mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			312 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from openai import OpenAI
 | |
| from utils import *
 | |
| 
 | |
| server: ServerProcess
 | |
| 
 | |
| @pytest.fixture(autouse=True)
 | |
| def create_server():
 | |
|     global server
 | |
|     server = ServerPreset.tinyllama2()
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason,jinja,chat_template",
 | |
|     [
 | |
|         (None, "Book", "Hey", 8, "But she couldn't", 69, 8, "length", False, None),
 | |
|         (None, "Book", "Hey", 8, "But she couldn't", 69, 8, "length", True, None),
 | |
|         (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", False, None),
 | |
|         (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True,  None),
 | |
|         (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True, 'chatml'),
 | |
|         (None, "Book", "What is the best book", 8, "^ blue",                    23, 8, "length", True, "This is not a chat template, it is"),
 | |
|         ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", False, None),
 | |
|         ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", True, None),
 | |
|         (None, "Book", [{"type": "text", "text": "What is"}, {"type": "text", "text": "the best book"}], 8, "Whillicter", 79, 8, "length", False, None),
 | |
|         (None, "Book", [{"type": "text", "text": "What is"}, {"type": "text", "text": "the best book"}], 8, "Whillicter", 79, 8, "length", True, None),
 | |
|     ]
 | |
| )
 | |
| def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason, jinja, chat_template):
 | |
|     global server
 | |
|     server.jinja = jinja
 | |
|     server.chat_template = chat_template
 | |
|     server.start()
 | |
|     res = server.make_request("POST", "/chat/completions", data={
 | |
|         "model": model,
 | |
|         "max_tokens": max_tokens,
 | |
|         "messages": [
 | |
|             {"role": "system", "content": system_prompt},
 | |
|             {"role": "user", "content": user_prompt},
 | |
|         ],
 | |
|     })
 | |
|     assert res.status_code == 200
 | |
|     assert "cmpl" in res.body["id"] # make sure the completion id has the expected format
 | |
|     assert res.body["system_fingerprint"].startswith("b")
 | |
|     assert res.body["model"] == model if model is not None else server.model_alias
 | |
|     assert res.body["usage"]["prompt_tokens"] == n_prompt
 | |
|     assert res.body["usage"]["completion_tokens"] == n_predicted
 | |
|     choice = res.body["choices"][0]
 | |
|     assert "assistant" == choice["message"]["role"]
 | |
|     assert match_regex(re_content, choice["message"]["content"]), f'Expected {re_content}, got {choice["message"]["content"]}'
 | |
|     assert choice["finish_reason"] == finish_reason
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
 | |
|     [
 | |
|         ("Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
 | |
|         ("You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
 | |
|     ]
 | |
| )
 | |
| def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
 | |
|     global server
 | |
|     server.model_alias = None # try using DEFAULT_OAICOMPAT_MODEL
 | |
|     server.start()
 | |
|     res = server.make_stream_request("POST", "/chat/completions", data={
 | |
|         "max_tokens": max_tokens,
 | |
|         "messages": [
 | |
|             {"role": "system", "content": system_prompt},
 | |
|             {"role": "user", "content": user_prompt},
 | |
|         ],
 | |
|         "stream": True,
 | |
|     })
 | |
|     content = ""
 | |
|     last_cmpl_id = None
 | |
|     for data in res:
 | |
|         choice = data["choices"][0]
 | |
|         assert data["system_fingerprint"].startswith("b")
 | |
|         assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
 | |
|         if last_cmpl_id is None:
 | |
|             last_cmpl_id = data["id"]
 | |
|         assert last_cmpl_id == data["id"] # make sure the completion id is the same for all events in the stream
 | |
|         if choice["finish_reason"] in ["stop", "length"]:
 | |
|             assert data["usage"]["prompt_tokens"] == n_prompt
 | |
|             assert data["usage"]["completion_tokens"] == n_predicted
 | |
|             assert "content" not in choice["delta"]
 | |
|             assert match_regex(re_content, content)
 | |
|             assert choice["finish_reason"] == finish_reason
 | |
|         else:
 | |
|             assert choice["finish_reason"] is None
 | |
|             content += choice["delta"]["content"]
 | |
| 
 | |
| 
 | |
| def test_chat_completion_with_openai_library():
 | |
|     global server
 | |
|     server.start()
 | |
