mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1640 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1640 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "train.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| #ifdef LLAMA_DEFAULT_RMS_EPS
 | |
| constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
 | |
| #else
 | |
| constexpr float rms_norm_eps = 5e-6f;
 | |
| #endif
 | |
| 
 | |
| static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
 | |
|     struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
 | |
| 
 | |
|     if (plan.work_size > 0) {
 | |
|         buf.resize(plan.work_size);
 | |
|         plan.work_data = buf.data();
 | |
|     }
 | |
| 
 | |
|     ggml_graph_compute(graph, &plan);
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * randomize_tensor(
 | |
|     struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax
 | |
| ) {
 | |
|     switch (ndims) {
 | |
|         case 1:
 | |
|             for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                 ((float *)tensor->data)[i0] = frand()*(fmax - fmin) + fmin;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                     ((float *)tensor->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                         ((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             for (int i3 = 0; i3 < ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                             ((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     }
 | |
| 
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| struct llama_hparams {
 | |
|     uint32_t n_vocab = 32000;
 | |
|     uint32_t n_ctx   = 512;   // this is provided as user input?
 | |
|     uint32_t n_embd  = 4096;
 | |
|     uint32_t n_mult  = 4;
 | |
|     uint32_t n_head  = 32;
 | |
|     uint32_t n_layer = 32;
 | |
|     uint32_t n_rot   = 64;
 | |
| 
 | |
|     bool operator!=(const llama_hparams & other) const {
 | |
|         return memcmp(this, &other, sizeof(llama_hparams));
 | |
|     }
 | |
| };
 | |
| 
 | |
| static uint32_t get_n_ff(const struct llama_hparams* hparams) {
 | |
|     const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
 | |
|     return n_ff;
 | |
| }
 | |
| 
 | |
| struct llama_hparams_lora {
 | |
|     uint32_t n_vocab = 32000;
 | |
|     uint32_t n_ctx   = 512;   // this is provided as user input?
 | |
|     uint32_t n_embd  = 4096;
 | |
|     uint32_t n_mult  = 4;
 | |
|     uint32_t n_head  = 32;
 | |
|     uint32_t n_layer = 32;
 | |
|     uint32_t n_rot   = 64;
 | |
|     uint32_t n_lora  = 64;
 | |
| 
 | |
|     bool operator!=(const llama_hparams_lora & other) const {
 | |
|         return memcmp(this, &other, sizeof(llama_hparams_lora)) != 0;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attention_norm;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wq;
 | |
|     struct ggml_tensor * wk;
 | |
|     struct ggml_tensor * wv;
 | |
|     struct ggml_tensor * wo;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * w1;
 | |
|     struct ggml_tensor * w2;
 | |
|     struct ggml_tensor * w3;
 | |
| };
 | |
| 
 | |
| struct llama_layer_lora {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attention_norm;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wqa;
 | |
|     struct ggml_tensor * wqb;
 | |
|     struct ggml_tensor * wka;
 | |
|     struct ggml_tensor * wkb;
 | |
|     struct ggml_tensor * wva;
 | |
|     struct ggml_tensor * wvb;
 | |
|     struct ggml_tensor * woa;
 | |
|     struct ggml_tensor * wob;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * w1;
 | |
|     struct ggml_tensor * w2;
 | |
|     struct ggml_tensor * w3;
 | |
| };
 | |
| 
 | |
| 
 | |
| struct llama_kv_cache {
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     struct ggml_tensor * k;
 | |
|     struct ggml_tensor * v;
 | |
| 
 | |
|     // llama_ctx_buffer buf;
 | |
| 
 | |
|     int n; // number of tokens currently in the cache
 | |
| };
 | |
| 
 | |
| struct llama_model {
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     llama_hparams hparams;
 | |
| 
 | |
|     struct ggml_tensor * tok_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * norm;
 | |
|     struct ggml_tensor * output;
 | |
| 
 | |
|     std::vector<llama_layer> layers;
 | |
| };
 | |
| 
 | |
| struct llama_model_lora {
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     llama_hparams_lora hparams;
 | |
| 
 | |
|     struct ggml_tensor * tok_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * norm;
 | |
|     struct ggml_tensor * outputa;
 | |
|     struct ggml_tensor * outputb;
 | |
| 
 | |
|     std::vector<llama_layer_lora> layers;
 | |
| };
 | |
| 
 | |
| static void init_model(struct llama_model * model) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_embd  = hparams.n_embd;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
|     const uint32_t n_vocab = hparams.n_vocab;
 | |
| 
 | |
|     const uint32_t n_ff = get_n_ff(&hparams);
 | |
| 
 | |
|     struct ggml_context * ctx = model->ctx;
 | |
| 
 | |
|     model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab});
 | |
|     model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);          // ("norm.weight",           {n_embd});
 | |
|     model->output         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("output.weight",         {n_embd, n_vocab});
 | |
| 
 | |
|     model->layers.resize(n_layer);
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         // std::string layers_i = "layers." + std::to_string(i);
 | |
| 
 | |
|         layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd});
 | |
| 
 | |
|         layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);     // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
 | |
|         layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);     // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
 | |
|         layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);     // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
 | |
|         layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);     // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
 | |
| 
 | |
|         layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);       // (layers_i + ".ffn_norm.weight", {n_embd});
 | |
| 
 | |
|         layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);     // (layers_i + ".feed_forward.w1.weight", {n_embd,   n_ff});
 | |
