mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 d7f5f4e578
			
		
	
	d7f5f4e578
	
	
	
		
			
			* simple-chat : fix context-exceeded condition ggml-ci * cont : fix n_ctx_used computation ggml-ci
		
			
				
	
	
		
			208 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "llama.h"
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| static void print_usage(int, char ** argv) {
 | |
|     printf("\nexample usage:\n");
 | |
|     printf("\n    %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     std::string model_path;
 | |
|     int ngl = 99;
 | |
|     int n_ctx = 2048;
 | |
| 
 | |
|     // parse command line arguments
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         try {
 | |
|             if (strcmp(argv[i], "-m") == 0) {
 | |
|                 if (i + 1 < argc) {
 | |
|                     model_path = argv[++i];
 | |
|                 } else {
 | |
|                     print_usage(argc, argv);
 | |
|                     return 1;
 | |
|                 }
 | |
|             } else if (strcmp(argv[i], "-c") == 0) {
 | |
|                 if (i + 1 < argc) {
 | |
|                     n_ctx = std::stoi(argv[++i]);
 | |
|                 } else {
 | |
|                     print_usage(argc, argv);
 | |
|                     return 1;
 | |
|                 }
 | |
|             } else if (strcmp(argv[i], "-ngl") == 0) {
 | |
|                 if (i + 1 < argc) {
 | |
|                     ngl = std::stoi(argv[++i]);
 | |
|                 } else {
 | |
|                     print_usage(argc, argv);
 | |
|                     return 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 print_usage(argc, argv);
 | |
|                 return 1;
 | |
|             }
 | |
|         } catch (std::exception & e) {
 | |
|             fprintf(stderr, "error: %s\n", e.what());
 | |
|             print_usage(argc, argv);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     if (model_path.empty()) {
 | |
|         print_usage(argc, argv);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // only print errors
 | |
|     llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {
 | |
|         if (level >= GGML_LOG_LEVEL_ERROR) {
 | |
|             fprintf(stderr, "%s", text);
 | |
|         }
 | |
|     }, nullptr);
 | |
| 
 | |
|     // load dynamic backends
 | |
|     ggml_backend_load_all();
 | |
| 
 | |
|     // initialize the model
 | |
|     llama_model_params model_params = llama_model_default_params();
 | |
|     model_params.n_gpu_layers = ngl;
 | |
| 
 | |
|     llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
 | |
|     if (!model) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
| 
 | |
|     // initialize the context
 | |
|     llama_context_params ctx_params = llama_context_default_params();
 | |
|     ctx_params.n_ctx = n_ctx;
 | |
|     ctx_params.n_batch = n_ctx;
 | |
| 
 | |
|     llama_context * ctx = llama_init_from_model(model, ctx_params);
 | |
|     if (!ctx) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // initialize the sampler
 | |
|     llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());
 | |
|     llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));
 | |
|     llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));
 | |
|     llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
 | |
| 
 | |
|     // helper function to evaluate a prompt and generate a response
 | |
|     auto generate = [&](const std::string & prompt) {
 | |
|         std::string response;
 | |
| 
 | |
|         const bool is_first = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) == -1;
 | |
| 
 | |
|         // tokenize the prompt
 | |
|         const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
 | |
|         std::vector<llama_token> prompt_tokens(n_prompt_tokens);
 | |
|         if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, true) < 0) {
 | |
|             GGML_ABORT("failed to tokenize the prompt\n");
 | |
|         }
 | |
| 
 | |
|         // prepare a batch for the prompt
 | |
|         llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
 | |
|         llama_token new_token_id;
 | |
|         while (true) {
 | |
|             // check if we have enough space in the context to evaluate this batch
 | |
|             int n_ctx = llama_n_ctx(ctx);
 | |
|             int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) + 1;
 | |
|             if (n_ctx_used + batch.n_tokens > n_ctx) {
 | |
|                 printf("\033[0m\n");
 | |
|                 fprintf(stderr, "context size exceeded\n");
 | |
|                 exit(0);
 | |
|             }
 | |
| 
 | |
|             int ret = llama_decode(ctx, batch);
 | |
|             if (ret != 0) {
 | |
|                 GGML_ABORT("failed to decode, ret = %d\n", ret);
 | |
|             }
 | |
| 
 | |
|             // sample the next token
 | |
|             new_token_id = llama_sampler_sample(smpl, ctx, -1);
 | |
| 
 | |
|             // is it an end of generation?
 | |
|             if (llama_vocab_is_eog(vocab, new_token_id)) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // convert the token to a string, print it and add it to the response
 | |
|             char buf[256];
 | |
|             int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
 | |
|             if (n < 0) {
 | |
|                 GGML_ABORT("failed to convert token to piece\n");
 | |
|             }
 | |
|             std::string piece(buf, n);
 | |
|             printf("%s", piece.c_str());
 | |
|             fflush(stdout);
 | |
|             response += piece;
 | |
| 
 | |
|             // prepare the next batch with the sampled token
 | |
|             batch = llama_batch_get_one(&new_token_id, 1);
 | |
|         }
 | |
| 
 | |
|         return response;
 | |
|     };
 | |
| 
 | |
|     std::vector<llama_chat_message> messages;
 | |
|     std::vector<char> formatted(llama_n_ctx(ctx));
 | |
|     int prev_len = 0;
 | |
|     while (true) {
 | |
|         // get user input
 | |
|         printf("\033[32m> \033[0m");
 | |
|         std::string user;
 | |
|         std::getline(std::cin, user);
 | |
| 
 | |
|         if (user.empty()) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
 | |
| 
 | |
|         // add the user input to the message list and format it
 | |
|         messages.push_back({"user", strdup(user.c_str())});
 | |
|         int new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
 | |
|         if (new_len > (int)formatted.size()) {
 | |
|             formatted.resize(new_len);
 | |
|             new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
 | |
|         }
 | |
|         if (new_len < 0) {
 | |
|             fprintf(stderr, "failed to apply the chat template\n");
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         // remove previous messages to obtain the prompt to generate the response
 | |
|         std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);
 | |
| 
 | |
|         // generate a response
 | |
|         printf("\033[33m");
 | |
|         std::string response = generate(prompt);
 | |
|         printf("\n\033[0m");
 | |
| 
 | |
|         // add the response to the messages
 | |
|         messages.push_back({"assistant", strdup(response.c_str())});
 | |
|         prev_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), false, nullptr, 0);
 | |
|         if (prev_len < 0) {
 | |
|             fprintf(stderr, "failed to apply the chat template\n");
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // free resources
 | |
|     for (auto & msg : messages) {
 | |
|         free(const_cast<char *>(msg.content));
 | |
|     }
 | |
|     llama_sampler_free(smpl);
 | |
|     llama_free(ctx);
 | |
|     llama_model_free(model);
 | |
| 
 | |
|     return 0;
 | |
| }
 |