The type of the element to be set.
 | 
						|
         * @param [in] q The queue in which the operation is done.
 | 
						|
         * @param [in] dev_ptr Pointer to the virtual device memory address.
 | 
						|
         * @param [in] value The value to be set.
 | 
						|
         * @param [in] size Number of elements to be set to the value.
 | 
						|
         * @return An event representing the memset operation.
 | 
						|
         */
 | 
						|
        template <typename valueT>
 | 
						|
        static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr,
 | 
						|
                                              valueT value, size_t size)
 | 
						|
        {
 | 
						|
            return q.fill(dev_ptr, value, size);
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * @brief Sets \p value to the 3D memory region pointed by \p data in \p q.
 | 
						|
         * @tparam valueT The type of the element to be set.
 | 
						|
         * @param [in] q The queue in which the operation is done.
 | 
						|
         * @param [in] data Pointer to the pitched device memory region.
 | 
						|
         * @param [in] value The value to be set.
 | 
						|
         * @param [in] size 3D memory region by number of elements.
 | 
						|
         * @return An event list representing the memset operations.
 | 
						|
         */
 | 
						|
        template <typename valueT>
 | 
						|
        static inline std::vector<sycl::event>
 | 
						|
        dpct_memset(sycl::queue &q, pitched_data data, valueT value,
 | 
						|
                    sycl::range<3> size)
 | 
						|
        {
 | 
						|
            std::vector<sycl::event> event_list;
 | 
						|
            size_t slice = data.get_pitch() * data.get_y();
 | 
						|
            unsigned char *data_surface = (unsigned char *)data.get_data_ptr();
 | 
						|
            for (size_t z = 0; z < size.get(2); ++z)
 | 
						|
            {
 | 
						|
                unsigned char *data_ptr = data_surface;
 | 
						|
                for (size_t y = 0; y < size.get(1); ++y)
 | 
						|
                {
 | 
						|
                    event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0)));
 | 
						|
                    data_ptr += data.get_pitch();
 | 
						|
                }
 | 
						|
                data_surface += slice;
 | 
						|
            }
 | 
						|
            return event_list;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * @brief Sets \p val to the pitched 2D memory region pointed by \p ptr in \p q.
 | 
						|
         * @tparam valueT The type of the element to be set.
 | 
						|
         * @param [in] q The queue in which the operation is done.
 | 
						|
         * @param [in] ptr Pointer to the virtual device memory.
 | 
						|
         * @param [in] pitch The pitch size by number of elements, including padding.
 | 
						|
         * @param [in] val The value to be set.
 | 
						|
         * @param [in] x The width of memory region by number of elements.
 | 
						|
         * @param [in] y The height of memory region by number of elements.
 | 
						|
         * @return An event list representing the memset operations.
 | 
						|
         */
 | 
						|
        template <typename valueT>
 | 
						|
        static inline std::vector<sycl::event>
 | 
						|
        dpct_memset(sycl::queue &q, void *ptr, size_t pitch, valueT val, size_t x,
 | 
						|
                    size_t y)
 | 
						|
        {
 | 
						|
            return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val,
 | 
						|
                               sycl::range<3>(x, y, 1));
 | 
						|
        }
 | 
						|
 | 
						|
        static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr,
 | 
						|
                                                        const void *from_ptr,
 | 
						|
                                                        memcpy_direction dir)
 | 
						|
        {
 | 
						|
            switch (dir)
 | 
						|
            {
 | 
						|
            case memcpy_direction::host_to_host:
 | 
						|
            case memcpy_direction::host_to_device:
 | 
						|
            case memcpy_direction::device_to_host:
 | 
						|
            case memcpy_direction::device_to_device:
 | 
						|
                return dir;
 | 
						|
            case memcpy_direction::automatic:
 | 
						|
            {
 | 
						|
                // table[to_attribute][from_attribute]
 | 
						|
                static const memcpy_direction
 | 
						|
                    direction_table[static_cast<unsigned>(pointer_access_attribute::end)]
 | 
						|
                                   [static_cast<unsigned>(pointer_access_attribute::end)] =
 | 
						|
                                       {{memcpy_direction::host_to_host,
 | 
						|
                                         memcpy_direction::device_to_host,
 | 
						|
                                         memcpy_direction::host_to_host},
 | 
						|
                                        {memcpy_direction::host_to_device,
 | 
						|
                                         memcpy_direction::device_to_device,
 | 
						|
                                         memcpy_direction::device_to_device},
 | 
						|
                                        {memcpy_direction::host_to_host,
 | 
						|
                                         memcpy_direction::device_to_device,
 | 
						|
                                         memcpy_direction::device_to_device}};
 | 
						|
                return direction_table[static_cast<unsigned>(get_pointer_attribute(
 | 
						|
                    q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))];
 | 
						|
            }
 | 
						|
            default:
 | 
						|
                throw std::runtime_error("dpct_memcpy: invalid direction value");
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        static sycl::event
 | 
						|
        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
 | 
						|
                    memcpy_direction direction,
 | 
						|
                    const std::vector<sycl::event> &dep_events = {})
 | 
						|
        {
 | 
						|
            if (!size)
 | 
						|
                return sycl::event{};
 | 
						|
            return q.memcpy(to_ptr, from_ptr, size, dep_events);
 | 
						|
            GGML_UNUSED(direction);
 | 
						|
        }
 | 
						|
 | 
						|
        // Get actual copy range and make sure it will not exceed range.
 | 
						|
        static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
 | 
						|
                                            size_t pitch)
 | 
						|
        {
 | 
						|
            return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
 | 
						|
        }
 | 
						|
 | 
						|
        static inline size_t get_offset(sycl::id<3> id, size_t slice,
 | 
						|
                                        size_t pitch)
 | 
						|
        {
 | 
						|
            return slice * id.get(2) + pitch * id.get(1) + id.get(0);
 | 
						|
        }
 | 
						|
 | 
						|
        /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
 | 
						|
        /// and \p from_range to another specified by \p to_ptr and \p to_range.
 | 
						|
        static inline std::vector<sycl::event>
 | 
						|
        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
 | 
						|
                    sycl::range<3> to_range, sycl::range<3> from_range,
 | 
						|
                    sycl::id<3> to_id, sycl::id<3> from_id,
 | 
						|
                    sycl::range<3> size, memcpy_direction direction,
 | 
						|
                    const std::vector<sycl::event> &dep_events = {})
 | 
						|
        {
 | 
						|
            // RAII for host pointer
 | 
						|
            class host_buffer
 | 
						|
            {
 | 
						|
                void *_buf;
 | 
						|
                size_t _size;
 | 
						|
                sycl::queue &_q;
 | 
						|
                const std::vector<sycl::event> &_deps; // free operation depends
 | 
						|
 | 
						|
            public:
 | 
						|
                host_buffer(size_t size, sycl::queue &q,
 | 
						|
                            const std::vector<sycl::event> &deps)
 | 
						|
                    : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
 | 
						|
                void *get_ptr() const { return _buf; }
 | 
						|
                size_t get_size() const { return _size; }
 | 
						|
                ~host_buffer()
 | 
						|
                {
 | 
						|
                    if (_buf)
 | 
						|
                    {
 | 
						|
                        _q.submit([&](sycl::handler &cgh)
 | 
						|
                                  {
 | 
						|
        cgh.depends_on(_deps);
 | 
						|
        cgh.host_task([buf = _buf] { std::free(buf); }); });
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            };
 | 
						|
            std::vector<sycl::event> event_list;
 | 
						|
 | 
						|
            size_t to_slice = to_range.get(1) * to_range.get(0),
 | 
						|
                   from_slice = from_range.get(1) * from_range.get(0);
 | 
						|
            unsigned char *to_surface =
 | 
						|
                (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
 | 
						|
            const unsigned char *from_surface =
 | 
						|
                (const unsigned char *)from_ptr +
 | 
						|
                get_offset(from_id, from_slice, from_range.get(0));
 | 
						|
 | 
						|
            if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
 | 
						|
            {
 | 
						|
                return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
 | 
						|
                                    direction, dep_events)};
 | 
						|
            }
 | 
						|
            direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
 | 
						|
            size_t size_slice = size.get(1) * size.get(0);
 | 
						|
            switch (direction)
 | 
						|
            {
 | 
						|
            case host_to_host:
 | 
						|
                for (size_t z = 0; z < size.get(2); ++z)
 | 
						|
                {
 | 
						|
                    unsigned char *to_ptr = to_surface;
 | 
						|
                    const unsigned char *from_ptr = from_surface;
 | 
						|
                    if (to_range.get(0) == from_range.get(0) &&
 | 
						|
                        to_range.get(0) == size.get(0))
 | 
						|
                    {
 | 
						|
                        event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
 | 
						|
                                                         direction, dep_events));
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        for (size_t y = 0; y < size.get(1); ++y)
 | 
						|
                        {
 | 
						|
                            event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
 | 
						|
                                                             direction, dep_events));
 | 
						|
                            to_ptr += to_range.get(0);
 | 
						|
                            from_ptr += from_range.get(0);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    to_surface += to_slice;
 | 
						|
                    from_surface += from_slice;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case host_to_device:
 | 
						|
            {
 | 
						|
                host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
 | 
						|
                                event_list);
 | 
						|
                std::vector<sycl::event> host_events;
 | 
						|
                if (to_slice == size_slice)
 | 
						|
                {
 | 
						|
                    // Copy host data to a temp host buffer with the shape of target.