|         layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32,   n_ff, n_embd);     // (layers_i + ".feed_forward.w2.weight", {  n_ff,   n_embd});
 | |
|         layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);     // (layers_i + ".feed_forward.w3.weight", {n_embd,   n_ff});
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void init_model_lora(struct llama_model_lora * model) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_embd  = hparams.n_embd;
 | |
|     const uint32_t n_mult  = hparams.n_mult;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
|     const uint32_t n_vocab = hparams.n_vocab;
 | |
|     const uint32_t n_lora  = hparams.n_lora;
 | |
| 
 | |
|     const uint32_t n_ff = ((2*(4*n_embd)/3 + n_mult - 1)/n_mult)*n_mult;
 | |
| 
 | |
|     struct ggml_context * ctx = model->ctx;
 | |
| 
 | |
|     model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab});
 | |
|     model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);          // ("norm.weight",           {n_embd});
 | |
|     model->outputa        = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_vocab); // ("output.weight",         {n_embd, n_vocab});
 | |
|     model->outputb        = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,  n_lora); // ("output.weight",         {n_embd, n_vocab});
 | |
| 
 | |
|     model->layers.resize(n_layer);
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         // std::string layers_i = "layers." + std::to_string(i);
 | |
| 
 | |
|         layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd});
 | |
| 
 | |
|         layer.wqa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd);    // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
 | |
|         layer.wqb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora);    // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
 | |
|         layer.wka = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd);    // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
 | |
|         layer.wkb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora);    // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
 | |
|         layer.wva = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd);    // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
 | |
|         layer.wvb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora);    // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
 | |
|         layer.woa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd);    // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
 | |
|         layer.wob = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora);    // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
 | |
| 
 | |
|         layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);       // (layers_i + ".ffn_norm.weight", {n_embd});
 | |
| 
 | |
|         layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);     // (layers_i + ".feed_forward.w1.weight", {n_embd,   n_ff});
 | |
|         layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32,   n_ff, n_embd);     // (layers_i + ".feed_forward.w2.weight", {  n_ff,   n_embd});
 | |
|         layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);     // (layers_i + ".feed_forward.w3.weight", {n_embd,   n_ff});
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void set_param_model(struct llama_model * model) {
 | |
|     const auto& hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     struct ggml_context* ctx = model->ctx;
 | |
| 
 | |
|     ggml_set_param(ctx, model->tok_embeddings);
 | |
|     ggml_set_param(ctx, model->norm);
 | |
|     ggml_set_param(ctx, model->output);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         ggml_set_param(ctx, layer.attention_norm);
 | |
|         ggml_set_param(ctx, layer.wq);
 | |
|         ggml_set_param(ctx, layer.wk);
 | |
|         ggml_set_param(ctx, layer.wv);
 | |
|         ggml_set_param(ctx, layer.wo);
 | |
|         ggml_set_param(ctx, layer.ffn_norm);
 | |
|         ggml_set_param(ctx, layer.w1);
 | |
|         ggml_set_param(ctx, layer.w2);
 | |
|         ggml_set_param(ctx, layer.w3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void set_param_model_lora(struct llama_model_lora * model) {
 | |
|     const auto& hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     struct ggml_context* ctx = model->ctx;
 | |
| 
 | |
|     ggml_set_param(ctx, model->tok_embeddings);
 | |
|     ggml_set_param(ctx, model->norm);
 | |
|     ggml_set_param(ctx, model->outputa);
 | |
|     ggml_set_param(ctx, model->outputb);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         ggml_set_param(ctx, layer.attention_norm);
 | |
|         ggml_set_param(ctx, layer.wqa);
 | |
|         ggml_set_param(ctx, layer.wqb);
 | |
|         ggml_set_param(ctx, layer.wka);
 | |
|         ggml_set_param(ctx, layer.wkb);
 | |
|         ggml_set_param(ctx, layer.wva);
 | |
|         ggml_set_param(ctx, layer.wvb);
 | |
|         ggml_set_param(ctx, layer.woa);
 | |
|         ggml_set_param(ctx, layer.wob);
 | |
|         ggml_set_param(ctx, layer.ffn_norm);
 | |
|         ggml_set_param(ctx, layer.w1);
 | |
|         ggml_set_param(ctx, layer.w2);
 | |
|         ggml_set_param(ctx, layer.w3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
 | |
| 
 | |
|     randomize_tensor_normal(model->tok_embeddings , rnd);
 | |
|     randomize_tensor_normal(model->norm           , rnd);
 | |
|     randomize_tensor_normal(model->output         , rnd);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
|         randomize_tensor_normal(layer.attention_norm, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.wq, rnd);
 | |
|         randomize_tensor_normal(layer.wk, rnd);
 | |
|         randomize_tensor_normal(layer.wv, rnd);
 | |
|         randomize_tensor_normal(layer.wo, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.ffn_norm, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.w1, rnd);
 | |
|         randomize_tensor_normal(layer.w2, rnd);
 | |
|         randomize_tensor_normal(layer.w3, rnd);
 | |
|     }
 | |
| 
 | |
|     free_random_normal_distribution(rnd);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void randomize_model_lora(
 | |
|     struct llama_model_lora * model, int seed, float mean, float std, float min, float max
 | |
| ) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
 | |
| 
 | |
|     randomize_tensor_normal(model->tok_embeddings, rnd);