|     client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
 | |
|     res = client.chat.completions.create(
 | |
|         model="gpt-3.5-turbo-instruct",
 | |
|         messages=[
 | |
|             {"role": "system", "content": "Book"},
 | |
|             {"role": "user", "content": "What is the best book"},
 | |
|         ],
 | |
|         max_tokens=8,
 | |
|         seed=42,
 | |
|         temperature=0.8,
 | |
|     )
 | |
|     assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b")
 | |
|     assert res.choices[0].finish_reason == "length"
 | |
|     assert res.choices[0].message.content is not None
 | |
|     assert match_regex("(Suddenly)+", res.choices[0].message.content)
 | |
| 
 | |
| 
 | |
| def test_chat_template():
 | |
|     global server
 | |
|     server.chat_template = "llama3"
 | |
|     server.debug = True  # to get the "__verbose" object in the response
 | |
|     server.start()
 | |
|     res = server.make_request("POST", "/chat/completions", data={
 | |
|         "max_tokens": 8,
 | |
|         "messages": [
 | |
|             {"role": "system", "content": "Book"},
 | |
|             {"role": "user", "content": "What is the best book"},
 | |
|         ]
 | |
|     })
 | |
|     assert res.status_code == 200
 | |
|     assert "__verbose" in res.body
 | |
|     assert res.body["__verbose"]["prompt"] == "<s> <|start_header_id|>system<|end_header_id|>\n\nBook<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWhat is the best book<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
 | |
| 
 | |
| 
 | |
| def test_apply_chat_template():
 | |
|     global server
 | |
|     server.chat_template = "command-r"
 | |
|     server.start()
 | |
|     res = server.make_request("POST", "/apply-template", data={
 | |
|         "messages": [
 | |
|             {"role": "system", "content": "You are a test."},
 | |
|             {"role": "user", "content":"Hi there"},
 | |
|         ]
 | |
|     })
 | |
|     assert res.status_code == 200
 | |
|     assert "prompt" in res.body
 | |
|     assert res.body["prompt"] == "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a test.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("response_format,n_predicted,re_content", [
 | |
|     ({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
 | |
|     ({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
 | |
|     ({"type": "json_schema", "json_schema": {"schema": {"const": "foooooo"}}}, 10, "\"foooooo\""),
 | |
|     ({"type": "json_object"}, 10, "(\\{|John)+"),
 | |
|     ({"type": "sound"}, 0, None),
 | |
|     # invalid response format (expected to fail)
 | |
|     ({"type": "json_object", "schema": 123}, 0, None),
 | |
|     ({"type": "json_object", "schema": {"type": 123}}, 0, None),
 | |
|     ({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),
 | |
| ])
 | |
| def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
 | |
|     global server
 | |
|     server.start()
 | |
|     res = server.make_request("POST", "/chat/completions", data={
 | |
|         "max_tokens": n_predicted,
 | |
|         "messages": [
 | |
|             {"role": "system", "content": "You are a coding assistant."},
 | |
|             {"role": "user", "content": "Write an example"},
 | |
|         ],
 | |
|         "response_format": response_format,
 | |
|     })
 | |
|     if re_content is not None:
 | |
|         assert res.status_code == 200
 | |
|         choice = res.body["choices"][0]
 | |
|         assert match_regex(re_content, choice["message"]["content"])
 | |
|     else:
 | |
|         assert res.status_code != 200
 | |
|         assert "error" in res.body
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("jinja,json_schema,n_predicted,re_content", [
 | |
|     (False, {"const": "42"}, 6, "\"42\""),
 | |
|     (True, {"const": "42"}, 6, "\"42\""),
 | |
| ])
 | |
| def test_completion_with_json_schema(jinja: bool, json_schema: dict, n_predicted: int, re_content: str):
 | |
|     global server
 | |
|     server.jinja = jinja
 | |
|     server.start()
 | |
|     res = server.make_request("POST", "/chat/completions", data={
 | |
|         "max_tokens": n_predicted,
 | |
|         "messages": [
 | |
|             {"role": "system", "content": "You are a coding assistant."},
 | |
|             {"role": "user", "content": "Write an example"},
 | |
|         ],
 | |
|         "json_schema": json_schema,
 | |
|     })
 | |
|     assert res.status_code == 200, f'Expected 200, got {res.status_code}'
 | |
|     choice = res.body["choices"][0]
 | |
|     assert match_regex(re_content, choice["message"]["content"]), f'Expected {re_content}, got {choice["message"]["content"]}'
