mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 c27ac678dd
			
		
	
	c27ac678dd
	
	
	
		
			
			Added support for positional arguments `model` and `prompt`. Added functionality to download via strings like: llama-run llama3 llama-run ollama://granite-code llama-run ollama://granite-code:8b llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf llama-run https://example.com/some-file1.gguf llama-run some-file2.gguf llama-run file://some-file3.gguf Signed-off-by: Eric Curtin <ecurtin@redhat.com>
		
			
				
	
	
		
			736 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			736 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #if defined(_WIN32)
 | |
| #    include <windows.h>
 | |
| #else
 | |
| #    include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(LLAMA_USE_CURL)
 | |
| #    include <curl/curl.h>
 | |
| #endif
 | |
| 
 | |
| #include <cstdarg>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <filesystem>
 | |
| #include <iostream>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "common.h"
 | |
| #include "json.hpp"
 | |
| #include "llama-cpp.h"
 | |
| 
 | |
| #define printe(...)                   \
 | |
|     do {                              \
 | |
|         fprintf(stderr, __VA_ARGS__); \
 | |
|     } while (0)
 | |
| 
 | |
| class Opt {
 | |
|   public:
 | |
|     int init(int argc, const char ** argv) {
 | |
|         construct_help_str_();
 | |
|         // Parse arguments
 | |
|         if (parse(argc, argv)) {
 | |
|             printe("Error: Failed to parse arguments.\n");
 | |
|             help();
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         // If help is requested, show help and exit
 | |
|         if (help_) {
 | |
|             help();
 | |
|             return 2;
 | |
|         }
 | |
| 
 | |
|         return 0;  // Success
 | |
|     }
 | |
| 
 | |
|     std::string model_;
 | |
|     std::string user_;
 | |
|     int         context_size_ = 2048, ngl_ = -1;
 | |
| 
 | |
|   private:
 | |
|     std::string help_str_;
 | |
|     bool        help_ = false;
 | |
| 
 | |
|     void construct_help_str_() {
 | |
|         help_str_ =
 | |
|             "Description:\n"
 | |
|             "  Runs a llm\n"
 | |
|             "\n"
 | |
|             "Usage:\n"
 | |
|             "  llama-run [options] model [prompt]\n"
 | |
|             "\n"
 | |
|             "Options:\n"
 | |
|             "  -c, --context-size <value>\n"
 | |
|             "      Context size (default: " +
 | |
|             std::to_string(context_size_);
 | |
|         help_str_ +=
 | |
|             ")\n"
 | |
|             "  -n, --ngl <value>\n"
 | |
|             "      Number of GPU layers (default: " +
 | |
|             std::to_string(ngl_);
 | |
|         help_str_ +=
 | |
|             ")\n"
 | |
|             "  -h, --help\n"
 | |
|             "      Show help message\n"
 | |
|             "\n"
 | |
|             "Commands:\n"
 | |
|             "  model\n"
 | |
|             "      Model is a string with an optional prefix of \n"
 | |
|             "      huggingface:// (hf://), ollama://, https:// or file://.\n"
 | |
|             "      If no protocol is specified and a file exists in the specified\n"
 | |
|             "      path, file:// is assumed, otherwise if a file does not exist in\n"
 | |
|             "      the specified path, ollama:// is assumed. Models that are being\n"
 | |
|             "      pulled are downloaded with .partial extension while being\n"
 | |
|             "      downloaded and then renamed as the file without the .partial\n"
 | |
|             "      extension when complete.\n"
 | |
|             "\n"
 | |
|             "Examples:\n"
 | |
|             "  llama-run llama3\n"
 | |
|             "  llama-run ollama://granite-code\n"
 | |
|             "  llama-run ollama://smollm:135m\n"
 | |
|             "  llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf\n"
 | |
|             "  llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf\n"
 | |
|             "  llama-run https://example.com/some-file1.gguf\n"
 | |
|             "  llama-run some-file2.gguf\n"
 | |
|             "  llama-run file://some-file3.gguf\n"
 | |
|             "  llama-run --ngl 99 some-file4.gguf\n"
 | |
|             "  llama-run --ngl 99 some-file5.gguf Hello World\n";
 | |
|     }
 | |
| 
 | |
|     int parse(int argc, const char ** argv) {
 | |
|         int positional_args_i = 0;
 | |
|         for (int i = 1; i < argc; ++i) {
 | |
|             if (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0) {
 | |
|                 if (i + 1 >= argc) {
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 context_size_ = std::atoi(argv[++i]);
 | |
|             } else if (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0) {
 | |
|                 if (i + 1 >= argc) {
