mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-02 09:12:03 +00:00 
			
		
		
		
	* convert-hf-to-gguf-update: automate updating * convert-hf-to-gguf-update: improve download * share requests session for performance * create directories only when needed, don't skip downloads when empty directory encountered * be more graceful about errors
		
			
				
	
	
		
			326 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						||
 | 
						||
# This script downloads the tokenizer models of the specified models from Huggingface and
 | 
						||
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
 | 
						||
#
 | 
						||
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
 | 
						||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
 | 
						||
# the same pre-tokenizer.
 | 
						||
#
 | 
						||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
 | 
						||
#
 | 
						||
# Instructions:
 | 
						||
#
 | 
						||
# - Add a new model to the "models" list
 | 
						||
# - Run the script with your huggingface token:
 | 
						||
#
 | 
						||
#   python3 convert-hf-to-gguf-update.py <huggingface_token>
 | 
						||
#
 | 
						||
# - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py
 | 
						||
# - Update llama.cpp with the new pre-tokenizer if necessary
 | 
						||
#
 | 
						||
# TODO: generate tokenizer tests for llama.cpp
 | 
						||
#
 | 
						||
 | 
						||
import logging
 | 
						||
import os
 | 
						||
import pathlib
 | 
						||
import re
 | 
						||
 | 
						||
import requests
 | 
						||
import sys
 | 
						||
import json
 | 
						||
 | 
						||
from hashlib import sha256
 | 
						||
from enum import IntEnum, auto
 | 
						||
from transformers import AutoTokenizer
 | 
						||
 | 
						||
logging.basicConfig(level=logging.DEBUG)
 | 
						||
logger = logging.getLogger("convert-hf-to-gguf-update")
 | 
						||
sess = requests.Session()
 | 
						||
 | 
						||
 | 
						||
class TOKENIZER_TYPE(IntEnum):
 | 
						||
    SPM = auto()
 | 
						||
    BPE = auto()
 | 
						||
    WPM = auto()
 | 
						||
 | 
						||
 | 
						||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
 | 
						||
#       will be updated with time - contributions welcome
 | 
						||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n  \n   \n    \n     \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
 | 
						||
 | 
						||
if len(sys.argv) == 2:
 | 
						||
    token = sys.argv[1]
 | 
						||
    if not token.startswith("hf_"):
 | 
						||
        logger.info("Huggingface token seems invalid")
 | 
						||
        logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
 | 
						||
        sys.exit(1)
 | 
						||
else:
 | 
						||
    logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
 | 
						||
    sys.exit(1)
 | 
						||
 | 
						||
# TODO: add models here, base models preferred
 | 
						||
models = [
 | 
						||
    {"name": "llama-spm",      "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
 | 
						||
    {"name": "llama-bpe",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
 | 
						||
    {"name": "phi-3",          "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
 | 
						||
    {"name": "deepseek-llm",   "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
 | 
						||
    {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
 | 
						||
    {"name": "falcon",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
 | 
						||
    {"name": "bert-bge",       "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
 | 
						||
    {"name": "mpt",            "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
 | 
						||
    {"name": "starcoder",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
 | 
						||
    {"name": "gpt-2",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
 | 
						||
    {"name": "refact",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
 | 
						||
    {"name": "command-r",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
 | 
						||
    {"name": "qwen2",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
 | 
						||
    {"name": "olmo",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
 | 
						||
    {"name": "dbrx",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
 | 
						||
    {"name": "jina-v2-en",     "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
 | 
						||
    {"name": "jina-v2-es",     "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
 | 
						||
    {"name": "jina-v2-de",     "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
 | 
						||
]
 | 
						||
 | 
						||
 | 
						||
def download_file_with_auth(url, token, save_path):
 | 
						||
    headers = {"Authorization": f"Bearer {token}"}
 | 
						||
    response = sess.get(url, headers=headers)
 | 
						||
    response.raise_for_status()
 | 
						||
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
 | 
						||
    with open(save_path, 'wb') as f:
 | 
						||
        f.write(response.content)
 | 
						||
    logger.info(f"File {save_path} downloaded successfully")