 | |
|     randomize_tensor_normal(model->norm          , rnd);
 | |
|     randomize_tensor_normal(model->outputa       , rnd);
 | |
|     randomize_tensor_normal(model->outputb       , rnd);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
|         randomize_tensor_normal(layer.attention_norm, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.wqa, rnd);
 | |
|         randomize_tensor_normal(layer.wqb, rnd);
 | |
|         randomize_tensor_normal(layer.wka, rnd);
 | |
|         randomize_tensor_normal(layer.wkb, rnd);
 | |
|         randomize_tensor_normal(layer.wva, rnd);
 | |
|         randomize_tensor_normal(layer.wvb, rnd);
 | |
|         randomize_tensor_normal(layer.woa, rnd);
 | |
|         randomize_tensor_normal(layer.wob, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.ffn_norm, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.w1, rnd);
 | |
|         randomize_tensor_normal(layer.w2, rnd);
 | |
|         randomize_tensor_normal(layer.w3, rnd);
 | |
|     }
 | |
| 
 | |
|     free_random_normal_distribution(rnd);
 | |
| }
 | |
| 
 | |
| static void init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_ctx   = hparams.n_ctx;
 | |
|     const uint32_t n_embd  = hparams.n_embd;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     const int64_t n_mem      = n_layer*n_ctx*n_batch;
 | |
|     const int64_t n_elements = n_embd*n_mem;
 | |
| 
 | |
|     // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
 | |
| 
 | |
|     // struct ggml_init_params params;
 | |
|     // params.mem_size   = cache.buf.size;
 | |
|     // params.mem_buffer = cache.buf.addr;
 | |
|     // params.no_alloc   = false;
 | |
|     if (!cache->ctx) {
 | |
|         struct ggml_init_params params;
 | |
|         params.mem_size   = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
 | |
|         params.mem_buffer = NULL;
 | |
|         params.no_alloc   = false;
 | |
| 
 | |
|         cache->ctx = ggml_init(params);
 | |
| 
 | |
|         if (!cache->ctx) {
 | |
|             fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
 | |
|     cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
 | |
| }
 | |
| 
 | |
| static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_ctx   = hparams.n_ctx;
 | |
|     const uint32_t n_embd  = hparams.n_embd;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     const int64_t n_mem      = n_layer*n_ctx*n_batch;
 | |
|     const int64_t n_elements = n_embd*n_mem;
 | |
| 
 | |
|     // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
 | |
| 
 | |
|     // struct ggml_init_params params;
 | |
|     // params.mem_size   = cache.buf.size;
 | |
|     // params.mem_buffer = cache.buf.addr;
 | |
|     // params.no_alloc   = false;
 | |
|     if (!cache->ctx) {
 | |
|         struct ggml_init_params params;
 | |
|         params.mem_size   = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
 | |
|         params.mem_buffer = NULL;
 | |
|         params.no_alloc   = false;
 | |
| 
 | |
|         cache->ctx = ggml_init(params);
 | |
| 
 | |
|         if (!cache->ctx) {
 | |
|             fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
 | |
|     cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * forward(
 | |
|     struct llama_model    * model,
 | |
|     struct llama_kv_cache * cache,
 | |
|     struct ggml_context   * ctx0,
 | |
|     struct ggml_cgraph    * gf,
 | |
|     struct ggml_tensor    * tokens_input,
 | |
|     const  int              n_tokens,
 | |
|     const  int              n_past
 | |
| ) {
 | |
|     const int N = n_tokens;
 | |
| 
 | |
|     struct llama_kv_cache& kv_self = *cache;
 | |
|     const auto & hparams = model->hparams;
 | |
|     const int n_ctx   = hparams.n_ctx;
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     const int n_head  = hparams.n_head;
 | |
|     const int n_rot   = hparams.n_rot;
 | |
| 
 | |
|     struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens));
 | |
| 
 | |
|     struct ggml_tensor * kc = kv_self.k;
 | |
|     struct ggml_tensor * vc = kv_self.v;
 | |
| 
 | |
|     struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     {
 | |
|         int * data = (int *) KQ_pos->data;
 | |
|         for (int i = 0; i < N; ++i) {
 | |
|             data[i] = n_past + i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // inpL shape [n_embd,N,1,1]
 | |
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
| 
 | |
|         // lctx.use_buf(ctx0, 0);
 | |
| 
 | |
|         // norm
 | |
|         {
 | |
|             // cur shape [n_embd,N,1,1]
 | |
|             cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
 | |
| 
 | |
|             // cur = attention_norm*cur
 | |
|             cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
 | |
|                         cur);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
|             // compute Q and K and RoPE them
 | |
|             // wq   shape [n_embd, n_embd, 1, 1]
 | |
|             // wk   shape [n_embd, n_embd, 1, 1]
 | |
|             // Qcur shape [n_embd/n_head, n_head, N, 1]
 | |
|             // Kcur shape [n_embd/n_head, n_head, N, 1]
 | |
|             struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0);
 | |
|             struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0);
 | |
| 
 | |
|             // store key and value to memory
 | |
|             {
 | |
|                 // compute the transposed [N, n_embd] V matrix
 | |
|                 // wv   shape [n_embd, n_embd, 1, 1]
 | |
|                 // Vcur shape [n_embd, N, 1, 1]
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N)));
 | |
| 
 | |
|                 // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
 | |
|                 // kv_self.v shape [n_embd * n_ctx * n_layer, 1]
 | |
|                 // k         shape [n_embd * N, 1]   == kv_self.k[:,n_past:n_past+N,il,0]
 | |
|                 // v         shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0]
 | |
| 
 | |
|                 /* {
 | |
|                     struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
 | |
|                     struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
 | |
|                             (   n_ctx)*ggml_element_size(kv_self.v),
 | |
|                             (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
 | |
| 
 | |
|                     // important: storing RoPE-ed version of K in the KV cache!