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 ngl_ = std::atoi(argv[++i]);
 | |
|             } else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
 | |
|                 help_ = true;
 | |
|                 return 0;
 | |
|             } else if (!positional_args_i) {
 | |
|                 ++positional_args_i;
 | |
|                 model_ = argv[i];
 | |
|             } else if (positional_args_i == 1) {
 | |
|                 ++positional_args_i;
 | |
|                 user_ = argv[i];
 | |
|             } else {
 | |
|                 user_ += " " + std::string(argv[i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return model_.empty();  // model_ is the only required value
 | |
|     }
 | |
| 
 | |
|     void help() const { printf("%s", help_str_.c_str()); }
 | |
| };
 | |
| 
 | |
| struct progress_data {
 | |
|     size_t file_size = 0;
 | |
|     std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
 | |
|     bool   printed   = false;
 | |
| };
 | |
| 
 | |
| struct FileDeleter {
 | |
|     void operator()(FILE * file) const {
 | |
|         if (file) {
 | |
|             fclose(file);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| typedef std::unique_ptr<FILE, FileDeleter> FILE_ptr;
 | |
| 
 | |
| #ifdef LLAMA_USE_CURL
 | |
| class CurlWrapper {
 | |
|   public:
 | |
|     int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
 | |
|              const bool progress, std::string * response_str = nullptr) {
 | |
|         std::string output_file_partial;
 | |
|         curl = curl_easy_init();
 | |
|         if (!curl) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         progress_data data;
 | |
|         FILE_ptr      out;
 | |
|         if (!output_file.empty()) {
 | |
|             output_file_partial = output_file + ".partial";
 | |
|             out.reset(fopen(output_file_partial.c_str(), "ab"));
 | |
|         }
 | |
| 
 | |
|         set_write_options(response_str, out);
 | |
|         data.file_size = set_resume_point(output_file_partial);
 | |
|         set_progress_options(progress, data);
 | |
|         set_headers(headers);
 | |
|         perform(url);
 | |
|         if (!output_file.empty()) {
 | |
|             std::filesystem::rename(output_file_partial, output_file);
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ~CurlWrapper() {
 | |
|         if (chunk) {
 | |
|             curl_slist_free_all(chunk);
 | |
|         }
 | |
| 
 | |
|         if (curl) {
 | |
|             curl_easy_cleanup(curl);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     CURL *              curl  = nullptr;
 | |
|     struct curl_slist * chunk = nullptr;
 | |
| 
 | |
|     void set_write_options(std::string * response_str, const FILE_ptr & out) {
 | |
|         if (response_str) {
 | |
|             curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, capture_data);
 | |
|             curl_easy_setopt(curl, CURLOPT_WRITEDATA, response_str);
 | |
|         } else {
 | |
|             curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
 | |
|             curl_easy_setopt(curl, CURLOPT_WRITEDATA, out.get());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t set_resume_point(const std::string & output_file) {
 | |
|         size_t file_size = 0;
 | |
|         if (std::filesystem::exists(output_file)) {
 | |
|             file_size = std::filesystem::file_size(output_file);
 | |
|             curl_easy_setopt(curl, CURLOPT_RESUME_FROM_LARGE, static_cast<curl_off_t>(file_size));
 | |
|         }
 | |
| 
 | |
|         return file_size;
 | |
|     }
 | |
| 
 | |
|     void set_progress_options(bool progress, progress_data & data) {
 | |
|         if (progress) {
 | |
|             curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
 | |
|             curl_easy_setopt(curl, CURLOPT_XFERINFODATA, &data);
 | |
|             curl_easy_setopt(curl, CURLOPT_XFERINFOFUNCTION, progress_callback);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void set_headers(const std::vector<std::string> & headers) {
 | |
|         if (!headers.empty()) {
 | |
|             if (chunk) {
 | |
|                 curl_slist_free_all(chunk);
 | |
|                 chunk = 0;
 | |
|             }
 | |
| 
 | |
|             for (const auto & header : headers) {
 | |
|                 chunk = curl_slist_append(chunk, header.c_str());
 | |
|             }
 | |
| 
 | |
|             curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void perform(const std::string & url) {
 | |
|         CURLcode res;
 | |
|         curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
 | |
|         curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
 | |
|         curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
 | |
|         curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L);
