mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			207 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			207 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "llama.h"
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| static void print_usage(int, char ** argv) {
 | |
|     printf("\nexample usage:\n");
 | |
|     printf("\n    %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]);
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     // path to the model gguf file
 | |
|     std::string model_path;
 | |
|     // prompt to generate text from
 | |
|     std::string prompt = "Hello my name is";
 | |
|     // number of layers to offload to the GPU
 | |
|     int ngl = 99;
 | |
|     // number of tokens to predict
 | |
|     int n_predict = 32;
 | |
| 
 | |
|     // parse command line arguments
 | |
| 
 | |
|     {
 | |
|         int i = 1;
 | |
|         for (; i < argc; i++) {
 | |
|             if (strcmp(argv[i], "-m") == 0) {
 | |
|                 if (i + 1 < argc) {
 | |
|                     model_path = argv[++i];
 | |
|                 } else {
 | |
|                     print_usage(argc, argv);
 | |
|                     return 1;
 | |
|                 }
 | |
|             } else if (strcmp(argv[i], "-n") == 0) {
 | |
|                 if (i + 1 < argc) {
 | |
|                     try {
 | |
|                         n_predict = std::stoi(argv[++i]);
 | |
|                     } catch (...) {
 | |
|                         print_usage(argc, argv);
 | |
|                         return 1;
 | |
|                     }
 | |
|                 } else {
 | |
|                     print_usage(argc, argv);
 | |
|                     return 1;
 | |
|                 }
 | |
|             } else if (strcmp(argv[i], "-ngl") == 0) {
 | |
|                 if (i + 1 < argc) {
 | |
|                     try {
 | |
|                         ngl = std::stoi(argv[++i]);
 | |
|                     } catch (...) {
 | |
|                         print_usage(argc, argv);
 | |
|                         return 1;
 | |
|                     }
 | |
|                 } else {
 | |
|                     print_usage(argc, argv);
 | |
|                     return 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 // prompt starts here
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (model_path.empty()) {
 | |
|             print_usage(argc, argv);
 | |
|             return 1;
 | |
|         }
 | |
|         if (i < argc) {
 | |
|             prompt = argv[i++];
 | |
|             for (; i < argc; i++) {
 | |
|                 prompt += " ";
 | |
|                 prompt += argv[i];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // load dynamic backends
 | |
| 
 | |
|     ggml_backend_load_all();
 | |
| 
 | |
|     // initialize the model
 | |
| 
 | |
|     llama_model_params model_params = llama_model_default_params();
 | |
|     model_params.n_gpu_layers = ngl;
 | |
| 
 | |
|     llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
|     // tokenize the prompt
 | |
| 
 | |
|     // find the number of tokens in the prompt
 | |
|     const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
 | |
| 
 | |
|     // allocate space for the tokens and tokenize the prompt
 | |
|     std::vector<llama_token> prompt_tokens(n_prompt);
 | |
|     if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
 | |
|         fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // initialize the context
 | |
| 
 | |
|     llama_context_params ctx_params = llama_context_default_params();
 | |
|     // n_ctx is the context size
 | |
|     ctx_params.n_ctx = n_prompt + n_predict - 1;
 | |
|     // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode
 | |
|     ctx_params.n_batch = n_prompt;
 | |
|     // enable performance counters
 | |
|     ctx_params.no_perf = false;
 | |
| 
 | |
|     llama_context * ctx = llama_init_from_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // initialize the sampler
 | |
| 
 | |
|     auto sparams = llama_sampler_chain_default_params();
 | |
|     sparams.no_perf = false;
 | |
|     llama_sampler * smpl = llama_sampler_chain_init(sparams);
 | |
| 
 | |
|     llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
 | |
| 
 | |
|     // print the prompt token-by-token
 | |
| 
 | |
|     for (auto id : prompt_tokens) {
 | |
|         char buf[128];
 | |
|         int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
 | |
|         if (n < 0) {
 | |
|             fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         std::string s(buf, n);
 | |
|         printf("%s", s.c_str());
 | |
|     }
 | |
| 
 | |
|     // prepare a batch for the prompt
 | |
| 
 | |
|     llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
 | |
| 
 | |
|     // main loop
 | |
| 
 | |
|     const auto t_main_start = ggml_time_us();
 | |
|     int n_decode = 0;
 | |
|     llama_token new_token_id;
 | |
| 
 | |
|     for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) {
 | |
|         // evaluate the current batch with the transformer model
 | |
|         if (llama_decode(ctx, batch)) {
 | |
|             fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         n_pos += batch.n_tokens;
 | |
| 
 | |
|         // sample the next token
 | |
|         {
 | |
|             new_token_id = llama_sampler_sample(smpl, ctx, -1);
 | |
| 
 | |
|             // is it an end of generation?
 | |
|             if (llama_vocab_is_eog(vocab, new_token_id)) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             char buf[128];
 | |
|             int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
 | |
|             if (n < 0) {
 | |
|                 fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
 | |
|                 return 1;
 | |
|             }
 | |
|             std::string s(buf, n);
 | |
|             printf("%s", s.c_str());
 | |
|             fflush(stdout);
 | |
| 
 | |
|             // prepare the next batch with the sampled token
 | |
|             batch = llama_batch_get_one(&new_token_id, 1);
 | |
| 
 | |
|             n_decode += 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     printf("\n");
 | |
| 
 | |
|     const auto t_main_end = ggml_time_us();
 | |
| 
 | |
|     fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | |
|             __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
|     llama_perf_sampler_print(smpl);
 | |
|     llama_perf_context_print(ctx);
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     llama_sampler_free(smpl);
 | |
|     llama_free(ctx);
 | |
|     llama_model_free(model);
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