 | 
						||
 | 
						||
 | 
						||
def download_model(model):
 | 
						||
    name = model["name"]
 | 
						||
    repo = model["repo"]
 | 
						||
    tokt = model["tokt"]
 | 
						||
 | 
						||
    os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
 | 
						||
 | 
						||
    files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
 | 
						||
    if tokt == TOKENIZER_TYPE.SPM:
 | 
						||
        files.append("tokenizer.model")
 | 
						||
 | 
						||
    for file in files:
 | 
						||
        save_path = f"models/tokenizers/{name}/{file}"
 | 
						||
        if os.path.isfile(save_path):
 | 
						||
            logger.info(f"{name}: File {save_path} already exists - skipping")
 | 
						||
            continue
 | 
						||
        download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
 | 
						||
 | 
						||
 | 
						||
for model in models:
 | 
						||
    try:
 | 
						||
        download_model(model)
 | 
						||
    except Exception as e:
 | 
						||
        logger.error(f"Failed to download model {model['name']}. Error: {e}")
 | 
						||
 | 
						||
 | 
						||
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
 | 
						||
 | 
						||
src_ifs = ""
 | 
						||
for model in models:
 | 
						||
    name = model["name"]
 | 
						||
    tokt = model["tokt"]
 | 
						||
 | 
						||
    if tokt == TOKENIZER_TYPE.SPM:
 | 
						||
        continue
 | 
						||
 | 
						||
    # Skip if the tokenizer folder does not exist or there are other download issues previously
 | 
						||
    if not os.path.exists(f"models/tokenizers/{name}"):
 | 
						||
        logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
 | 
						||
        continue
 | 
						||
 | 
						||
    # create the tokenizer
 | 
						||
    try:
 | 
						||
        tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
 | 
						||
    except OSError as e:
 | 
						||
        logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
 | 
						||
        continue  # Skip to the next model if the tokenizer can't be loaded
 | 
						||
 | 
						||
    chktok = tokenizer.encode(chktxt)
 | 
						||
    chkhsh = sha256(str(chktok).encode()).hexdigest()
 | 
						||
 | 
						||
    logger.info(f"model: {name}")
 | 
						||
    logger.info(f"tokt: {tokt}")
 | 
						||
    logger.info(f"repo: {model['repo']}")
 | 
						||
    logger.info(f"chktok: {chktok}")
 | 
						||
    logger.info(f"chkhsh: {chkhsh}")
 | 
						||
 | 
						||
    # print the "pre_tokenizer" content from the tokenizer.json
 | 
						||
    with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
 | 
						||
        cfg = json.load(f)
 | 
						||
        normalizer = cfg["normalizer"]
 | 
						||
        logger.info("normalizer: " + json.dumps(normalizer, indent=4))
 | 
						||
        pre_tokenizer = cfg["pre_tokenizer"]
 | 
						||
        logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
 | 
						||
        if "ignore_merges" in cfg["model"]:
 | 
						||
            logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
 | 
						||
 | 
						||
    logger.info("")
 | 
						||
 | 
						||
    src_ifs += f"        if chkhsh == \"{chkhsh}\":\n"
 | 
						||
    src_ifs += f"            # ref: {model['repo']}\n"
 | 
						||
    src_ifs += f"            res = \"{name}\"\n"
 | 
						||
 | 
						||
src_func = f"""
 | 
						||
    def get_vocab_base_pre(self, tokenizer) -> str:
 | 
						||
        # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
 | 
						||
        # is specific for the BPE pre-tokenizer used by the model
 | 
						||
        # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
 | 
						||
        # use in llama.cpp to implement the same pre-tokenizer
 | 
						||
 | 
						||
        chktxt = {repr(chktxt)}
 | 
						||
 | 
						||
        chktok = tokenizer.encode(chktxt)
 | 
						||
        chkhsh = sha256(str(chktok).encode()).hexdigest()
 | 
						||
 | 
						||
        logger.debug(f"chktok: {{chktok}}")
 | 
						||
        logger.debug(f"chkhsh: {{chkhsh}}")
 | 
						||
 | 
						||
        res = None
 | 
						||
 | 
						||
        # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
 | 
						||
        #       or pull the latest version of the model from Huggingface
 | 
						||
        #       don't edit the hashes manually!
 | 
						||
{src_ifs}
 | 
						||
        if res is None:
 | 
						||
            logger.warning("\\n")
 | 
						||
            logger.warning("**************************************************************************************")
 | 
						||
            logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
 | 
						||
            logger.warning("**          There are 2 possible reasons for this:")
 | 
						||
            logger.warning("**          - the model has not been added to convert-hf-to-gguf-update.py yet")
 | 
						||
            logger.warning("**          - the pre-tokenization config has changed upstream")
 | 
						||