 | |
|         res = curl_easy_perform(curl);
 | |
|         if (res != CURLE_OK) {
 | |
|             printe("curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     static std::string human_readable_time(double seconds) {
 | |
|         int hrs  = static_cast<int>(seconds) / 3600;
 | |
|         int mins = (static_cast<int>(seconds) % 3600) / 60;
 | |
|         int secs = static_cast<int>(seconds) % 60;
 | |
| 
 | |
|         std::ostringstream out;
 | |
|         if (hrs > 0) {
 | |
|             out << hrs << "h " << std::setw(2) << std::setfill('0') << mins << "m " << std::setw(2) << std::setfill('0')
 | |
|                 << secs << "s";
 | |
|         } else if (mins > 0) {
 | |
|             out << mins << "m " << std::setw(2) << std::setfill('0') << secs << "s";
 | |
|         } else {
 | |
|             out << secs << "s";
 | |
|         }
 | |
| 
 | |
|         return out.str();
 | |
|     }
 | |
| 
 | |
|     static std::string human_readable_size(curl_off_t size) {
 | |
|         static const char * suffix[] = { "B", "KB", "MB", "GB", "TB" };
 | |
|         char         length   = sizeof(suffix) / sizeof(suffix[0]);
 | |
|         int          i        = 0;
 | |
|         double       dbl_size = size;
 | |
|         if (size > 1024) {
 | |
|             for (i = 0; (size / 1024) > 0 && i < length - 1; i++, size /= 1024) {
 | |
|                 dbl_size = size / 1024.0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         std::ostringstream out;
 | |
|         out << std::fixed << std::setprecision(2) << dbl_size << " " << suffix[i];
 | |
|         return out.str();
 | |
|     }
 | |
| 
 | |
|     static int progress_callback(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
 | |
|                                  curl_off_t) {
 | |
|         progress_data * data = static_cast<progress_data *>(ptr);
 | |
|         if (total_to_download <= 0) {
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         total_to_download += data->file_size;
 | |
|         const curl_off_t now_downloaded_plus_file_size = now_downloaded + data->file_size;
 | |
|         const curl_off_t percentage                    = (now_downloaded_plus_file_size * 100) / total_to_download;
 | |
|         const curl_off_t pos                           = (percentage / 5);
 | |
|         std::string progress_bar;
 | |
|         for (int i = 0; i < 20; ++i) {
 | |
|             progress_bar.append((i < pos) ? "█" : " ");
 | |
|         }
 | |
| 
 | |
|         // Calculate download speed and estimated time to completion
 | |
|         const auto                          now             = std::chrono::steady_clock::now();
 | |
|         const std::chrono::duration<double> elapsed_seconds = now - data->start_time;
 | |
|         const double                        speed           = now_downloaded / elapsed_seconds.count();
 | |
|         const double                        estimated_time  = (total_to_download - now_downloaded) / speed;
 | |
|         printe("\r%ld%% |%s| %s/%s  %.2f MB/s  %s      ", percentage, progress_bar.c_str(),
 | |
|                human_readable_size(now_downloaded).c_str(), human_readable_size(total_to_download).c_str(),
 | |
|                speed / (1024 * 1024), human_readable_time(estimated_time).c_str());
 | |
|         fflush(stderr);
 | |
|         data->printed = true;
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // Function to write data to a file
 | |
|     static size_t write_data(void * ptr, size_t size, size_t nmemb, void * stream) {
 | |
|         FILE * out = static_cast<FILE *>(stream);
 | |
|         return fwrite(ptr, size, nmemb, out);
 | |
|     }
 | |
| 
 | |
|     // Function to capture data into a string
 | |
|     static size_t capture_data(void * ptr, size_t size, size_t nmemb, void * stream) {
 | |
|         std::string * str = static_cast<std::string *>(stream);
 | |
|         str->append(static_cast<char *>(ptr), size * nmemb);
 | |
|         return size * nmemb;
 | |
|     }
 | |
| };
 | |
| #endif
 | |
| 
 | |
| class LlamaData {
 | |
|   public:
 | |
|     llama_model_ptr                 model;
 | |
|     llama_sampler_ptr               sampler;
 | |
|     llama_context_ptr               context;
 | |
|     std::vector<llama_chat_message> messages;
 | |
|     std::vector<std::string>        msg_strs;
 | |
|     std::vector<char>               fmtted;
 | |
| 
 | |
|     int init(Opt & opt) {
 | |
|         model = initialize_model(opt);
 | |
|         if (!model) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         context = initialize_context(model, opt.context_size_);
 | |
|         if (!context) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         sampler = initialize_sampler();
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| #ifdef LLAMA_USE_CURL