 | |
|                     ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
 | |
|                     ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
 | |
|                 } //*/
 | |
| 
 | |
|                 kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
 | |
|                 vc = ggml_set_2d(ctx0, vc, Vcur, (   n_ctx)*ggml_element_size(kv_self.v),
 | |
|                         (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
 | |
|             }
 | |
| 
 | |
|             // Qcur shape [n_embd/n_head, n_head, N, 1]
 | |
|             // Q shape    [n_embd/n_head, N, n_head, 1]
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_permute(ctx0,
 | |
|                         Qcur,
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
 | |
|             // K shape [n_embd/n_head, n_past + N, n_head, 1]
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0,
 | |
|                             ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd),
 | |
|                             n_embd/n_head, n_head, n_past + N),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K * Q
 | |
|             // KQ shape [n_past + N, N, n_head, 1]
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
| 
 | |
|             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | |
|             // KQ_scaled shape [n_past + N, N, n_head, 1]
 | |
|             struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
 | |
| 
 | |
|             // KQ_masked = mask_past(KQ_scaled)
 | |
|             // KQ_masked shape [n_past + N, N, n_head, 1]
 | |
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
 | |
| 
 | |
|             // KQ = soft_max(KQ_masked)
 | |
|             // KQ_soft_max shape [n_past + N, N, n_head, 1]
 | |
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | |
| 
 | |
|             // split cached V into n_head heads
 | |
|             //// V shape [n_past + N, n_embd/n_head, n_head, 1]
 | |
|             // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1]
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_view_3d(ctx0, vc,
 | |
|                         n_past + N, n_embd/n_head, n_head,
 | |
|                         n_ctx*ggml_element_size(vc),
 | |
|                         n_ctx*ggml_element_size(vc)*n_embd/n_head,
 | |
|                         il*n_ctx*ggml_element_size(vc)*n_embd);
 | |
| 
 | |
|             // KQV shape [n_embd/n_head, N, n_head, 1]
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
 | |
| 
 | |
|             // KQV_merged = KQV.permute(0, 2, 1, 3)
 | |
|             // KQV_merged shape [n_embd/n_head, n_head, N, 1]
 | |
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
|             // KQV_merged shape
 | |
| 
 | |
|             // cur = KQV_merged.contiguous().view(n_embd, N)
 | |
|             // cur shape [n_embd,N,1,1]
 | |
|             cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N);
 | |
|             // cur = ggml_cpy(ctx0,
 | |
|             //         KQV_merged,
 | |
|             //         ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | |
| 
 | |
|             // projection (no bias)
 | |
|             // cur shape [n_embd,N,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].wo,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         // lctx.use_buf(ctx0, 1);
 | |
| 
 | |
|         // inpFF shape [n_embd,N,1,1]
 | |
|         struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | |
| 
 | |
|         // feed-forward network
 | |
|         {
 | |
|             // norm
 | |
|             {
 | |
|                 // cur shape [n_embd,N,1,1]
 | |
|                 cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
 | |
| 
 | |
|                 // cur = ffn_norm*cur
 | |
|                 // cur shape [n_embd,N,1,1]
 | |
|                 cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
 | |
|                         cur);
 | |
|             }
 | |
| 
 | |
|             // tmp shape [n_ff,N,1,1]
 | |
|             struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w3,
 | |
|                     cur);
 | |
| 
 | |
|             // cur shape [n_ff,N,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w1,
 | |
|                     cur);
 | |
| 
 | |
|             // SILU activation
 | |
|             // cur shape [n_ff,N,1,1]
 | |
|             cur = ggml_silu(ctx0, cur);
 | |
| 
 | |
|             // cur shape [n_ff,N,1,1]
 | |
|             cur = ggml_mul(ctx0, cur, tmp);
 | |
| 
 | |
|             // cur shape [n_embd,N,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w2,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         // cur shape [n_embd,N,1,1]
 | |
|         cur = ggml_add(ctx0, cur, inpFF);
 | |
| 
 | |
|         // input for next layer
 | |
|         // inpL shape [n_embd,N,1,1]
 | |
|         inpL = cur;
 | |
|     }
 | |
| 
 | |
|     // norm
 | |
|     {
 | |
| 
 | |
|         // inpL shape [n_embd,N,1,1]
 | |
|         inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
 | |
| 
 | |
|         // inpL = norm*inpL
 | |
|         // inpL shape [n_embd,N,1,1]
 | |
|         inpL = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model->norm, inpL),
 | |
|                     inpL);
 | |
| 
 | |
|         //embeddings = inpL;
 | |
|     }
 | |
| 
 | |
|     // lm_head
 | |
|     // inpL shape [n_vocab,N,1,1]
 | |
|     inpL = ggml_mul_mat(ctx0, model->output, inpL);
 | |
| 
 | |
|     // run the computation
 | |
|     ggml_build_forward_expand(gf, inpL);
 | |
| 
 | |
|     return inpL;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * forward_batch(
 | |
|     struct llama_model    * model,
 | |
|     struct llama_kv_cache * cache,
 | |
|     struct ggml_context   * ctx0,
 | |
|     struct ggml_cgraph    * gf,
 | |
|     struct ggml_tensor    * tokens_input,
 | |
|     const  int              n_tokens,
 | |
|     const  int              n_past,
 | |
|     const  int              n_batch
 | |
| ) {
 | |
|     const int N = n_tokens;
 | |
| 
 | |
|     struct llama_kv_cache& kv_self = *cache;
 | |
|     const auto & hparams = model->hparams;
 | |
|     const int n_ctx   = hparams.n_ctx;
 | |
|     const int n_vocab = hparams.n_vocab;
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     const int n_head  = hparams.n_head;
 | |
|     const int n_rot   = hparams.n_rot;
 | |
|     const int n_ff    = get_n_ff(&hparams);
 | |
| 
 | |
|     struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch);
 | |
|     memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch);
 | |
| 
 | |
|     struct ggml_tensor * kc = kv_self.k;
 | |
|     struct ggml_tensor * vc = kv_self.v;
 | |
| 
 | |
|     struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     {
 | |
|         int * data = (int *) KQ_pos->data;
 | |
|         for (int i = 0; i < N; ++i) {
 | |
|             data[i] = n_past + i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // inpL shape [n_embd,N*n_batch,1]
 | |
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
 | |
|     assert_shape_2d(inpL, n_embd, N*n_batch);
 | |
| 
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
| 
 | |
|         // lctx.use_buf(ctx0, 0);
 | |
| 
 | |
|         // norm
 | |
|         {
 | |
|             // cur shape [n_embd,N*n_batch,1,1]
 | |
|             cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
 | |
|             assert_shape_2d(cur, n_embd, N*n_batch);
 | |
| 
 | |
|             // cur = attention_norm*cur
 | |
|             cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
 | |
|                         cur);
 | |
|             assert_shape_2d(cur, n_embd, N*n_batch);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
|             // compute Q and K and RoPE them
 | |
|             // wq   shape [n_embd, n_embd, 1, 1]
 | |
|             // wk   shape [n_embd, n_embd, 1, 1]
 | |
|             // Qcur shape [n_embd/n_head, n_head, N, n_batch]
 | |
|             // Kcur shape [n_embd/n_head, n_head, N, n_batch]
 | |
|             struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0);
 | |
|             struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0);
 | |
|             assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
 | |
|             assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
 | |
| 
 | |
|             // store key and value to memory
 | |
|             {
 | |
|                 // compute the transposed [N, n_embd] V matrix
 | |
|                 // wv   shape [n_embd, n_embd, 1, 1]
 | |
|                 // Vcur shape [N, n_embd, n_batch, 1]
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0,
 | |
|                     ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0,
 | |
|                             ggml_mul_mat(ctx0,
 | |
|                                 model->layers[il].wv,
 | |
|                                 cur),
 | |
|                         n_embd, N, n_batch),
 | |
|                         1, 0, 2, 3));
 | |
| 
 | |
|                 assert_shape_3d(Vcur, N, n_embd, n_batch);
 | |
| 
 | |
|                 // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
 | |
|                 // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer]
 | |
|                 // k         shape [n_embd * N, n_batch]   == kv_self.k[:,n_past:n_past+N,:,il]
 | |
|                 // v         shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il]
 | |
| 
 | |
|                 /* {
 | |
|                     struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
 | |
|                     struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
 | |
|                             (   n_ctx)*ggml_element_size(kv_self.v),
 | |
|                             (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
 | |
| 
 | |
|                     // important: storing RoPE-ed version of K in the KV cache!