 | 
						|
                    host_events =
 | 
						|
                        dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
 | 
						|
                                    sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
 | 
						|
                                    host_to_host, dep_events);
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    // Copy host data to a temp host buffer with the shape of target.
 | 
						|
                    host_events = dpct_memcpy(
 | 
						|
                        q, buf.get_ptr(), from_surface, to_range, from_range,
 | 
						|
                        sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
 | 
						|
                        // If has padding data, not sure whether it is useless. So fill temp
 | 
						|
                        // buffer with it.
 | 
						|
                        std::vector<sycl::event>{
 | 
						|
                            dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
 | 
						|
                                        device_to_host, dep_events)});
 | 
						|
                }
 | 
						|
                // Copy from temp host buffer to device with only one submit.
 | 
						|
                event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
 | 
						|
                                                 buf.get_size(), host_to_device,
 | 
						|
                                                 host_events));
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            case device_to_host:
 | 
						|
            {
 | 
						|
                host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
 | 
						|
                                event_list);
 | 
						|
                // Copy from host temp buffer to host target with reshaping.
 | 
						|
                event_list = dpct_memcpy(
 | 
						|
                    q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
 | 
						|
                    sycl::id<3>(0, 0, 0), size, host_to_host,
 | 
						|
                    // Copy from device to temp host buffer with only one submit.
 | 
						|
                    std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
 | 
						|
                                                         buf.get_size(),
 | 
						|
                                                         device_to_host, dep_events)});
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            case device_to_device:
 | 
						|
                event_list.push_back(q.submit([&](sycl::handler &cgh){
 | 
						|
                cgh.depends_on(dep_events);
 | 
						|
                cgh.parallel_for<class dpct_memcpy_3d_detail>(
 | 
						|
                    size,
 | 
						|
                    [=](sycl::id<3> id) {
 | 
						|
                        to_surface[get_offset(id, to_slice, to_range.get(0))] =
 | 
						|
                            from_surface[get_offset(id, from_slice, from_range.get(0))];
 | 
						|
                    }); }));
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                throw std::runtime_error("dpct_memcpy: invalid direction value");
 | 
						|
            }
 | 
						|
            return event_list;
 | 
						|
        }
 | 
						|
 | 
						|
        /// memcpy 2D/3D matrix specified by pitched_data.
 | 
						|
        static inline std::vector<sycl::event>
 | 
						|
        dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
 | 
						|
                    pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
 | 
						|
                    memcpy_direction direction = automatic)
 | 
						|
        {
 | 
						|
            return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
 | 
						|
                               sycl::range<3>(to.get_pitch(), to.get_y(), 1),
 | 
						|
                               sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
 | 
						|
                               size, direction);
 | 
						|
        }
 | 
						|
 | 
						|
        /// memcpy 2D matrix with pitch.
 | 
						|
        static inline std::vector<sycl::event>
 | 
						|
        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
 | 
						|
                    size_t to_pitch, size_t from_pitch, size_t x, size_t y,
 | 
						|
                    memcpy_direction direction = automatic)
 | 
						|
        {
 | 
						|
            return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
 | 
						|
                               sycl::range<3>(from_pitch, y, 1),
 | 
						|
                               sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
 | 
						|
                               sycl::range<3>(x, y, 1), direction);
 | 
						|
        }
 | 
						|
 | 
						|
        namespace deprecated
 | 
						|
        {
 | 
						|
 | 
						|
            template <typename T, sycl::usm::alloc AllocKind>
 | 
						|
            class usm_allocator
 | 
						|
            {
 | 
						|
            private:
 | 
						|
                using Alloc = sycl::usm_allocator<T, AllocKind>;
 | 
						|
                Alloc _impl;
 | 
						|
 | 
						|
            public:
 | 
						|
                using value_type = typename std::allocator_traits<Alloc>::value_type;
 | 
						|
                using pointer = typename std::allocator_traits<Alloc>::pointer;
 | 
						|
                using const_pointer = typename std::allocator_traits<Alloc>::const_pointer;
 | 
						|
                using void_pointer = typename std::allocator_traits<Alloc>::void_pointer;
 | 
						|
                using const_void_pointer =
 | 
						|
                    typename std::allocator_traits<Alloc>::const_void_pointer;
 | 
						|
                using reference = typename std::allocator_traits<Alloc>::value_type &;
 | 
						|
                using const_reference =
 | 
						|
                    const typename std::allocator_traits<Alloc>::value_type &;
 | 
						|
                using difference_type =
 | 
						|
                    typename std::allocator_traits<Alloc>::difference_type;
 | 
						|
                using size_type = typename std::allocator_traits<Alloc>::size_type;
 | 
						|
                using propagate_on_container_copy_assignment = typename std::allocator_traits<
 | 
						|
                    Alloc>::propagate_on_container_copy_assignment;
 | 
						|
                using propagate_on_container_move_assignment = typename std::allocator_traits<
 | 
						|
                    Alloc>::propagate_on_container_move_assignment;
 | 
						|
                using propagate_on_container_swap =
 | 
						|
                    typename std::allocator_traits<Alloc>::propagate_on_container_swap;
 | 
						|
                using is_always_equal =
 | 
						|
                    typename std::allocator_traits<Alloc>::is_always_equal;
 | 
						|
 | 
						|
                template <typename U>
 | 
						|
                struct rebind
 | 
						|
                {
 | 
						|
                    typedef usm_allocator<U, AllocKind> other;
 | 
						|
                };
 | 
						|
 | 
						|
                usm_allocator() : _impl(dpct::get_default_queue()) {}
 | 
						|
                ~usm_allocator() {}
 | 
						|
                usm_allocator(const usm_allocator &other) : _impl(other._impl) {}
 | 
						|
                usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {}
 | 
						|
                pointer address(reference r) { return &r; }
 | 
						|
                const_pointer address(const_reference r) { return &r; }
 | 
						|
                pointer allocate(size_type cnt, const_void_pointer hint = nullptr)
 | 
						|
                {
 | 
						|
                    return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint);
 | 
						|
                }
 | 
						|
                void deallocate(pointer p, size_type cnt)
 | 
						|
                {
 | 
						|
                    std::allocator_traits<Alloc>::deallocate(_impl, p, cnt);
 | 
						|
                }
 | 
						|
                size_type max_size() const
 | 
						|
                {
 | 
						|
                    return std::allocator_traits<Alloc>::max_size(_impl);
 | 
						|
                }
 | 
						|
                bool operator==(const usm_allocator &other) const { return _impl == other._impl; }
 | 
						|
                bool operator!=(const usm_allocator &other) const { return _impl != other._impl; }
 | 
						|
            };
 | 
						|
 | 
						|
        } // namespace deprecated
 | 
						|
 | 
						|
        inline void dpct_free(void *ptr,
 | 
						|
                              const sycl::queue &q)
 | 
						|
        {
 | 
						|
            if (ptr)
 | 
						|
            {
 | 
						|
                sycl::free(ptr, q.get_context());
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        template <typename T>
 | 
						|
        inline auto get_memory(const void *x)
 | 
						|
        {
 | 
						|
            T *new_x = reinterpret_cast<T *>(const_cast<void *>(x));
 | 
						|
            return new_x;
 | 
						|
        }
 | 
						|
 | 
						|
        template <typename T>
 | 
						|
        inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q)
 | 
						|
        {
 | 
						|
            using Ty = typename DataType<T>::T2;
 | 
						|
            Ty s_h;
 | 
						|
            if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
 | 
						|
                detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
 | 
						|
                    .wait();
 | 
						|
            else
 | 
						|
                s_h = *reinterpret_cast<const Ty *>(s);
 | 
						|
            return s_h;
 | 
						|
        }
 | 
						|
 | 
						|
    } // namespace detail
 | 
						|
 | 
						|
    template <typename T>
 | 
						|
    inline auto get_value(const T *s, sycl::queue &q)
 | 
						|
