mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 69050a11be
			
		
	
	69050a11be
	
	
	
		
			
			* Refactor gguf scripts to improve metadata handling Added contents method to ReaderField class Added endianess property to GGUFReader class * update scripts * fix import * remove unused import * attempt to work around flake and pyright errors * second attempt * give up, ignore type * bump version * apply newbyteorder fixes
		
			
				
	
	
		
			183 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| from __future__ import annotations
 | |
| 
 | |
| import logging
 | |
| import argparse
 | |
| import os
 | |
| import sys
 | |
| from tqdm import tqdm
 | |
| from pathlib import Path
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| # Necessary to load the local gguf package
 | |
| if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
 | |
|     sys.path.insert(0, str(Path(__file__).parent.parent.parent))
 | |
| 
 | |
| import gguf
 | |
| 
 | |
| logger = logging.getLogger("gguf-convert-endian")
 | |
| 
 | |
| 
 | |
| def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None:
 | |
|     file_endian = reader.endianess.name
 | |
|     if reader.byte_order == 'S':
 | |
|         host_endian = 'BIG' if file_endian == 'LITTLE' else 'LITTLE'
 | |
|     else:
 | |
|         host_endian = file_endian
 | |
|     order = host_endian if args.order == "native" else args.order.upper()
 | |
|     logger.info(f"* Host is {host_endian} endian, GGUF file seems to be {file_endian} endian")
 | |
|     if file_endian == order:
 | |
|         logger.info(f"* File is already {order} endian. Nothing to do.")
 | |
|         sys.exit(0)
 | |
|     logger.info("* Checking tensors for conversion compatibility")
 | |
|     for tensor in reader.tensors:
 | |
|         if tensor.tensor_type not in (
 | |
|             gguf.GGMLQuantizationType.F32,
 | |
|             gguf.GGMLQuantizationType.F16,
 | |
|             gguf.GGMLQuantizationType.Q8_0,
 | |
|             gguf.GGMLQuantizationType.Q4_K,
 | |
|             gguf.GGMLQuantizationType.Q6_K,
 | |
|         ):
 | |
|             raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
 | |
|     logger.info(f"* Preparing to convert from {file_endian} to {order}")
 | |
|     if args.dry_run:
 | |
|         return
 | |
|     logger.warning("*** Warning *** Warning *** Warning **")
 | |
|     logger.warning("* This conversion process may damage the file. Ensure you have a backup.")
 | |
|     if order != host_endian:
 | |
|         logger.warning("* Requested endian differs from host, you will not be able to load the model on this machine.")
 | |
|     logger.warning("* The file will be modified immediately, so if conversion fails or is interrupted")
 | |
|     logger.warning("* the file will be corrupted. Enter exactly YES if you are positive you want to proceed:")
 | |
|     response = input("YES, I am sure> ")
 | |
|     if response != "YES":
 | |
|         logger.warning("You didn't enter YES. Okay then, see ya!")
 | |
|         sys.exit(0)
 | |
|     logger.info(f"* Converting fields ({len(reader.fields)})")
 | |
|     for idx, field in enumerate(reader.fields.values()):
 | |
|         logger.info(f"- {idx:4}: Converting field {repr(field.name)}, part count: {len(field.parts)}")
 | |
|         for part in field.parts:
 | |
|             part.byteswap(inplace=True)
 | |
|     logger.info(f"* Converting tensors ({len(reader.tensors)})")
 | |
| 
 | |
|     for idx, tensor in enumerate(pbar := tqdm(reader.tensors, desc="Converting tensor")):
 | |
|         log_message = (
 | |
|             f"Converting tensor {repr(tensor.name)}, "
 | |
|             f"type={tensor.tensor_type.name}, "
 | |
|             f"elements={tensor.n_elements} "
 | |
|         )
 | |
| 
 | |
|         # Byte-swap each part of the tensor's field
 | |
|         for part in tensor.field.parts:
 | |
|             part.byteswap(inplace=True)
 | |
| 
 | |
|         # Byte-swap tensor data if necessary
 | |
|         if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0:
 | |
|             # Handle Q8_0 tensor blocks (block_q8_0)
 | |
|             # Specific handling of block_q8_0 is required.
 | |
|             # Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
 | |
| 
 | |
|             block_size = 34 # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