 | |
|                     ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
 | |
|                     ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
 | |
|                 } //*/
 | |
| 
 | |
|                 kc = ggml_set_2d(ctx0, kc,
 | |
|                         ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch),
 | |
|                         ggml_element_size(kc)*n_embd*n_ctx,
 | |
|                         (ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past));
 | |
|                 vc = ggml_set_2d(ctx0, vc,
 | |
|                         ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch),
 | |
|                         ggml_element_size(vc)*n_ctx*n_embd,
 | |
|                         ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx));
 | |
| 
 | |
|                 assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer);
 | |
|                 assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer);
 | |
|             }
 | |
| 
 | |
|             // Qcur shape [n_embd/n_head, n_head, N, n_batch]
 | |
|             // Q shape    [n_embd/n_head, N, n_head, n_batch]
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_permute(ctx0,
 | |
|                         Qcur,
 | |
|                         0, 2, 1, 3);
 | |
|             assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch);
 | |
| 
 | |
|             // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
 | |
|             // K shape [n_embd/n_head, n_past + N, n_head, n_batch]
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_4d(ctx0,
 | |
|                             ggml_view_3d(ctx0,
 | |
|                                 kc,
 | |
|                                 n_embd,
 | |
|                                 (n_past + N),
 | |
|                                 n_batch,
 | |
|                                 n_embd*ggml_element_size(kc),
 | |
|                                 n_ctx*n_embd*ggml_element_size(kc),
 | |
|                                 il*n_batch*n_ctx*n_embd*ggml_element_size(kc)),
 | |
|                             n_embd/n_head, n_head, n_past + N, n_batch),
 | |
|                         0, 2, 1, 3);
 | |
|             assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch);
 | |
| 
 | |
|             // K * Q
 | |
|             // KQ shape [n_past + N, N, n_head, n_batch]
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
|             assert_shape_4d(KQ, n_past + N, N, n_head, n_batch);
 | |
| 
 | |
|             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | |
|             // KQ_scaled shape [n_past + N, N, n_head, n_batch]
 | |
|             struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
 | |
|             assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
 | |
| 
 | |
|             // KQ_masked = mask_past(KQ_scaled)
 | |
|             // KQ_masked shape [n_past + N, N, n_head, n_batch]
 | |
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
 | |
|             assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch);
 | |
| 
 | |
|             // KQ = soft_max(KQ_masked)
 | |
|             // KQ_soft_max shape [n_past + N, N, n_head, n_batch]
 | |
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | |
|             assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch);
 | |
| 
 | |
|             // split cached V into n_head heads
 | |
|             // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer]
 | |
|             // V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il]
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_view_4d(ctx0, vc,
 | |
|                         n_past + N, n_embd/n_head, n_head, n_batch,
 | |
|                         ggml_element_size(vc)*n_ctx,
 | |
|                         ggml_element_size(vc)*n_ctx*n_embd/n_head,
 | |
|                         ggml_element_size(vc)*n_ctx*n_embd,
 | |
|                         il*n_batch*n_ctx*n_embd*ggml_element_size(vc));
 | |
|             assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch);
 | |
| 
 | |
|             // KQV shape [n_embd/n_head, N, n_head, n_batch]
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
 | |
|             assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch);
 | |
| 
 | |
|             // KQV_merged = KQV.permute(0, 2, 1, 3)
 | |
|             // KQV_merged shape [n_embd/n_head, n_head, N, n_batch]
 | |
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
|             assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch);
 | |
|             // KQV_merged shape
 | |
| 
 | |
|             // cur = KQV_merged.contiguous().view(n_embd, N)
 | |
|             // cur shape [n_embd,N*n_batch,1,1]
 | |
|             cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch);
 | |
|             assert_shape_2d(cur, n_embd, N*n_batch);
 | |
|             // cur = ggml_cpy(ctx0,
 | |
|             //         KQV_merged,
 | |
|             //         ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | |
| 
 | |
|             // projection (no bias)
 | |
|             // cur shape [n_embd,N*n_batch,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].wo,
 | |
|                     cur);
 | |
|             assert_shape_2d(cur, n_embd, N*n_batch);
 | |
|         }
 | |
| 
 | |
|         // lctx.use_buf(ctx0, 1);
 | |
| 
 | |
|         // inpFF shape [n_embd,N*n_batch,1,1]
 | |
|         struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | |
|         assert_shape_2d(inpFF, n_embd, N*n_batch);
 | |
| 
 | |
|         // feed-forward network
 | |
|         {
 | |
|             // norm
 | |
|             {
 | |
|                 // cur shape [n_embd,N*n_batch,1,1]
 | |
|                 cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
 | |
|                 assert_shape_2d(cur, n_embd, N*n_batch);
 | |
| 
 | |
|                 // cur = ffn_norm*cur
 | |
|                 // cur shape [n_embd,N*n_batch,1,1]
 | |
|                 cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