    {
 | 
						|
        return detail::get_value(s, q);
 | 
						|
    }
 | 
						|
 | 
						|
    namespace detail
 | 
						|
    {
 | 
						|
        template <class Ta, class Tb, class Tc, class Ts>
 | 
						|
        inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | 
						|
                              oneapi::mkl::transpose b_trans, int m, int n, int k,
 | 
						|
                              const void *alpha, const void *a, int lda, const void *b,
 | 
						|
                              int ldb, const void *beta, void *c, int ldc)
 | 
						|
        {
 | 
						|
            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
 | 
						|
            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
 | 
						|
            auto data_a = get_memory<const Ta>(a);
 | 
						|
            auto data_b = get_memory<const Tb>(b);
 | 
						|
            auto data_c = get_memory<Tc>(c);
 | 
						|
            oneapi::mkl::blas::column_major::gemm(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
 | 
						|
                data_b, ldb, beta_value, data_c, ldc);
 | 
						|
        }
 | 
						|
 | 
						|
        template <typename VecT, class BinaryOperation, class = void>
 | 
						|
        class vectorized_binary
 | 
						|
        {
 | 
						|
        public:
 | 
						|
            inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
 | 
						|
            {
 | 
						|
                VecT v4;
 | 
						|
                for (size_t i = 0; i < v4.size(); ++i)
 | 
						|
                {
 | 
						|
                    v4[i] = binary_op(a[i], b[i]);
 | 
						|
                }
 | 
						|
                return v4;
 | 
						|
            }
 | 
						|
        };
 | 
						|
 | 
						|
        template <typename VecT, class BinaryOperation>
 | 
						|
        class vectorized_binary<
 | 
						|
            VecT, BinaryOperation,
 | 
						|
            std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>>
 | 
						|
        {
 | 
						|
        public:
 | 
						|
            inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
 | 
						|
            {
 | 
						|
                return binary_op(a, b).template as<VecT>();
 | 
						|
            }
 | 
						|
        };
 | 
						|
 | 
						|
        template <class Ta, class Tb, class Tc, class Ts>
 | 
						|
        inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | 
						|
                                    oneapi::mkl::transpose b_trans, int m, int n, int k,
 | 
						|
                                    const void *alpha, const void **a, int lda,
 | 
						|
                                    const void **b, int ldb, const void *beta, void **c,
 | 
						|
                                    int ldc, int batch_size)
 | 
						|
        {
 | 
						|
            struct matrix_info_t
 | 
						|
            {
 | 
						|
                oneapi::mkl::transpose transpose_info[2];
 | 
						|
                Ts value_info[2];
 | 
						|
                std::int64_t size_info[3];
 | 
						|
                std::int64_t ld_info[3];
 | 
						|
                std::int64_t groupsize_info;
 | 
						|
            };
 | 
						|
 | 
						|
            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
 | 
						|
            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
 | 
						|
 | 
						|
            matrix_info_t *matrix_info =
 | 
						|
                (matrix_info_t *)std::malloc(sizeof(matrix_info_t));
 | 
						|
            matrix_info->transpose_info[0] = a_trans;
 | 
						|
            matrix_info->transpose_info[1] = b_trans;
 | 
						|
            matrix_info->value_info[0] = alpha_value;
 | 
						|
            matrix_info->value_info[1] = beta_value;
 | 
						|
            matrix_info->size_info[0] = m;
 | 
						|
            matrix_info->size_info[1] = n;
 | 
						|
            matrix_info->size_info[2] = k;
 | 
						|
            matrix_info->ld_info[0] = lda;
 | 
						|
            matrix_info->ld_info[1] = ldb;
 | 
						|
            matrix_info->ld_info[2] = ldc;
 | 
						|
            matrix_info->groupsize_info = batch_size;
 | 
						|
 | 
						|
            sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
 | 
						|
                q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
 | 
						|
                matrix_info->size_info, matrix_info->size_info + 1,
 | 
						|
                matrix_info->size_info + 2, matrix_info->value_info,
 | 
						|
                reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
 | 
						|
                reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
 | 
						|
                matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
 | 
						|
                matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
 | 
						|
 | 
						|
            q.submit([&](sycl::handler &cgh)
 | 
						|
                     {
 | 
						|
    cgh.depends_on(e);
 | 
						|
    cgh.host_task([=] { std::free(matrix_info); }); });
 | 
						|
        }
 | 
						|
 | 
						|
        template <class Ta, class Tb, class Tc, class Ts>
 | 
						|
        inline void
 | 
						|
        gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | 
						|
                        oneapi::mkl::transpose b_trans, int m, int n,
 | 
						|
                        int k, const void *alpha, const void *a, int lda,
 | 
						|
                        long long int stride_a, const void *b, int ldb,
 | 
						|
                        long long int stride_b, const void *beta, void *c,
 | 
						|
                        int ldc, long long int stride_c, int batch_size)
 | 
						|
        {
 | 
						|
            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
 | 
						|
            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
 | 
						|
            auto data_a = get_memory<const Ta>(a);
 | 
						|
            auto data_b = get_memory<const Tb>(b);
 | 
						|
            auto data_c = get_memory<Tc>(c);
 | 
						|
            oneapi::mkl::blas::column_major::gemm_batch(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
 | 
						|
                stride_a, data_b, ldb, stride_b, beta_value,
 | 
						|
                data_c, ldc, stride_c, batch_size);
 | 
						|
        }
 | 
						|
 | 
						|
    } // namespace detail
 | 
						|
 | 
						|
    template <typename VecT, class BinaryOperation>
 | 
						|
    inline unsigned vectorized_binary(unsigned a, unsigned b,
 | 
						|
                                      const BinaryOperation binary_op)
 | 
						|
    {
 | 
						|
        sycl::vec<unsigned, 1> v0{a}, v1{b};
 | 
						|
        auto v2 = v0.as<VecT>();
 | 
						|
        auto v3 = v1.as<VecT>();
 | 
						|
        auto v4 =
 | 
						|
            detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op);
 | 
						|
        v0 = v4.template as<sycl::vec<unsigned, 1>>();
 | 
						|
        return v0;
 | 
						|
    }
 | 
						|
 | 
						|
    static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size,
 | 
						|
                                  memcpy_direction direction = automatic,
 | 
						|
                                  sycl::queue &q = dpct::get_default_queue())
 | 
						|
    {
 | 
						|
        detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction);
 | 
						|
    }
 | 
						|
 | 
						|
    static inline unsigned int select_device(unsigned int id)
 | 
						|
    {
 | 
						|
        dev_mgr::instance().select_device(id);
 | 
						|
        return id;
 | 
						|
    }
 | 
						|
 | 
						|
    template <typename T>
 | 
						|
    T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
 | 
						|
                               unsigned int logical_sub_group_size = 32)
 | 
						|
    {
 | 
						|
        unsigned int id = g.get_local_linear_id();
 | 
						|
        unsigned int start_index =
 | 
						|
            id / logical_sub_group_size * logical_sub_group_size;
 | 
						|
        unsigned int target_offset = (id % logical_sub_group_size) ^ mask;
 | 
						|
        return sycl::select_from_group(g, x,
 | 
						|
                                       target_offset < logical_sub_group_size
 | 
						|
                                           ? start_index + target_offset
 | 
						|
                                           : id);
 | 
						|
    }
 | 
						|
 | 
						|
    template <typename T>
 | 
						|
    sycl::vec<T, 4> extract_and_sign_or_zero_extend4(T val)
 | 
						|
    {
 | 
						|
        return sycl::vec<T, 1>(val)
 | 
						|
            .template as<sycl::vec<
 | 
						|
                std::conditional_t<std::is_signed_v<T>, int8_t, uint8_t>, 4>>()
 | 
						|
            .template convert<T>();
 | 
						|
    }
 | 
						|
 | 
						|
    template <typename T1, typename T2>
 | 
						|
    using dot_product_acc_t =
 | 
						|
        std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
 | 
						|
                           uint32_t, int32_t>;
 | 
						|
 | 
						|
    template <typename T1, typename T2, typename T3>
 | 
						|
    inline auto dp4a(T1 a, T2 b, T3 c)
 | 
						|
    {
 | 
						|
        dot_product_acc_t<T1, T2> res = c;
 | 
						|
        auto va = extract_and_sign_or_zero_extend4(a);
 | 
						|
        auto vb = extract_and_sign_or_zero_extend4(b);
 | 
						|
        res += va[0] * vb[0];
 | 
						|
        res += va[1] * vb[1];
 | 
						|
        res += va[2] * vb[2];
 | 
						|
        res += va[3] * vb[3];
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    struct sub_sat
 | 
						|
    {
 | 
						|
        template <typename T>
 | 
						|
        auto operator()(const T x, const T y) const
 | 
						|
        {
 | 
						|
            return sycl::sub_sat(x, y);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    template <typename S, typename T>