            logger.warning("**          Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
 | 
						||
            logger.warning("** ref:     https://github.com/ggerganov/llama.cpp/pull/6920")
 | 
						||
            logger.warning("**")
 | 
						||
            logger.warning(f"** chkhsh:  {{chkhsh}}")
 | 
						||
            logger.warning("**************************************************************************************")
 | 
						||
            logger.warning("\\n")
 | 
						||
            raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
 | 
						||
 | 
						||
        logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}")
 | 
						||
        logger.debug(f"chkhsh: {{chkhsh}}")
 | 
						||
 | 
						||
        return res
 | 
						||
"""
 | 
						||
 | 
						||
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
 | 
						||
convert_py = convert_py_pth.read_text()
 | 
						||
convert_py = re.sub(
 | 
						||
    r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
 | 
						||
    lambda m: m.group(1) + src_func + m.group(3),
 | 
						||
    convert_py,
 | 
						||
    flags=re.DOTALL | re.MULTILINE,
 | 
						||
)
 | 
						||
 | 
						||
convert_py_pth.write_text(convert_py)
 | 
						||
 | 
						||
logger.info("+++ convert-hf-to-gguf.py was updated")
 | 
						||
 | 
						||
# generate tests for each tokenizer model
 | 
						||
 | 
						||
tests = [
 | 
						||
    "ied 4 ½ months",
 | 
						||
    "Führer",
 | 
						||
    "",
 | 
						||
    " ",
 | 
						||
    "  ",
 | 
						||
    "   ",
 | 
						||
    "\t",
 | 
						||
    "\n",
 | 
						||
    "\n\n",
 | 
						||
    "\n\n\n",
 | 
						||
    "\t\n",
 | 
						||
    "Hello world",
 | 
						||
    " Hello world",
 | 
						||
    "Hello World",
 | 
						||
    " Hello World",
 | 
						||
    " Hello World!",
 | 
						||
    "Hello, world!",
 | 
						||
    " Hello, world!",
 | 
						||
    " this is 🦙.cpp",
 | 
						||
    "w048 7tuijk dsdfhu",
 | 
						||
    "нещо на Български",
 | 
						||
    "កាន់តែពិសេសអាចខលចេញ",
 | 
						||
    "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
 | 
						||
    "Hello",
 | 
						||
    " Hello",
 | 
						||
    "  Hello",
 | 
						||
    "   Hello",
 | 
						||
    "    Hello",
 | 
						||
    "    Hello\n    Hello",
 | 
						||
    " (",
 | 
						||
    "\n =",
 | 
						||
    "' era",
 | 
						||
    "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
 | 
						||
    "3",
 | 
						||
    "33",
 | 
						||
    "333",
 | 
						||
    "3333",
 | 
						||
    "33333",
 | 
						||
    "333333",
 | 
						||
    "3333333",
 | 
						||
    "33333333",
 | 
						||
    "333333333",
 | 
						||
    # "Cửa Việt", # llama-bpe fails on this
 | 
						||
    chktxt,
 | 
						||
]
 | 
						||
 | 
						||
# write the tests to ./models/ggml-vocab-{name}.gguf.inp
 | 
						||
# the format is:
 | 
						||
#
 | 
						||
# test0
 | 
						||
# __ggml_vocab_test__
 | 
						||
# test1
 | 
						||
# __ggml_vocab_test__
 | 
						||
# ...
 | 
						||
#
 | 
						||
 | 
						||
# with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out
 | 
						||
# for each test, write the resulting tokens on a separate line
 | 
						||
 | 
						||
for model in models:
 | 
						||
    name = model["name"]
 | 
						||
    tokt = model["tokt"]
 | 
						||
 | 
						||
    # Skip if the tokenizer folder does not exist or there are other download issues previously
 | 
						||
    if not os.path.exists(f"models/tokenizers/{name}"):
 | 
						||
        logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
 | 
						||
        continue
 | 
						||
 | 
						||
    # create the tokenizer
 | 
						||
    try:
 | 
						||
        tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
 | 
						||
    except OSError as e:
 | 
						||
        logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
 | 
						||
        continue  # Skip this model and continue with the next one in the loop
 | 
						||
 | 
						||
    with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
 | 
						||
        for text in tests:
 | 
						||
            f.write(f"{text}")
 | 
						||
            f.write("\n__ggml_vocab_test__\n")
 | 
						||
 | 
						||
    with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f:
 | 
						||
        for text in tests:
 | 
						||
            res = tokenizer.encode(text, add_special_tokens=False)
 | 
						||
            for r in res:
 | 
						||
                f.write(f" {r}")
 | 
						||
            f.write("\n")
 | 
						||
 | 
						||
    logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
 | 
						||
 | 
						||
# generate commands for creating vocab files
 | 
						||
 | 
						||
logger.info("\nRun the following commands to generate the vocab files for testing:\n")
 | 
						||
 | 
						||
for model in models:
 | 
						||
    name = model["name"]
 | 
						||
 | 
						||
    print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
 | 
						||
 | 
						||
logger.info("\n")
 |