 | |
|                         cur);
 | |
|                 assert_shape_2d(cur, n_embd, N*n_batch);
 | |
|             }
 | |
| 
 | |
|             // tmp shape [n_ff,N*n_batch,1,1]
 | |
|             struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w3,
 | |
|                     cur);
 | |
|             assert_shape_2d(tmp, n_ff, N*n_batch);
 | |
| 
 | |
|             // cur shape [n_ff,N*n_batch,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w1,
 | |
|                     cur);
 | |
|             assert_shape_2d(cur, n_ff, N*n_batch);
 | |
| 
 | |
|             // SILU activation
 | |
|             // cur shape [n_ff,N*n_batch,1,1]
 | |
|             cur = ggml_silu(ctx0, cur);
 | |
|             assert_shape_2d(cur, n_ff, N*n_batch);
 | |
| 
 | |
|             // cur shape [n_ff,N*n_batch,1,1]
 | |
|             cur = ggml_mul(ctx0, cur, tmp);
 | |
|             assert_shape_2d(cur, n_ff, N*n_batch);
 | |
| 
 | |
|             // cur shape [n_embd,N*n_batch,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w2,
 | |
|                     cur);
 | |
|             assert_shape_2d(cur, n_embd, N*n_batch);
 | |
|         }
 | |
| 
 | |
|         // cur shape [n_embd,N*n_batch,1,1]
 | |
|         cur = ggml_add(ctx0, cur, inpFF);
 | |
|         assert_shape_2d(cur, n_embd, N*n_batch);
 | |
| 
 | |
|         // input for next layer
 | |
|         // inpL shape [n_embd,N*n_batch,1,1]
 | |
|         inpL = cur;
 | |
|         assert_shape_2d(inpL, n_embd, N*n_batch);
 | |
|     }
 | |
| 
 | |
|     // norm
 | |
|     {
 | |
| 
 | |
|         // inpL shape [n_embd,N*n_batch,1,1]
 | |
|         inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
 | |
|         assert_shape_2d(inpL, n_embd, N*n_batch);
 | |
| 
 | |
|         // inpL = norm*inpL
 | |
|         // inpL shape [n_embd,N*n_batch,1,1]
 | |
|         inpL = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model->norm, inpL),
 | |
|                     inpL);
 | |
| 
 | |
|         assert_shape_2d(inpL, n_embd, N*n_batch);
 | |
| 
 | |
|         //embeddings = inpL;
 | |
|     }
 | |
| 
 | |
|     // lm_head
 | |
|     // inpL shape [n_vocab,N*n_batch,1,1]
 | |
|     inpL = ggml_mul_mat(ctx0, model->output, inpL);
 | |
|     assert_shape_2d(inpL, n_vocab, N*n_batch);
 | |
| 
 | |
|     {
 | |
|         // inpL shape [n_vocab,N,n_batch,1]
 | |
|         inpL = ggml_reshape_3d(ctx0,
 | |
|                         inpL,
 | |
|                         n_vocab, N, n_batch);
 | |
|         assert_shape_3d(inpL, n_vocab, N, n_batch);
 | |
|     }
 | |
| 
 | |
|     // run the computation
 | |
|     ggml_build_forward_expand(gf, inpL);
 | |
| 
 | |
|     return inpL;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * forward_lora(
 | |
|     struct llama_model_lora * model,
 | |
|     struct llama_kv_cache   * cache,
 | |
|     struct ggml_context     * ctx0,
 | |
|     struct ggml_cgraph      * gf,
 | |
|     struct ggml_tensor      * tokens_input,
 | |
|     const  int                n_tokens,
 | |
|     const  int                n_past
 | |
| ) {
 | |
|     const int N = n_tokens;
 | |
| 
 | |
|     struct llama_kv_cache& kv_self = *cache;
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const int n_ctx   = hparams.n_ctx;
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     const int n_head  = hparams.n_head;
 | |
|     const int n_rot   = hparams.n_rot;
 | |
| 
 | |
|     struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens));
 | |
| 
 | |
|     struct ggml_tensor * kc = kv_self.k;
 | |
|     struct ggml_tensor * vc = kv_self.v;
 | |
| 
 | |
|     struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     {
 | |
|         int * data = (int *) KQ_pos->data;
 | |
|         for (int i = 0; i < N; ++i) {
 | |
|             data[i] = n_past + i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // inpL shape [n_embd,N,1,1]
 | |
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
| 
 | |
|         // norm
 | |
|         {
 | |
|             // cur shape [n_embd,N,1,1]
 | |
|             cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
 | |
| 
 | |
|             // cur = attention_norm*cur
 | |
|             cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
 | |
|                         cur);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
|             // compute Q and K and RoPE them
 | |
|             // wq   shape [n_embd, n_embd, 1, 1]
 | |
|             // wk   shape [n_embd, n_embd, 1, 1]
 | |
|             // Qcur shape [n_embd/n_head, n_head, N, 1]
 | |
|             // Kcur shape [n_embd/n_head, n_head, N, 1]
 | |
|             struct ggml_tensor * Qcur = ggml_rope(ctx0,
 | |
|                                             ggml_reshape_3d(ctx0,
 | |
|                                                 ggml_mul_mat(ctx0,
 | |
|                                                     model->layers[il].wqa,
 | |
|                                                     ggml_mul_mat(ctx0,
 | |
|                                                         model->layers[il].wqb,
 | |
|                                                         cur)),
 | |
|                                                 n_embd/n_head, n_head, N),
 | |
|                                             KQ_pos, n_rot, 0);
 | |
|             struct ggml_tensor * Kcur = ggml_rope(ctx0,
 | |
|                                             ggml_reshape_3d(ctx0,
 | |
|                                                 ggml_mul_mat(ctx0,
 | |
|                                                     model->layers[il].wka,
 | |
|                                                     ggml_mul_mat(ctx0,
 | |
|                                                         model->layers[il].wkb,
 | |
|                                                         cur)),
 | |
|                                                 n_embd/n_head, n_head, N),
 | |
|                                             KQ_pos, n_rot, 0);
 | |
| 
 | |