 | 
						|
    inline T vectorized_min(T a, T b)
 | 
						|
    {
 | 
						|
        sycl::vec<T, 1> v0{a}, v1{b};
 | 
						|
        auto v2 = v0.template as<S>();
 | 
						|
        auto v3 = v1.template as<S>();
 | 
						|
        auto v4 = sycl::min(v2, v3);
 | 
						|
        v0 = v4.template as<sycl::vec<T, 1>>();
 | 
						|
        return v0;
 | 
						|
    }
 | 
						|
 | 
						|
    inline float pow(const float a, const int b) { return sycl::pown(a, b); }
 | 
						|
    inline double pow(const double a, const int b) { return sycl::pown(a, b); }
 | 
						|
    inline float pow(const float a, const float b) { return sycl::pow(a, b); }
 | 
						|
    inline double pow(const double a, const double b) { return sycl::pow(a, b); }
 | 
						|
    template <typename T, typename U>
 | 
						|
    inline typename std::enable_if_t<std::is_floating_point_v<T>, T>
 | 
						|
    pow(const T a, const U b)
 | 
						|
    {
 | 
						|
        return sycl::pow(a, static_cast<T>(b));
 | 
						|
    }
 | 
						|
    template <typename T, typename U>
 | 
						|
    inline typename std::enable_if_t<!std::is_floating_point_v<T>, double>
 | 
						|
    pow(const T a, const U b)
 | 
						|
    {
 | 
						|
        return sycl::pow(static_cast<double>(a), static_cast<double>(b));
 | 
						|
    }
 | 
						|
 | 
						|
    inline double min(const double a, const float b)
 | 
						|
    {
 | 
						|
        return sycl::fmin(a, static_cast<double>(b));
 | 
						|
    }
 | 
						|
    inline double min(const float a, const double b)
 | 
						|
    {
 | 
						|
        return sycl::fmin(static_cast<double>(a), b);
 | 
						|
    }
 | 
						|
    inline float min(const float a, const float b) { return sycl::fmin(a, b); }
 | 
						|
    inline double min(const double a, const double b) { return sycl::fmin(a, b); }
 | 
						|
    inline std::uint32_t min(const std::uint32_t a, const std::int32_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(a, static_cast<std::uint32_t>(b));
 | 
						|
    }
 | 
						|
    inline std::uint32_t min(const std::int32_t a, const std::uint32_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(static_cast<std::uint32_t>(a), b);
 | 
						|
    }
 | 
						|
    inline std::int32_t min(const std::int32_t a, const std::int32_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(a, b);
 | 
						|
    }
 | 
						|
    inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(a, b);
 | 
						|
    }
 | 
						|
    inline std::uint64_t min(const std::uint64_t a, const std::int64_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(a, static_cast<std::uint64_t>(b));
 | 
						|
    }
 | 
						|
    inline std::uint64_t min(const std::int64_t a, const std::uint64_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(static_cast<std::uint64_t>(a), b);
 | 
						|
    }
 | 
						|
    inline std::int64_t min(const std::int64_t a, const std::int64_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(a, b);
 | 
						|
    }
 | 
						|
    inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(a, b);
 | 
						|
    }
 | 
						|
    inline std::uint64_t min(const std::uint64_t a, const std::int32_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(a, static_cast<std::uint64_t>(b));
 | 
						|
    }
 | 
						|
    inline std::uint64_t min(const std::int32_t a, const std::uint64_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(static_cast<std::uint64_t>(a), b);
 | 
						|
    }
 | 
						|
    inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(a, static_cast<std::uint64_t>(b));
 | 
						|
    }
 | 
						|
    inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b)
 | 
						|
    {
 | 
						|
        return sycl::min(static_cast<std::uint64_t>(a), b);
 | 
						|
    }
 | 
						|
    // max function overloads.
 | 
						|
    // For floating-point types, `float` or `double` arguments are acceptable.
 | 
						|
    // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or
 | 
						|
    // `std::int64_t` type arguments are acceptable.
 | 
						|
    inline double max(const double a, const float b)
 | 
						|
    {
 | 
						|
        return sycl::fmax(a, static_cast<double>(b));
 | 
						|
    }
 | 
						|
    inline double max(const float a, const double b)
 | 
						|
    {
 | 
						|
        return sycl::fmax(static_cast<double>(a), b);
 | 
						|
    }
 | 
						|
    inline float max(const float a, const float b) { return sycl::fmax(a, b); }
 | 
						|
    inline double max(const double a, const double b) { return sycl::fmax(a, b); }
 | 
						|
    inline std::uint32_t max(const std::uint32_t a, const std::int32_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(a, static_cast<std::uint32_t>(b));
 | 
						|
    }
 | 
						|
    inline std::uint32_t max(const std::int32_t a, const std::uint32_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(static_cast<std::uint32_t>(a), b);
 | 
						|
    }
 | 
						|
    inline std::int32_t max(const std::int32_t a, const std::int32_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(a, b);
 | 
						|
    }
 | 
						|
    inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(a, b);
 | 
						|
    }
 | 
						|
    inline std::uint64_t max(const std::uint64_t a, const std::int64_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(a, static_cast<std::uint64_t>(b));
 | 
						|
    }
 | 
						|
    inline std::uint64_t max(const std::int64_t a, const std::uint64_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(static_cast<std::uint64_t>(a), b);
 | 
						|
    }
 | 
						|
    inline std::int64_t max(const std::int64_t a, const std::int64_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(a, b);
 | 
						|
    }
 | 
						|
    inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(a, b);
 | 
						|
    }
 | 
						|
    inline std::uint64_t max(const std::uint64_t a, const std::int32_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(a, static_cast<std::uint64_t>(b));
 | 
						|
    }
 | 
						|
    inline std::uint64_t max(const std::int32_t a, const std::uint64_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(static_cast<std::uint64_t>(a), b);
 | 
						|
    }
 | 
						|
    inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(a, static_cast<std::uint64_t>(b));
 | 
						|
    }
 | 
						|
    inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b)
 | 
						|
    {
 | 
						|
        return sycl::max(static_cast<std::uint64_t>(a), b);
 | 
						|
    }
 | 
						|
 | 
						|
    inline void
 | 
						|
    has_capability_or_fail(const sycl::device &dev,
 | 
						|
                           const std::initializer_list<sycl::aspect> &props)
 | 
						|
    {
 | 
						|
        for (const auto &it : props)
 | 
						|
        {
 | 
						|
            if (dev.has(it))
 | 
						|
                continue;
 | 
						|
            switch (it)
 | 
						|
            {
 | 
						|
            case sycl::aspect::fp64:
 | 
						|
                throw std::runtime_error("'double' is not supported in '" +
 | 
						|
                                         dev.get_info<sycl::info::device::name>() +
 | 
						|
                                         "' device");
 | 
						|
                break;
 | 
						|
            case sycl::aspect::fp16:
 | 
						|
                throw std::runtime_error("'half' is not supported in '" +
 | 
						|
                                         dev.get_info<sycl::info::device::name>() +
 | 
						|
                                         "' device");
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
#define __SYCL_ASPECT(ASPECT, ID) \
 | 
						|
    case sycl::aspect::ASPECT:    \
 | 
						|
        return #ASPECT;
 | 
						|
#define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
 | 
						|
#define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
 | 
						|
                auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string
 | 
						|
                {
 | 
						|
                    switch (AspectNum)
 | 
						|
                    {
 | 
						|
#include <sycl/info/aspects.def>
 | 
						|
#include <sycl/info/aspects_deprecated.def>
 | 
						|
                    default:
 | 
						|
                        return "unknown aspect";
 | 
						|
                    }
 | 
						|
                };
 | 
						|
#undef __SYCL_ASPECT_DEPRECATED_ALIAS
 | 
						|
#undef __SYCL_ASPECT_DEPRECATED
 | 
						|
#undef __SYCL_ASPECT
 | 
						|
                throw std::runtime_error(
 | 
						|
                    "'" + getAspectNameStr(it) + "' is not supported in '" +
 | 
						|
                    dev.get_info<sycl::info::device::name>() + "' device");
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    static inline unsigned int get_current_device_id()
 | 
						|
    {
 | 
						|
        return dev_mgr::instance().current_device_id();
 | 
						|
    }
 | 
						|
 | 
						|
    static inline device_ext &get_current_device()
 | 
						|
    {
 | 
						|
        return dev_mgr::instance().current_device();
 | 
						|
    }
 | 
						|
 | 
						|
    static inline sycl::queue &get_in_order_queue()
 | 
						|
    {
 | 
						|
        return dev_mgr::instance().current_device().in_order_queue();
 | 
						|
    }
 | 
						|
 | 
						|
    static sycl::event
 | 
						|
    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
 | 
						|
                memcpy_direction direction,
 | 
						|
                const std::vector<sycl::event> &dep_events = {})
 | 
						|
    {
 | 
						|
        if (!size)
 | 
						|
            return sycl::event{};
 | 
						|
        return q.memcpy(to_ptr, from_ptr, size, dep_events);
 | 
						|
        GGML_UNUSED(direction);
 | 
						|
    }
 | 
						|
 | 
						|
    // Get actual copy range and make sure it will not exceed range.
