mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 6777c544bd
			
		
	
	6777c544bd
	
	
	
		
			
			* json: default additionalProperty to true * json: don't force additional props after normal properties! * json: allow space after enum/const * json: update pydantic example to set additionalProperties: false * json: prevent additional props to redefine a typed prop * port not_strings to python, add trailing space * fix not_strings & port to js+py * Update json-schema-to-grammar.cpp * fix _not_strings for substring overlaps * json: fix additionalProperties default, uncomment tests * json: add integ. test case for additionalProperties * json: nit: simplify condition * reformat grammar integ tests w/ R"""()""" strings where there's escapes * update # tokens in server test: consts can now have trailing space
		
			
				
	
	
		
			80 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Usage:
 | |
| #! ./llama-server -m some-model.gguf &
 | |
| #! pip install pydantic
 | |
| #! python json-schema-pydantic-example.py
 | |
| 
 | |
| from pydantic import BaseModel, Extra, TypeAdapter
 | |
| from annotated_types import MinLen
 | |
| from typing import Annotated, List, Optional
 | |
| import json, requests
 | |
| 
 | |
| if True:
 | |
| 
 | |
|     def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs):
 | |
|         '''
 | |
|         Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support
 | |
|         (llama.cpp server, llama-cpp-python, Anyscale / Together...)
 | |
| 
 | |
|         The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
 | |
|         '''
 | |
|         if response_model:
 | |
|             type_adapter = TypeAdapter(response_model)
 | |
|             schema = type_adapter.json_schema()
 | |
|             messages = [{
 | |
|                 "role": "system",
 | |
|                 "content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}"
 | |
|             }] + messages
 | |
|             response_format={"type": "json_object", "schema": schema}
 | |
| 
 | |
|         data = requests.post(endpoint, headers={"Content-Type": "application/json"},
 | |
|                              json=dict(messages=messages, response_format=response_format, **kwargs)).json()
 | |
|         if 'error' in data:
 | |
|             raise Exception(data['error']['message'])
 | |
| 
 | |
|         content = data["choices"][0]["message"]["content"]
 | |
|         return type_adapter.validate_json(content) if type_adapter else content
 | |
| 
 | |
| else:
 | |
| 
 | |
|     # This alternative branch uses Instructor + OpenAI client lib.
 | |
|     # Instructor support streamed iterable responses, retry & more.
 | |
|     # (see https://python.useinstructor.com/)
 | |
|     #! pip install instructor openai
 | |
|     import instructor, openai
 | |
|     client = instructor.patch(
 | |
|         openai.OpenAI(api_key="123", base_url="http://localhost:8080"),
 | |
|         mode=instructor.Mode.JSON_SCHEMA)
 | |
|     create_completion = client.chat.completions.create
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
| 
 | |
|     class QAPair(BaseModel):
 | |
|         class Config:
 | |
|             extra = 'forbid'  # triggers additionalProperties: false in the JSON schema
 | |
|         question: str
 | |
|         concise_answer: str
 | |
|         justification: str
 | |
|         stars: Annotated[int, Field(ge=1, le=5)]
 | |
| 
 | |
|     class PyramidalSummary(BaseModel):
 | |
|         class Config:
 | |
|             extra = 'forbid'  # triggers additionalProperties: false in the JSON schema
 | |
|         title: str
 | |
|         summary: str
 | |
|         question_answers: Annotated[List[QAPair], MinLen(2)]
 | |
|         sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]]
 | |
| 
 | |
|     print("# Summary\n", create_completion(
 | |
|         model="...",
 | |
|         response_model=PyramidalSummary,
 | |
|         messages=[{
 | |
|             "role": "user",
 | |
|             "content": f"""
 | |
|                 You are a highly efficient corporate document summarizer.
 | |
|                 Create a pyramidal summary of an imaginary internal document about our company processes
 | |
|                 (starting high-level, going down to each sub sections).
 | |
|                 Keep questions short, and answers even shorter (trivia / quizz style).
 | |
|             """
 | |
|         }]))
 |