 | |
|     int download(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
 | |
|                  const bool progress, std::string * response_str = nullptr) {
 | |
|         CurlWrapper curl;
 | |
|         if (curl.init(url, headers, output_file, progress, response_str)) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| #else
 | |
|     int download(const std::string &, const std::vector<std::string> &, const std::string &, const bool,
 | |
|                  std::string * = nullptr) {
 | |
|         printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     int huggingface_dl(const std::string & model, const std::vector<std::string> headers, const std::string & bn) {
 | |
|         // Find the second occurrence of '/' after protocol string
 | |
|         size_t pos = model.find('/');
 | |
|         pos        = model.find('/', pos + 1);
 | |
|         if (pos == std::string::npos) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         const std::string hfr = model.substr(0, pos);
 | |
|         const std::string hff = model.substr(pos + 1);
 | |
|         const std::string url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
 | |
|         return download(url, headers, bn, true);
 | |
|     }
 | |
| 
 | |
|     int ollama_dl(std::string & model, const std::vector<std::string> headers, const std::string & bn) {
 | |
|         if (model.find('/') == std::string::npos) {
 | |
|             model = "library/" + model;
 | |
|         }
 | |
| 
 | |
|         std::string model_tag = "latest";
 | |
|         size_t      colon_pos = model.find(':');
 | |
|         if (colon_pos != std::string::npos) {
 | |
|             model_tag = model.substr(colon_pos + 1);
 | |
|             model     = model.substr(0, colon_pos);
 | |
|         }
 | |
| 
 | |
|         std::string manifest_url = "https://registry.ollama.ai/v2/" + model + "/manifests/" + model_tag;
 | |
|         std::string manifest_str;
 | |
|         const int   ret = download(manifest_url, headers, "", false, &manifest_str);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         nlohmann::json manifest = nlohmann::json::parse(manifest_str);
 | |
|         std::string    layer;
 | |
|         for (const auto & l : manifest["layers"]) {
 | |
|             if (l["mediaType"] == "application/vnd.ollama.image.model") {
 | |
|                 layer = l["digest"];
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         std::string blob_url = "https://registry.ollama.ai/v2/" + model + "/blobs/" + layer;
 | |
|         return download(blob_url, headers, bn, true);
 | |
|     }
 | |
| 
 | |
|     std::string basename(const std::string & path) {
 | |
|         const size_t pos = path.find_last_of("/\\");
 | |
|         if (pos == std::string::npos) {
 | |
|             return path;
 | |
|         }
 | |
| 
 | |
|         return path.substr(pos + 1);
 | |
|     }
 | |
| 
 | |
|     int remove_proto(std::string & model_) {
 | |
|         const std::string::size_type pos = model_.find("://");
 | |
|         if (pos == std::string::npos) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         model_ = model_.substr(pos + 3);  // Skip past "://"
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     int resolve_model(std::string & model_) {
 | |
|         const std::string              bn      = basename(model_);
 | |
|         const std::vector<std::string> headers = { "--header",
 | |
|                                                    "Accept: application/vnd.docker.distribution.manifest.v2+json" };
 | |
|         int                            ret     = 0;
 | |
|         if (string_starts_with(model_, "file://") || std::filesystem::exists(bn)) {
 | |
|             remove_proto(model_);
 | |
|         } else if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
 | |
|             remove_proto(model_);
 | |
|             ret = huggingface_dl(model_, headers, bn);
 | |
|         } else if (string_starts_with(model_, "ollama://")) {
 | |
|             remove_proto(model_);
 | |
|             ret = ollama_dl(model_, headers, bn);
 | |
|         } else if (string_starts_with(model_, "https://")) {
 | |
|             download(model_, headers, bn, true);
 | |
|         } else {
 | |
|             ret = ollama_dl(model_, headers, bn);
 | |
|         }
 | |
| 
 | |
|         model_ = bn;
 | |
| 
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     // Initializes the model and returns a unique pointer to it
 | |
|     llama_model_ptr initialize_model(Opt & opt) {
 | |
|         ggml_backend_load_all();
 | |
|         llama_model_params model_params = llama_model_default_params();
 | |
|         model_params.n_gpu_layers       = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers;
 | |
|         resolve_model(opt.model_);
 | |