 | 
						|
    static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
 | 
						|
                                        size_t pitch)
 | 
						|
    {
 | 
						|
        return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
 | 
						|
    }
 | 
						|
 | 
						|
    static inline size_t get_offset(sycl::id<3> id, size_t slice,
 | 
						|
                                    size_t pitch)
 | 
						|
    {
 | 
						|
        return slice * id.get(2) + pitch * id.get(1) + id.get(0);
 | 
						|
    }
 | 
						|
 | 
						|
    /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
 | 
						|
    /// and \p from_range to another specified by \p to_ptr and \p to_range.
 | 
						|
    static inline std::vector<sycl::event>
 | 
						|
    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
 | 
						|
                sycl::range<3> to_range, sycl::range<3> from_range,
 | 
						|
                sycl::id<3> to_id, sycl::id<3> from_id,
 | 
						|
                sycl::range<3> size, memcpy_direction direction,
 | 
						|
                const std::vector<sycl::event> &dep_events = {})
 | 
						|
    {
 | 
						|
        // RAII for host pointer
 | 
						|
        class host_buffer
 | 
						|
        {
 | 
						|
            void *_buf;
 | 
						|
            size_t _size;
 | 
						|
            sycl::queue &_q;
 | 
						|
            const std::vector<sycl::event> &_deps; // free operation depends
 | 
						|
 | 
						|
        public:
 | 
						|
            host_buffer(size_t size, sycl::queue &q,
 | 
						|
                        const std::vector<sycl::event> &deps)
 | 
						|
                : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
 | 
						|
            void *get_ptr() const { return _buf; }
 | 
						|
            size_t get_size() const { return _size; }
 | 
						|
            ~host_buffer()
 | 
						|
            {
 | 
						|
                if (_buf)
 | 
						|
                {
 | 
						|
                    _q.submit([&](sycl::handler &cgh)
 | 
						|
                              {
 | 
						|
            cgh.depends_on(_deps);
 | 
						|
            cgh.host_task([buf = _buf] { std::free(buf); }); });
 | 
						|
                }
 | 
						|
            }
 | 
						|
        };
 | 
						|
        std::vector<sycl::event> event_list;
 | 
						|
 | 
						|
        size_t to_slice = to_range.get(1) * to_range.get(0),
 | 
						|
               from_slice = from_range.get(1) * from_range.get(0);
 | 
						|
        unsigned char *to_surface =
 | 
						|
            (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
 | 
						|
        const unsigned char *from_surface =
 | 
						|
            (const unsigned char *)from_ptr +
 | 
						|
            get_offset(from_id, from_slice, from_range.get(0));
 | 
						|
 | 
						|
        if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
 | 
						|
        {
 | 
						|
            return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
 | 
						|
                                direction, dep_events)};
 | 
						|
        }
 | 
						|
        direction = detail::deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
 | 
						|
        size_t size_slice = size.get(1) * size.get(0);
 | 
						|
        switch (direction)
 | 
						|
        {
 | 
						|
        case host_to_host:
 | 
						|
            for (size_t z = 0; z < size.get(2); ++z)
 | 
						|
            {
 | 
						|
                unsigned char *to_ptr = to_surface;
 | 
						|
                const unsigned char *from_ptr = from_surface;
 | 
						|
                if (to_range.get(0) == from_range.get(0) &&
 | 
						|
                    to_range.get(0) == size.get(0))
 | 
						|
                {
 | 
						|
                    event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
 | 
						|
                                                     direction, dep_events));
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    for (size_t y = 0; y < size.get(1); ++y)
 | 
						|
                    {
 | 
						|
                        event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
 | 
						|
                                                         direction, dep_events));
 | 
						|
                        to_ptr += to_range.get(0);
 | 
						|
                        from_ptr += from_range.get(0);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                to_surface += to_slice;
 | 
						|
                from_surface += from_slice;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case host_to_device:
 | 
						|
        {
 | 
						|
            host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
 | 
						|
                            event_list);
 | 
						|
            std::vector<sycl::event> host_events;
 | 
						|
            if (to_slice == size_slice)
 | 
						|
            {
 | 
						|
                // Copy host data to a temp host buffer with the shape of target.
 | 
						|
                host_events =
 | 
						|
                    dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
 | 
						|
                                sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
 | 
						|
                                host_to_host, dep_events);
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // Copy host data to a temp host buffer with the shape of target.
 | 
						|
                host_events = dpct_memcpy(
 | 
						|
                    q, buf.get_ptr(), from_surface, to_range, from_range,
 | 
						|
                    sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
 | 
						|
                    // If has padding data, not sure whether it is useless. So fill temp
 | 
						|
                    // buffer with it.
 | 
						|
                    std::vector<sycl::event>{
 | 
						|
                        dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
 | 
						|
                                    device_to_host, dep_events)});
 | 
						|
            }
 | 
						|
            // Copy from temp host buffer to device with only one submit.
 | 
						|
            event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
 | 
						|
                                             buf.get_size(), host_to_device,
 | 
						|
                                             host_events));
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case device_to_host:
 | 
						|
        {
 | 
						|
            host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
 | 
						|
                            event_list);
 | 
						|
            // Copy from host temp buffer to host target with reshaping.
 | 
						|
            event_list = dpct_memcpy(
 | 
						|
                q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
 | 
						|
                sycl::id<3>(0, 0, 0), size, host_to_host,
 | 
						|
                // Copy from device to temp host buffer with only one submit.
 | 
						|
                std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
 | 
						|
                                                     buf.get_size(),
 | 
						|
                                                     device_to_host, dep_events)});
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case device_to_device:
 | 
						|
            event_list.push_back(q.submit([&](sycl::handler &cgh)
 | 
						|
                                          {
 | 
						|
        cgh.depends_on(dep_events);
 | 
						|
        cgh.parallel_for<class dpct_memcpy_3d_detail>(
 | 
						|
            size,
 | 
						|
            [=](sycl::id<3> id) {
 | 
						|
                to_surface[get_offset(id, to_slice, to_range.get(0))] =
 | 
						|
                    from_surface[get_offset(id, from_slice, from_range.get(0))];
 | 
						|
            }); }));
 | 
						|
        break;
 | 
						|
        default:
 | 
						|
            throw std::runtime_error("dpct_memcpy: invalid direction value");
 | 
						|
        }
 | 
						|
        return event_list;
 | 
						|
    }
 | 
						|
 | 
						|
    /// memcpy 2D/3D matrix specified by pitched_data.
 | 
						|
    static inline std::vector<sycl::event>
 | 
						|
    dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
 | 
						|
                pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
 | 
						|
                memcpy_direction direction = automatic)
 | 
						|
    {
 | 
						|
        return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
 | 
						|
                           sycl::range<3>(to.get_pitch(), to.get_y(), 1),
 | 
						|
                           sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
 | 
						|
                           size, direction);
 | 
						|
    }
 | 
						|
 | 
						|
    /// memcpy 2D matrix with pitch.