 | |
| 
 | |
|             n_blocks = len(tensor.data) // block_size
 | |
|             for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
 | |
|                 block_offs = block_num * block_size
 | |
| 
 | |
|                 # Byte-Swap f16 sized delta field
 | |
|                 delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
 | |
|                 delta.byteswap(inplace=True)
 | |
| 
 | |
|                 # Byte-Swap Q8 weights
 | |
|                 if block_num % 100000 == 0:
 | |
|                     inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
 | |
| 
 | |
|         elif tensor.tensor_type == gguf.GGMLQuantizationType.Q4_K:
 | |
|             # Handle Q4_K tensor blocks (block_q4_k)
 | |
|             # Specific handling of block_q4_k is required.
 | |
|             # Each block_q4_k consists of 2 f16 values followed by 140 int8 values.
 | |
| 
 | |
|             # first flatten structure
 | |
|             newshape = 1
 | |
|             for i in tensor.data.shape:
 | |
|                 newshape *= i
 | |
| 
 | |
|             tensor.data.resize(newshape)
 | |
| 
 | |
|             block_size = 144
 | |
|             n_blocks = len(tensor.data) // block_size
 | |
|             for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
 | |
|                 block_offs = block_num * block_size
 | |
| 
 | |
|                 # Byte-Swap f16 sized fields
 | |
|                 delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
 | |
|                 delta.byteswap(inplace=True)
 | |
| 
 | |
|                 delta = tensor.data[block_offs + 2:block_offs + 4].view(dtype=np.uint16)
 | |
|                 delta.byteswap(inplace=True)
 | |
| 
 | |
|                 # Byte-Swap
 | |
|                 if block_num % 100000 == 0:
 | |
|                     inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
 | |
| 
 | |
|         elif tensor.tensor_type == gguf.GGMLQuantizationType.Q6_K:
 | |
|             # Handle Q6_K tensor blocks (block_q6_k)
 | |
|             # Specific handling of block_q6_k is required.
 | |
|             # Each block_q6_k consists of 208 int8 values followed by 1 f16 value.
 | |
| 
 | |
|             # first flatten structure
 | |
|             newshape = 1
 | |
|             for i in tensor.data.shape:
 | |
|                 newshape *= i
 | |
| 
 | |
|             tensor.data.resize(newshape)
 | |
| 
 | |
|             block_size = 210
 | |
|             n_blocks = len(tensor.data) // block_size
 | |
|             for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
 | |
|                 block_offs = block_num * block_size
 | |
| 
 | |
|                 # Byte-Swap f16 sized field
 | |
|                 delta = tensor.data[block_offs + 208:block_offs + 210].view(dtype=np.uint16)
 | |
|                 delta.byteswap(inplace=True)
 | |
| 
 | |
|                 # Byte-Swap
 | |
|                 if block_num % 100000 == 0:
 | |
|                     inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
 | |
| 
 | |
|         else:
 | |
|             # Handle other tensor types
 | |
|             tensor.data.byteswap(inplace=True)
 | |
| 
 | |
|         pbar.set_description(log_message)
 | |
| 
 | |
|     logger.info("* Completion")
 | |
| 
 | |
| 
 | |
| def main() -> None:
 | |
|     parser = argparse.ArgumentParser(description="Convert GGUF file byte order")
 | |
|     parser.add_argument(
 | |
|         "model", type=str,
 | |
|         help="GGUF format model filename",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "order", type=str, choices=['big', 'little', 'native'],
 | |
|         help="Requested byte order",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--dry-run", action="store_true",
 | |
|         help="Don't actually change anything",
 | |
|     )
 | |
|     parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
 | |
| 
 | |
|     args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
 | |
| 
 | |
|     logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
 | |
| 
 | |
|     logger.info(f'* Loading: {args.model}')
 | |
|     reader = gguf.GGUFReader(args.model, 'r' if args.dry_run else 'r+')
 | |
|     convert_byteorder(reader, args)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 |