|             // store key and value to memory
 | |
|             {
 | |
|                 // compute the transposed [N, n_embd] V matrix
 | |
|                 // wv   shape [n_embd, n_embd, 1, 1]
 | |
|                 // Vcur shape [n_embd, N, 1, 1]
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0,
 | |
|                                                 ggml_transpose(ctx0,
 | |
|                                                     ggml_reshape_2d(ctx0,
 | |
|                                                         ggml_mul_mat(ctx0,
 | |
|                                                             model->layers[il].wva,
 | |
|                                                             ggml_mul_mat(ctx0,
 | |
|                                                                 model->layers[il].wvb,
 | |
|                                                                 cur)),
 | |
|                                                         n_embd, N)));
 | |
| 
 | |
|                 // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
 | |
|                 // kv_self.v shape [n_embd * n_ctx * n_layer, 1]
 | |
|                 // k         shape [n_embd * N, 1]   == kv_self.k[:,n_past:n_past+N,il,0]
 | |
|                 // v         shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0]
 | |
| 
 | |
|                 /* {
 | |
|                     struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
 | |
|                     struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
 | |
|                             (   n_ctx)*ggml_element_size(kv_self.v),
 | |
|                             (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
 | |
| 
 | |
|                     // important: storing RoPE-ed version of K in the KV cache!
 | |
|                     ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
 | |
|                     ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
 | |
|                 } //*/
 | |
| 
 | |
|                 kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
 | |
|                 vc = ggml_set_2d(ctx0, vc, Vcur, (   n_ctx)*ggml_element_size(kv_self.v),
 | |
|                         (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
 | |
|             }
 | |
| 
 | |
|             // Qcur shape [n_embd/n_head, n_head, N, 1]
 | |
|             // Q shape    [n_embd/n_head, N, n_head, 1]
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_permute(ctx0,
 | |
|                         Qcur,
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
 | |
|             // K shape [n_embd/n_head, n_past + N, n_head, 1]
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0,
 | |
|                             ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd),
 | |
|                             n_embd/n_head, n_head, n_past + N),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K * Q
 | |
|             // KQ shape [n_past + N, N, n_head, 1]
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
| 
 | |
|             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | |
|             // KQ_scaled shape [n_past + N, N, n_head, 1]
 | |
|             struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
 | |
| 
 | |
|             // KQ_masked = mask_past(KQ_scaled)
 | |
|             // KQ_masked shape [n_past + N, N, n_head, 1]
 | |
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
 | |
| 
 | |
|             // KQ = soft_max(KQ_masked)
 | |
|             // KQ_soft_max shape [n_past + N, N, n_head, 1]
 | |
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | |
| 
 | |
|             // split cached V into n_head heads
 | |
|             //// V shape [n_past + N, n_embd/n_head, n_head, 1]
 | |
|             // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1]
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_view_3d(ctx0, vc,
 | |
|                         n_past + N, n_embd/n_head, n_head,
 | |
|                         n_ctx*ggml_element_size(vc),
 | |
|                         n_ctx*ggml_element_size(vc)*n_embd/n_head,
 | |
|                         il*n_ctx*ggml_element_size(vc)*n_embd);
 | |
| 
 | |
|             // KQV shape [n_embd/n_head, N, n_head, 1]
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
 | |
| 
 | |
|             // KQV_merged = KQV.permute(0, 2, 1, 3)
 | |
|             // KQV_merged shape [n_embd/n_head, n_head, N, 1]
 | |
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
|             // KQV_merged shape
 | |
| 
 | |
|             // cur = KQV_merged.contiguous().view(n_embd, N)
 | |
|             // cur shape [n_embd,N,1,1]
 | |
|             cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N);
 | |
|             // cur = ggml_cpy(ctx0,
 | |
|             //         KQV_merged,
 | |
|             //         ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | |
| 
 | |
|             // projection (no bias)
 | |
|             // cur shape [n_embd,N,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].woa,
 | |
|                     ggml_mul_mat(ctx0,
 | |
|                         model->layers[il].wob,
 | |
|                         cur));
 | |
|         }
 | |
| 
 | |
|         // inpFF shape [n_embd,N,1,1]
 | |
|         struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | |
| 
 | |
|         // feed-forward network
 | |
|         {
 | |
|             // norm
 | |
|             {
 | |
|                 // cur shape [n_embd,N,1,1]
 | |
|                 cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
 | |
| 
 | |
|                 // cur = ffn_norm*cur
 | |
|                 // cur shape [n_embd,N,1,1]
 | |
|                 cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
 | |
|                         cur);
 | |
|             }
 | |
| 
 | |
|             // tmp shape [n_ff,N,1,1]
 | |
|             struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w3,
 | |
|                     cur);
 | |
| 
 | |