 | 
						|
    static inline std::vector<sycl::event>
 | 
						|
    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
 | 
						|
                size_t to_pitch, size_t from_pitch, size_t x, size_t y,
 | 
						|
                memcpy_direction direction = automatic)
 | 
						|
    {
 | 
						|
        return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
 | 
						|
                           sycl::range<3>(from_pitch, y, 1),
 | 
						|
                           sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
 | 
						|
                           sycl::range<3>(x, y, 1), direction);
 | 
						|
    }
 | 
						|
 | 
						|
    inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | 
						|
                     oneapi::mkl::transpose b_trans, int m, int n, int k,
 | 
						|
                     const void *alpha, const void *a, library_data_t a_type,
 | 
						|
                     int lda, const void *b, library_data_t b_type, int ldb,
 | 
						|
                     const void *beta, void *c, library_data_t c_type, int ldc,
 | 
						|
                     library_data_t scaling_type)
 | 
						|
    {
 | 
						|
        if (scaling_type == library_data_t::real_float &&
 | 
						|
            c_type == library_data_t::complex_float)
 | 
						|
        {
 | 
						|
            scaling_type = library_data_t::complex_float;
 | 
						|
        }
 | 
						|
        else if (scaling_type == library_data_t::real_double &&
 | 
						|
                 c_type == library_data_t::complex_double)
 | 
						|
        {
 | 
						|
            scaling_type = library_data_t::complex_double;
 | 
						|
        }
 | 
						|
 | 
						|
        std::uint64_t key =
 | 
						|
            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
 | 
						|
        switch (key)
 | 
						|
        {
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_float, library_data_t::real_float,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<float, float, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_double, library_data_t::real_double,
 | 
						|
            library_data_t::real_double, library_data_t::real_double):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<double, double, double, double>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::complex_float, library_data_t::complex_float,
 | 
						|
            library_data_t::complex_float, library_data_t::complex_float):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<std::complex<float>, std::complex<float>,
 | 
						|
                              std::complex<float>, std::complex<float>>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::complex_double, library_data_t::complex_double,
 | 
						|
            library_data_t::complex_double, library_data_t::complex_double):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<std::complex<double>, std::complex<double>,
 | 
						|
                              std::complex<double>, std::complex<double>>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_half, library_data_t::real_half):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<sycl::half, sycl::half, sycl::half,
 | 
						|
                              sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a,
 | 
						|
                                          lda, b, ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
#ifdef __INTEL_MKL__
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
 | 
						|
                              float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
 | 
						|
                                     ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<sycl::half, sycl::half, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_half, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            float alpha_value =
 | 
						|
                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
 | 
						|
            float beta_value =
 | 
						|
                dpct::get_value(reinterpret_cast<const float *>(beta), q);
 | 
						|
            sycl::half alpha_half(alpha_value);
 | 
						|
            sycl::half beta_half(beta_value);
 | 
						|
            detail::gemm_impl<sycl::half, sycl::half, sycl::half,
 | 
						|
                              sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half,
 | 
						|
                                          a, lda, b, ldb, &beta_half, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_int8, library_data_t::real_int8,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<std::int8_t, std::int8_t, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
 | 
						|
                              oneapi::mkl::bfloat16, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_int8, library_data_t::real_int8,
 | 
						|
            library_data_t::real_int32, library_data_t::real_int32):
 | 
						|
        {
 | 
						|
            float alpha_float =
 | 
						|
                dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
 | 
						|
            float beta_float =
 | 
						|
                dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
 | 
						|
            detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
#endif // __INTEL_MKL__
 | 
						|
        default:
 | 
						|
            throw std::runtime_error("the combination of data type is unsupported");
 | 
						|
        }
 | 
						|
    } // gemm()
 | 
						|
 | 
						|
    /// Computes a batch of matrix-matrix product with general matrices.
 | 
						|
    /// \param [in] q The queue where the routine should be executed.
 | 
						|
    /// \param [in] a_trans Specifies the operation applied to A.
 | 
						|
    /// \param [in] b_trans Specifies the operation applied to B.
 | 
						|
    /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
 | 
						|
    /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
 | 
						|
    /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
 | 
						|
    /// \param [in] alpha Scaling factor for the matrix-matrix product.
 | 
						|
    /// \param [in] a Input matrix A.
 | 
						|
    /// \param [in] a_type Data type of the matrix A.
 | 
						|
    /// \param [in] lda Leading dimension of A.
 | 
						|
    /// \param [in] b Input matrix B.
 | 
						|
    /// \param [in] b_type Data type of the matrix B.
 | 
						|
    /// \param [in] ldb Leading dimension of B.
 | 
						|
    /// \param [in] beta Scaling factor for matrix C.
 | 
						|
    /// \param [in, out] c Input/Output matrix C.
 | 
						|
    /// \param [in] c_type Data type of the matrix C.
 | 
						|
    /// \param [in] ldc Leading dimension of C.
 | 
						|
    /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
 | 
						|
    /// \param [in] scaling_type Data type of the scaling factors.
 | 
						|
    inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | 
						|
                           oneapi::mkl::transpose b_trans, int m, int n, int k,
 | 
						|
                           const void *alpha, const void *a[],
 | 
						|
                           library_data_t a_type, int lda, const void *b[],
 | 
						|
                           library_data_t b_type, int ldb, const void *beta,
 | 
						|
                           void *c[], library_data_t c_type, int ldc,
 | 
						|
                           int batch_size, library_data_t scaling_type)
 | 
						|
    {
 | 
						|
        if (scaling_type == library_data_t::real_float &&
 | 
						|
            c_type == library_data_t::complex_float)
 | 
						|
        {
 | 
						|
            scaling_type = library_data_t::complex_float;
 | 
						|
        }
 | 
						|
        else if (scaling_type == library_data_t::real_double &&
 | 
						|
                 c_type == library_data_t::complex_double)
 | 
						|
        {
 | 
						|
            scaling_type = library_data_t::complex_double;
 | 
						|
        }
 | 
						|
 | 
						|
        std::uint64_t key =
 | 
						|
            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
 | 
						|
        switch (key)
 | 
						|
        {
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_float, library_data_t::real_float,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<float, float, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | 
						|
                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_double, library_data_t::real_double,
 | 
						|
            library_data_t::real_double, library_data_t::real_double):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<double, double, double, double>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | 
						|
                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::complex_float, library_data_t::complex_float,
 | 
						|
            library_data_t::complex_float, library_data_t::complex_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
 | 
						|
                                    std::complex<float>, std::complex<float>>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | 
						|
                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::complex_double, library_data_t::complex_double,
 | 
						|
            library_data_t::complex_double, library_data_t::complex_double):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
 | 
						|
                                    std::complex<double>, std::complex<double>>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | 
						|
                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_half, library_data_t::real_half):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
 | 
						|
                                    sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
 | 
						|
                                                a, lda, b, ldb, beta, c, ldc,
 | 
						|
                                                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
#ifdef __INTEL_MKL__
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
 | 
						|
                                    oneapi::mkl::bfloat16, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | 
						|
                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
 | 
						|
                                    float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
 | 
						|
                                           b, ldb, beta, c, ldc, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_int8, library_data_t::real_int8,
 | 
						|
            library_data_t::real_int32, library_data_t::real_int32):
 | 
						|
        {
 | 
						|
            float alpha_float =
 | 
						|
                dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
 | 
						|
            float beta_float =
 | 
						|
                dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
 | 
						|
            detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
 | 
						|
                                    float>(q, a_trans, b_trans, m, n, k, &alpha_float,
 | 
						|
                                           a, lda, b, ldb, &beta_float, c, ldc,
 | 
						|
                                           batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_int8, library_data_t::real_int8,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | 
						|
                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | 
						|
                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_half, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            float alpha_value =
 | 
						|
                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
 | 
						|
            float beta_value =
 | 
						|
                dpct::get_value(reinterpret_cast<const float *>(beta), q);
 | 
						|
            sycl::half alpha_half(alpha_value);
 | 
						|
            sycl::half beta_half(beta_value);
 | 
						|
            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
 | 
						|
                q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
 | 
						|
                batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        default:
 | 
						|
            throw std::runtime_error("the combination of data type is unsupported");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Computes a batch of matrix-matrix product with general matrices.
 | 
						|
    /// \param [in] q The queue where the routine should be executed.
 | 
						|
    /// \param [in] a_trans Specifies the operation applied to A.
 | 
						|
    /// \param [in] b_trans Specifies the operation applied to B.
 | 
						|
    /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
 | 
						|
    /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
 | 
						|
    /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
 | 
						|
    /// \param [in] alpha Scaling factor for the matrix-matrix product.
 | 
						|
    /// \param [in] a Input matrix A.
 | 
						|
    /// \param [in] a_type Data type of the matrix A.
 | 
						|
    /// \param [in] lda Leading dimension of A.
 | 
						|
    /// \param [in] stride_a Stride between the different A matrices.
 | 
						|
    /// \param [in] b Input matrix B.
 | 
						|
    /// \param [in] b_type Data type of the matrix B.
 | 
						|
    /// \param [in] ldb Leading dimension of B.
 | 
						|
    /// \param [in] stride_b Stride between the different B matrices.
 | 
						|
    /// \param [in] beta Scaling factor for matrix C.
 | 
						|
    /// \param [in, out] c Input/Output matrix C.
 | 
						|
    /// \param [in] c_type Data type of the matrix C.
 | 
						|
    /// \param [in] ldc Leading dimension of C.
 | 
						|
    /// \param [in] stride_c Stride between the different C matrices.
 | 
						|
    /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
 | 
						|
    /// \param [in] scaling_type Data type of the scaling factors.