|         llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params));
 | |
|         if (!model) {
 | |
|             printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
 | |
|         }
 | |
| 
 | |
|         return model;
 | |
|     }
 | |
| 
 | |
|     // Initializes the context with the specified parameters
 | |
|     llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
 | |
|         llama_context_params ctx_params = llama_context_default_params();
 | |
|         ctx_params.n_ctx                = n_ctx;
 | |
|         ctx_params.n_batch              = n_ctx;
 | |
|         llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
 | |
|         if (!context) {
 | |
|             printe("%s: error: failed to create the llama_context\n", __func__);
 | |
|         }
 | |
| 
 | |
|         return context;
 | |
|     }
 | |
| 
 | |
|     // Initializes and configures the sampler
 | |
|     llama_sampler_ptr initialize_sampler() {
 | |
|         llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
 | |
|         llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
 | |
|         llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f));
 | |
|         llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
 | |
| 
 | |
|         return sampler;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // Add a message to `messages` and store its content in `msg_strs`
 | |
| static void add_message(const char * role, const std::string & text, LlamaData & llama_data) {
 | |
|     llama_data.msg_strs.push_back(std::move(text));
 | |
|     llama_data.messages.push_back({ role, llama_data.msg_strs.back().c_str() });
 | |
| }
 | |
| 
 | |
| // Function to apply the chat template and resize `formatted` if needed
 | |
| static int apply_chat_template(LlamaData & llama_data, const bool append) {
 | |
|     int result = llama_chat_apply_template(
 | |
|         llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append,
 | |
|         append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
 | |
|     if (append && result > static_cast<int>(llama_data.fmtted.size())) {
 | |
|         llama_data.fmtted.resize(result);
 | |
|         result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
 | |
|                                            llama_data.messages.size(), append, llama_data.fmtted.data(),
 | |
|                                            llama_data.fmtted.size());
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Function to tokenize the prompt
 | |
| static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt,
 | |
|                            std::vector<llama_token> & prompt_tokens) {
 | |
|     const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true);
 | |
|     prompt_tokens.resize(n_prompt_tokens);
 | |
|     if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
 | |
|                        true) < 0) {
 | |
|         printe("failed to tokenize the prompt\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return n_prompt_tokens;
 | |
| }
 | |
| 
 | |
| // Check if we have enough space in the context to evaluate this batch
 | |
| static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
 | |
|     const int n_ctx      = llama_n_ctx(ctx.get());
 | |
|     const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
 | |
|     if (n_ctx_used + batch.n_tokens > n_ctx) {
 | |
|         printf("\033[0m\n");
 | |
|         printe("context size exceeded\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // convert the token to a string
 | |
| static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
 | |
|     char buf[256];
 | |
|     int  n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
 | |
|     if (n < 0) {
 | |
|         printe("failed to convert token to piece\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     piece = std::string(buf, n);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) {
 | |
|     printf("%s", piece.c_str());
 | |
|     fflush(stdout);
 | |
|     response += piece;
 | |
| }
 | |
| 
 | |
| // helper function to evaluate a prompt and generate a response
 | |
| static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
 | |
|     std::vector<llama_token> tokens;
 | |
|     if (tokenize_prompt(llama_data.model, prompt, tokens) < 0) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // prepare a batch for the prompt
 | |
|     llama_batch batch = llama_batch_get_one(tokens.data(), tokens.size());
 | |
|     llama_token new_token_id;
 | |
|     while (true) {
 | |
|         check_context_size(llama_data.context, batch);
 | |
|         if (llama_decode(llama_data.context.get(), batch)) {
 | |
|             printe("failed to decode\n");
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         // sample the next token, check is it an end of generation?