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("jinja,grammar,n_predicted,re_content", [
 | |
|     (False, 'root ::= "a"{5,5}', 6, "a{5,5}"),
 | |
|     (True, 'root ::= "a"{5,5}', 6, "a{5,5}"),
 | |
| ])
 | |
| def test_completion_with_grammar(jinja: bool, grammar: str, n_predicted: int, re_content: str):
 | |
|     global server
 | |
|     server.jinja = jinja
 | |
|     server.start()
 | |
|     res = server.make_request("POST", "/chat/completions", data={
 | |
|         "max_tokens": n_predicted,
 | |
|         "messages": [
 | |
|             {"role": "user", "content": "Does not matter what I say, does it?"},
 | |
|         ],
 | |
|         "grammar": grammar,
 | |
|     })
 | |
|     assert res.status_code == 200, res.body
 | |
|     choice = res.body["choices"][0]
 | |
|     assert match_regex(re_content, choice["message"]["content"]), choice["message"]["content"]
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("messages", [
 | |
|     None,
 | |
|     "string",
 | |
|     [123],
 | |
|     [{}],
 | |
|     [{"role": 123}],
 | |
|     [{"role": "system", "content": 123}],
 | |
|     # [{"content": "hello"}], # TODO: should not be a valid case
 | |
|     [{"role": "system", "content": "test"}, {}],
 | |
| ])
 | |
| def test_invalid_chat_completion_req(messages):
 | |
|     global server
 | |
|     server.start()
 | |
|     res = server.make_request("POST", "/chat/completions", data={
 | |
|         "messages": messages,
 | |
|     })
 | |
|     assert res.status_code == 400 or res.status_code == 500
 | |
|     assert "error" in res.body
 | |
| 
 | |
| 
 | |
| def test_chat_completion_with_timings_per_token():
 | |
|     global server
 | |
|     server.start()
 | |
|     res = server.make_stream_request("POST", "/chat/completions", data={
 | |
|         "max_tokens": 10,
 | |
|         "messages": [{"role": "user", "content": "test"}],
 | |
|         "stream": True,
 | |
|         "timings_per_token": True,
 | |
|     })
 | |
|     for data in res:
 | |
|         assert "timings" in data
 | |
|         assert "prompt_per_second" in data["timings"]
 | |
|         assert "predicted_per_second" in data["timings"]
 | |
|         assert "predicted_n" in data["timings"]
 | |
|         assert data["timings"]["predicted_n"] <= 10
 | |
| 
 | |
| 
 | |
| def test_logprobs():
 | |
|     global server
 | |
|     server.start()
 | |
|     client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
 | |
|     res = client.chat.completions.create(
 | |
|         model="gpt-3.5-turbo-instruct",
 | |
|         temperature=0.0,
 | |
|         messages=[
 | |
|             {"role": "system", "content": "Book"},
 | |
|             {"role": "user", "content": "What is the best book"},
 | |
|         ],
 | |
|         max_tokens=5,
 | |
|         logprobs=True,
 | |
|         top_logprobs=10,
 | |
|     )
 | |
|     output_text = res.choices[0].message.content
 | |
|     aggregated_text = ''
 | |
|     assert res.choices[0].logprobs is not None
 | |
|     assert res.choices[0].logprobs.content is not None
 | |
|     for token in res.choices[0].logprobs.content:
 | |
|         aggregated_text += token.token
 | |
|         assert token.logprob <= 0.0
 | |
|         assert token.bytes is not None
 | |
|         assert len(token.top_logprobs) > 0
 | |
|     assert aggregated_text == output_text
 | |
| 
 | |
| 
 | |
| def test_logprobs_stream():
 | |
|     global server
 | |
|     server.start()
 | |
|     client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
 | |
|     res = client.chat.completions.create(
 | |
|         model="gpt-3.5-turbo-instruct",
 | |
|         temperature=0.0,
 | |
|         messages=[
 | |
|             {"role": "system", "content": "Book"},
 | |
|             {"role": "user", "content": "What is the best book"},
 | |
|         ],
 | |
|         max_tokens=5,
 | |
|         logprobs=True,
 | |
|         top_logprobs=10,
 | |
|         stream=True,
 | |
|     )
 | |
|     output_text = ''
 | |
|     aggregated_text = ''
 | |
|     for data in res:
 | |
|         choice = data.choices[0]
 | |
|         if choice.finish_reason is None:
 | |
|             if choice.delta.content:
 | |
|                 output_text += choice.delta.content
 | |
|             assert choice.logprobs is not None
 | |
|             assert choice.logprobs.content is not None
 | |
|             for token in choice.logprobs.content:
 | |
|                 aggregated_text += token.token
 | |
|                 assert token.logprob <= 0.0
 | |
|                 assert token.bytes is not None
 | |
|                 assert token.top_logprobs is not None
 | |
|                 assert len(token.top_logprobs) > 0
 | |
|     assert aggregated_text == output_text
 | 