 | 
						|
    inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | 
						|
                           oneapi::mkl::transpose b_trans, int m, int n, int k,
 | 
						|
                           const void *alpha, const void *a, library_data_t a_type,
 | 
						|
                           int lda, long long int stride_a, const void *b,
 | 
						|
                           library_data_t b_type, int ldb, long long int stride_b,
 | 
						|
                           const void *beta, void *c, library_data_t c_type,
 | 
						|
                           int ldc, long long int stride_c, int batch_size,
 | 
						|
                           library_data_t scaling_type)
 | 
						|
    {
 | 
						|
        if (scaling_type == library_data_t::real_float &&
 | 
						|
            c_type == library_data_t::complex_float)
 | 
						|
        {
 | 
						|
            scaling_type = library_data_t::complex_float;
 | 
						|
        }
 | 
						|
        else if (scaling_type == library_data_t::real_double &&
 | 
						|
                 c_type == library_data_t::complex_double)
 | 
						|
        {
 | 
						|
            scaling_type = library_data_t::complex_double;
 | 
						|
        }
 | 
						|
 | 
						|
        std::uint64_t key =
 | 
						|
            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
 | 
						|
        switch (key)
 | 
						|
        {
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_float, library_data_t::real_float,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<float, float, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_double, library_data_t::real_double,
 | 
						|
            library_data_t::real_double, library_data_t::real_double):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<double, double, double, double>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::complex_float, library_data_t::complex_float,
 | 
						|
            library_data_t::complex_float, library_data_t::complex_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
 | 
						|
                                    std::complex<float>, std::complex<float>>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::complex_double, library_data_t::complex_double,
 | 
						|
            library_data_t::complex_double, library_data_t::complex_double):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
 | 
						|
                                    std::complex<double>, std::complex<double>>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_half, library_data_t::real_half):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
 | 
						|
                                    sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
 | 
						|
                                                a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                                                beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
#ifdef __INTEL_MKL__
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
 | 
						|
                                    oneapi::mkl::bfloat16, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
 | 
						|
                                    float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
 | 
						|
                                           stride_a, b, ldb, stride_b, beta, c, ldc,
 | 
						|
                                           stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_int8, library_data_t::real_int8,
 | 
						|
            library_data_t::real_int32, library_data_t::real_int32):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
 | 
						|
                                    std::int32_t>(q, a_trans, b_trans, m, n, k, alpha,
 | 
						|
                                                  a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                                                  beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_int8, library_data_t::real_int8,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_float, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
 | 
						|
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                beta, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        case detail::get_type_combination_id(
 | 
						|
            library_data_t::real_half, library_data_t::real_half,
 | 
						|
            library_data_t::real_half, library_data_t::real_float):
 | 
						|
        {
 | 
						|
            float alpha_value =
 | 
						|
                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
 | 
						|
            float beta_value =
 | 
						|
                dpct::get_value(reinterpret_cast<const float *>(beta), q);
 | 
						|
            sycl::half alpha_half(alpha_value);
 | 
						|
            sycl::half beta_half(beta_value);
 | 
						|
            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
 | 
						|
                q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b,
 | 
						|
                &beta_half, c, ldc, stride_c, batch_size);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        default:
 | 
						|
            throw std::runtime_error("the combination of data type is unsupported");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    static inline void
 | 
						|
    async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr,
 | 
						|
                      size_t from_pitch, size_t x, size_t y,
 | 
						|
                      memcpy_direction direction = automatic,
 | 
						|
                      sycl::queue &q = get_default_queue())
 | 
						|
    {
 | 
						|
        detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y,
 | 
						|
                            direction);
 | 
						|
    }
 | 
						|
 | 
						|
    using err0 = detail::generic_error_type<struct err0_tag, int>;
 | 
						|
    using err1 = detail::generic_error_type<struct err1_tag, int>;
 | 
						|
 | 
						|
    static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) {
 | 
						|
        detail::dpct_free(ptr, q);
 | 
						|
    }
 | 
						|
 | 
						|
    /// dpct accessor used as device function parameter.
 | 
						|
    template <class T, memory_region Memory, size_t Dimension> class accessor;
 | 
						|
    template <class T, memory_region Memory> class accessor<T, Memory, 3> {
 | 
						|
    public:
 | 
						|
        using memory_t = detail::memory_traits<Memory, T>;
 | 
						|
        using element_t = typename memory_t::element_t;
 | 
						|
        using pointer_t = typename memory_t::pointer_t;
 | 
						|
        using accessor_t = typename memory_t::template accessor_t<3>;
 | 
						|
        accessor(pointer_t data, const sycl::range<3> &in_range)
 | 
						|
            : _data(data), _range(in_range) {}
 | 
						|
        template <memory_region M = Memory>
 | 
						|
        accessor(typename std::enable_if<M != local, const accessor_t>::type &acc)
 | 
						|
            : accessor(acc, acc.get_range()) {}
 | 
						|
        accessor(const accessor_t &acc, const sycl::range<3> &in_range)
 | 
						|
            : accessor(acc.get_pointer(), in_range) {}
 | 
						|
        accessor<T, Memory, 2> operator[](size_t index) const {
 | 
						|
            sycl::range<2> sub(_range.get(1), _range.get(2));
 | 
						|
            return accessor<T, Memory, 2>(_data + index * sub.size(), sub);
 | 
						|
        }
 | 
						|
 | 
						|
        pointer_t get_ptr() const { return _data; }
 | 
						|
 | 
						|
    private:
 | 
						|
        pointer_t _data;
 | 
						|
        sycl::range<3> _range;
 | 
						|
    };
 | 
						|
    template <class T, memory_region Memory> class accessor<T, Memory, 2> {
 | 
						|
    public:
 | 
						|
        using memory_t = detail::memory_traits<Memory, T>;
 | 
						|
        using element_t = typename memory_t::element_t;
 | 
						|
        using pointer_t = typename memory_t::pointer_t;
 | 
						|
        using accessor_t = typename memory_t::template accessor_t<2>;
 | 
						|
        accessor(pointer_t data, const sycl::range<2> &in_range)
 | 
						|
            : _data(data), _range(in_range) {}
 | 
						|
        template <memory_region M = Memory>
 | 
						|
        accessor(typename std::enable_if<M != local, const accessor_t>::type &acc)
 | 
						|
            : accessor(acc, acc.get_range()) {}
 | 
						|
        accessor(const accessor_t &acc, const sycl::range<2> &in_range)
 | 
						|
            : accessor(acc.get_pointer(), in_range) {}
 | 
						|
 | 
						|
        pointer_t operator[](size_t index) const {
 | 
						|
            return _data + _range.get(1) * index;
 | 
						|
        }
 | 
						|
 | 
						|
        pointer_t get_ptr() const { return _data; }
 | 
						|
 | 
						|
    private:
 | 
						|
        pointer_t _data;
 | 
						|
        sycl::range<2> _range;
 | 
						|
    };
 | 
						|
 | 
						|
    namespace detail {
 | 
						|
        /// Device variable with address space of shared, global or constant.
 | 
						|
        template <class T, memory_region Memory, size_t Dimension> class device_memory {
 | 
						|
        public:
 | 
						|
            using accessor_t =
 | 
						|
                typename detail::memory_traits<Memory,
 | 
						|
                                            T>::template accessor_t<Dimension>;
 | 
						|
            using value_t = typename detail::memory_traits<Memory, T>::value_t;
 | 
						|
            using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>;
 | 
						|
 | 
						|
            device_memory() : device_memory(sycl::range<Dimension>(1)) {}
 | 
						|
 | 
						|
            /// Constructor of 1-D array with initializer list
 | 
						|
            device_memory(const sycl::range<Dimension> &in_range,
 | 
						|
                        std::initializer_list<value_t> &&init_list)
 | 
						|
                : device_memory(in_range) {
 | 
						|
                assert(init_list.size() <= in_range.size());
 | 
						|
                _host_ptr = (value_t *)std::malloc(_size);
 | 
						|
                std::memset(_host_ptr, 0, _size);
 | 
						|
                std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T));
 | 
						|
            }
 | 
						|
 | 
						|
            /// Constructor of 2-D array with initializer list
 | 
						|
            template <size_t D = Dimension>
 | 
						|
            device_memory(
 | 
						|
                const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range,
 | 
						|
                std::initializer_list<std::initializer_list<value_t>> &&init_list)
 | 
						|
                : device_memory(in_range) {
 | 
						|
                assert(init_list.size() <= in_range[0]);
 | 
						|
                _host_ptr = (value_t *)std::malloc(_size);
 | 
						|
                std::memset(_host_ptr, 0, _size);
 | 
						|
                auto tmp_data = _host_ptr;
 | 
						|
                for (auto sub_list : init_list) {
 | 
						|
                    assert(sub_list.size() <= in_range[1]);
 | 
						|
                    std::memcpy(tmp_data, sub_list.begin(),
 | 
						|
                                sub_list.size() * sizeof(T));
 | 
						|
                    tmp_data += in_range[1];
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            /// Constructor with range
 | 
						|
            device_memory(const sycl::range<Dimension> &range_in)
 | 
						|
                : _size(range_in.size() * sizeof(T)), _range(range_in),
 | 
						|
                _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) {
 | 
						|
                static_assert(
 | 
						|
                    (Memory == global) || (Memory == constant) || (Memory == shared),
 | 
						|
                    "device memory region should be global, constant or shared");
 | 
						|
                // Make sure that singleton class mem_mgr and dev_mgr will destruct
 | 
						|
                // later than this.