 | |
|         new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
 | |
|         if (llama_token_is_eog(llama_data.model.get(), new_token_id)) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         std::string piece;
 | |
|         if (convert_token_to_string(llama_data.model, new_token_id, piece)) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         print_word_and_concatenate_to_response(piece, response);
 | |
| 
 | |
|         // prepare the next batch with the sampled token
 | |
|         batch = llama_batch_get_one(&new_token_id, 1);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int read_user_input(std::string & user) {
 | |
|     std::getline(std::cin, user);
 | |
|     return user.empty();  // Should have data in happy path
 | |
| }
 | |
| 
 | |
| // Function to generate a response based on the prompt
 | |
| static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response) {
 | |
|     // Set response color
 | |
|     printf("\033[33m");
 | |
|     if (generate(llama_data, prompt, response)) {
 | |
|         printe("failed to generate response\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // End response with color reset and newline
 | |
|     printf("\n\033[0m");
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // Helper function to apply the chat template and handle errors
 | |
| static int apply_chat_template_with_error_handling(LlamaData & llama_data, const bool append, int & output_length) {
 | |
|     const int new_len = apply_chat_template(llama_data, append);
 | |
|     if (new_len < 0) {
 | |
|         printe("failed to apply the chat template\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     output_length = new_len;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // Helper function to handle user input
 | |
| static int handle_user_input(std::string & user_input, const std::string & user_) {
 | |
|     if (!user_.empty()) {
 | |
|         user_input = user_;
 | |
|         return 0;  // No need for interactive input
 | |
|     }
 | |
| 
 | |
|     printf(
 | |
|         "\r                                                                       "
 | |
|         "\r\033[32m> \033[0m");
 | |
|     return read_user_input(user_input);  // Returns true if input ends the loop
 | |
| }
 | |
| 
 | |
| // Function to tokenize the prompt
 | |
| static int chat_loop(LlamaData & llama_data, const std::string & user_) {
 | |
|     int prev_len = 0;
 | |
|     llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
 | |
|     while (true) {
 | |
|         // Get user input
 | |
|         std::string user_input;
 | |
|         while (handle_user_input(user_input, user_)) {
 | |
|         }
 | |
| 
 | |
|         add_message("user", user_.empty() ? user_input : user_, llama_data);
 | |
|         int new_len;
 | |
|         if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
 | |
|         std::string response;
 | |
|         if (generate_response(llama_data, prompt, response)) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         if (!user_.empty()) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         add_message("assistant", response, llama_data);
 | |
|         if (apply_chat_template_with_error_handling(llama_data, false, prev_len) < 0) {
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void log_callback(const enum ggml_log_level level, const char * text, void *) {
 | |
|     if (level == GGML_LOG_LEVEL_ERROR) {
 | |
|         printe("%s", text);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool is_stdin_a_terminal() {
 | |
| #if defined(_WIN32)
 | |
|     HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
 | |
|     DWORD  mode;
 | |
|     return GetConsoleMode(hStdin, &mode);
 | |
| #else
 | |
|     return isatty(STDIN_FILENO);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static std::string read_pipe_data() {
 | |
|     std::ostringstream result;
 | |
|     result << std::cin.rdbuf();  // Read all data from std::cin
 | |
|     return result.str();
 | |
| }
 | |
| 
 | |
| int main(int argc, const char ** argv) {
 | |
|     Opt       opt;
 | |
|     const int ret = opt.init(argc, argv);
 | |
|     if (ret == 2) {
 | |
|         return 0;
 | |
|     } else if (ret) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (!is_stdin_a_terminal()) {
 | |
|         if (!opt.user_.empty()) {
 | |
|             opt.user_ += "\n\n";
 | |
|         }
 | |
| 
 | |
|         opt.user_ += read_pipe_data();
 | |
|     }
 | |
| 
 | |
|     llama_log_set(log_callback, nullptr);
 | |
|     LlamaData llama_data;
 | |
|     if (llama_data.init(opt)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (chat_loop(llama_data, opt.user_)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 |