 | 
						|
                detail::mem_mgr::instance();
 | 
						|
                dev_mgr::instance();
 | 
						|
            }
 | 
						|
 | 
						|
            /// Constructor with range
 | 
						|
            template <class... Args>
 | 
						|
            device_memory(Args... Arguments)
 | 
						|
                : device_memory(sycl::range<Dimension>(Arguments...)) {}
 | 
						|
 | 
						|
            ~device_memory() {
 | 
						|
                if (_device_ptr && !_reference)
 | 
						|
                    dpct::dpct_free(_device_ptr);
 | 
						|
                if (_host_ptr)
 | 
						|
                    std::free(_host_ptr);
 | 
						|
            }
 | 
						|
 | 
						|
            /// Allocate memory with default queue, and init memory if has initial
 | 
						|
            /// value.
 | 
						|
            void init() { init(dpct::get_default_queue()); }
 | 
						|
            /// Allocate memory with specified queue, and init memory if has initial
 | 
						|
            /// value.
 | 
						|
            void init(sycl::queue &q) {
 | 
						|
                if (_device_ptr)
 | 
						|
                    return;
 | 
						|
                if (!_size)
 | 
						|
                    return;
 | 
						|
                allocate_device(q);
 | 
						|
                if (_host_ptr)
 | 
						|
                    detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size,
 | 
						|
                                        host_to_device);
 | 
						|
            }
 | 
						|
 | 
						|
            /// The variable is assigned to a device pointer.
 | 
						|
            void assign(value_t *src, size_t size) {
 | 
						|
                this->~device_memory();
 | 
						|
                new (this) device_memory(src, size);
 | 
						|
            }
 | 
						|
 | 
						|
            /// Get memory pointer of the memory object, which is virtual pointer when
 | 
						|
            /// usm is not used, and device pointer when usm is used.
 | 
						|
            value_t *get_ptr() { return get_ptr(get_default_queue()); }
 | 
						|
            /// Get memory pointer of the memory object, which is virtual pointer when
 | 
						|
            /// usm is not used, and device pointer when usm is used.
 | 
						|
            value_t *get_ptr(sycl::queue &q) {
 | 
						|
                init(q);
 | 
						|
                return _device_ptr;
 | 
						|
            }
 | 
						|
 | 
						|
            /// Get the device memory object size in bytes.
 | 
						|
            size_t get_size() { return _size; }
 | 
						|
 | 
						|
            template <size_t D = Dimension>
 | 
						|
            typename std::enable_if<D == 1, T>::type &operator[](size_t index) {
 | 
						|
                init();
 | 
						|
                return _device_ptr[index];
 | 
						|
            }
 | 
						|
 | 
						|
            /// Get dpct::accessor with dimension info for the device memory object
 | 
						|
            /// when usm is used and dimension is greater than 1.
 | 
						|
            template <size_t D = Dimension>
 | 
						|
            typename std::enable_if<D != 1, dpct_accessor_t>::type
 | 
						|
            get_access([[maybe_unused]] sycl::handler &cgh) {
 | 
						|
                return dpct_accessor_t((T *)_device_ptr, _range);
 | 
						|
            }
 | 
						|
 | 
						|
        private:
 | 
						|
            device_memory(value_t *memory_ptr, size_t size)
 | 
						|
                : _size(size), _range(size / sizeof(T)), _reference(true),
 | 
						|
                _device_ptr(memory_ptr) {}
 | 
						|
 | 
						|
            void allocate_device(sycl::queue &q) {
 | 
						|
        #ifndef DPCT_USM_LEVEL_NONE
 | 
						|
                if (Memory == shared) {
 | 
						|
                    _device_ptr = (value_t *)sycl::malloc_shared(_size, q.get_device(),
 | 
						|
                                                                q.get_context());
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
        #ifdef SYCL_EXT_ONEAPI_USM_DEVICE_READ_ONLY
 | 
						|
                if (Memory == constant) {
 | 
						|
                    _device_ptr = (value_t *)sycl::malloc_device(
 | 
						|
                        _size, q.get_device(), q.get_context(),
 | 
						|
                        sycl::ext::oneapi::property::usm::device_read_only());
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
        #endif
 | 
						|
        #endif
 | 
						|
                _device_ptr = (value_t *)detail::dpct_malloc(_size, q);
 | 
						|
            }
 | 
						|
 | 
						|
            size_t _size;
 | 
						|
            sycl::range<Dimension> _range;
 | 
						|
            bool _reference;
 | 
						|
            value_t *_host_ptr;
 | 
						|
            value_t *_device_ptr;
 | 
						|
        };
 | 
						|
        template <class T, memory_region Memory>
 | 
						|
        class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> {
 | 
						|
        public:
 | 
						|
            using base = device_memory<T, Memory, 1>;
 | 
						|
            using value_t = typename base::value_t;
 | 
						|
            using accessor_t =
 | 
						|
                typename detail::memory_traits<Memory, T>::template accessor_t<0>;
 | 
						|
 | 
						|
            /// Constructor with initial value.
 | 
						|
            device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {}
 | 
						|
 | 
						|
            /// Default constructor
 | 
						|
            device_memory() : base(1) {}
 | 
						|
        };
 | 
						|
        } // namespace detail
 | 
						|
 | 
						|
    template <class T, size_t Dimension>
 | 
						|
    using global_memory = detail::device_memory<T, global, Dimension>;
 | 
						|
    template <class T, size_t Dimension>
 | 
						|
    using constant_memory = detail::device_memory<T, constant, Dimension>;
 | 
						|
    template <class T, size_t Dimension>
 | 
						|
    using shared_memory = detail::device_memory<T, shared, Dimension>;
 | 
						|
 | 
						|
 | 
						|
    template <typename T,
 | 
						|
            sycl::access::address_space addressSpace =
 | 
						|
                sycl::access::address_space::global_space,
 | 
						|
            sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
 | 
						|
            sycl::memory_scope memoryScope = sycl::memory_scope::device>
 | 
						|
    inline T atomic_fetch_add(T *addr, T operand) {
 | 
						|
    auto atm =
 | 
						|
        sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]);
 | 
						|
    return atm.fetch_add(operand);
 | 
						|
    }
 | 
						|
 | 
						|
    template <sycl::access::address_space addressSpace =
 | 
						|
                sycl::access::address_space::global_space,
 | 
						|
            sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
 | 
						|
            sycl::memory_scope memoryScope = sycl::memory_scope::device,
 | 
						|
            typename T1, typename T2>
 | 
						|
    inline T1 atomic_fetch_add(T1 *addr, T2 operand) {
 | 
						|
    auto atm =
 | 
						|
        sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]);
 | 
						|
    return atm.fetch_add(operand);
 | 
						|
    }
 | 
						|
 | 
						|
    template <typename T, sycl::access::address_space addressSpace =
 | 
						|
                            sycl::access::address_space::global_space>
 | 
						|
    inline T atomic_fetch_add(T *addr, T operand,
 | 
						|
                            sycl::memory_order memoryOrder) {
 | 
						|
    switch (memoryOrder) {
 | 
						|
        case sycl::memory_order::relaxed:
 | 
						|
            return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed,
 | 
						|
                                    sycl::memory_scope::device>(addr, operand);
 | 
						|
        case sycl::memory_order::acq_rel:
 | 
						|
            return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel,
 | 
						|
                                    sycl::memory_scope::device>(addr, operand);
 | 
						|
        case sycl::memory_order::seq_cst:
 | 
						|
            return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst,
 | 
						|
                                    sycl::memory_scope::device>(addr, operand);
 | 
						|
        default:
 | 
						|
            assert(false && "Invalid memory_order for atomics. Valid memory_order for "
 | 
						|
                            "atomics are: sycl::memory_order::relaxed, "
 | 
						|
                            "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    template <sycl::access::address_space addressSpace =
 | 
						|
                sycl::access::address_space::global_space,
 | 
						|
            typename T1, typename T2>
 | 
						|
    inline T1 atomic_fetch_add(T1 *addr, T2 operand,
 | 
						|
                            sycl::memory_order memoryOrder) {
 | 
						|
    atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder);
 | 
						|
    }
 | 
						|
 | 
						|
} // COPY from DPCT head files
 | 
						|
 | 
						|
#endif // GGML_SYCL_DPCT_HELPER_HPP
 |