|             // cur shape [n_ff,N,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w1,
 | |
|                     cur);
 | |
| 
 | |
|             // SILU activation
 | |
|             // cur shape [n_ff,N,1,1]
 | |
|             cur = ggml_silu(ctx0, cur);
 | |
| 
 | |
|             // cur shape [n_ff,N,1,1]
 | |
|             cur = ggml_mul(ctx0, cur, tmp);
 | |
| 
 | |
|             // cur shape [n_embd,N,1,1]
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model->layers[il].w2,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         // cur shape [n_embd,N,1,1]
 | |
|         cur = ggml_add(ctx0, cur, inpFF);
 | |
| 
 | |
|         // input for next layer
 | |
|         // inpL shape [n_embd,N,1,1]
 | |
|         inpL = cur;
 | |
|     }
 | |
| 
 | |
|     // norm
 | |
|     {
 | |
| 
 | |
|         // inpL shape [n_embd,N,1,1]
 | |
|         inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
 | |
| 
 | |
|         // inpL = norm*inpL
 | |
|         // inpL shape [n_embd,N,1,1]
 | |
|         inpL = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model->norm, inpL),
 | |
|                     inpL);
 | |
| 
 | |
|         //embeddings = inpL;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // lm_head
 | |
|     // inpL shape [n_vocab,N,1,1]
 | |
|     inpL = ggml_mul_mat(ctx0,
 | |
|                 model->outputa,
 | |
|                     ggml_mul_mat(ctx0,
 | |
|                         model->outputb,
 | |
|                         inpL));
 | |
| 
 | |
|     // ggml_set_scratch(ctx0, { 0, 0, nullptr, });
 | |
|     // run the computation
 | |
|     ggml_build_forward_expand(gf, inpL);
 | |
| 
 | |
|     return inpL;
 | |
| }
 | |
| 
 | |
| static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
 | |
|     assert(ggml_is_matrix(logits));
 | |
|     assert(ggml_is_matrix(probs));
 | |
|     assert(ggml_is_vector(best_samples));
 | |
|     assert(logits->ne[1] == best_samples->ne[0]);
 | |
|     assert(logits->ne[0] == probs->ne[0]);
 | |
|     assert(logits->ne[1] == probs->ne[1]);
 | |
|     for (int i = 0; i < logits->ne[1]; ++i) {
 | |
|         float max_logit = ggml_get_f32_1d(logits, i * logits->ne[0]);
 | |
|         ggml_set_i32_1d(best_samples, i, 0);
 | |
|         for (int k = 0; k < logits->ne[0]; ++k) {
 | |
|             float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k);
 | |
|             if (logit > max_logit) {
 | |
|                 max_logit = logit;
 | |
|                 ggml_set_i32_1d(best_samples, i, k);
 | |
|             }
 | |
|         }
 | |
|         float psum = 0;
 | |
|         for (int k = 0; k < logits->ne[0]; ++k) {
 | |
|             float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k);
 | |
|             float p = (logit == -INFINITY) ? 0 : expf(logit - max_logit);
 | |
|             psum += p;
 | |
|             ggml_set_f32_1d(probs, i * probs->ne[0] + k, p);
 | |
|         }
 | |
|         for (int k = 0; k < logits->ne[0]; ++k) {
 | |
|             float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
 | |
|             ggml_set_f32_1d(probs, i * probs->ne[0] + k, p / psum);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void sample_softmax_batch(
 | |
|     struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs,
 | |
|     struct ggml_tensor * best_samples
 | |
| ) {
 | |
|     GGML_ASSERT(ggml_is_matrix(best_samples));
 | |
|     GGML_ASSERT(ggml_is_3d(logits));
 | |
|     GGML_ASSERT(ggml_is_3d(probs));
 | |
|     int n_tokens = best_samples->ne[0];
 | |
|     int n_batch  = best_samples->ne[1];
 | |
|     int n_vocab  = logits->ne[0];
 | |
|     GGML_ASSERT(n_tokens == logits->ne[1]);
 | |
|     GGML_ASSERT(n_batch  == logits->ne[2]);
 | |
|     GGML_ASSERT(n_vocab  == probs->ne[0]);
 | |
|     GGML_ASSERT(n_tokens == probs->ne[1]);
 | |
|     GGML_ASSERT(n_batch  == probs->ne[2]);
 | |
| 
 | |
|     for (int k = 0; k < n_batch; ++k) {
 | |
|         struct ggml_tensor * best_samples_k = ggml_view_1d(ctx,
 | |
|                                                 best_samples,
 | |
|                                                 best_samples->ne[0],
 | |
|                                                 k*best_samples->nb[1]);
 | |
|         struct ggml_tensor * logits_k       = ggml_view_2d(ctx,
 | |
|                                                 logits,
 | |
|                                                 logits->ne[0],
 | |
|                                                 logits->ne[1],
 | |
|                                                 logits->nb[1],
 | |
|                                                 k*logits->nb[2]);
 | |
|         struct ggml_tensor * probs_k        = ggml_view_2d(ctx,
 | |
|                                                 probs,
 | |
|                                                 probs->ne[0],
 | |
|                                                 probs->ne[1],
 | |
|                                                 probs->nb[1],
 | |
|                                                 k*probs->nb[2]);
 | |
|         sample_softmax(logits_k, probs_k, best_samples_k);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void print_row(struct ggml_tensor * probs, int i) {
 | |
|     for (int k = 0; k < probs->ne[0]; ++k) {
 | |
|         float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
 | |
|         printf(" %.2f", p);
 | |
|     }
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| static void print_matrix(struct ggml_tensor * probs) {
 | |
|     assert(ggml_is_matrix(probs));
 | |
|     for (int i = 0; i < probs->ne[1]; ++i) {
 | |
|         for (int k = 0; k < probs->ne[0]; ++k) {
 | |
|             float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
 | |
|             printf(" %.2f", p);
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void print_token(int token, int n_vocab) {
 | |
|     for (int k = 0; k < token; ++k) {
 | |
|         printf(" ");
 | |
|     }
 | |
|     printf("X");
 | |
|     for (int k = token+1; k < n_vocab; ++k) {
 | |
|         printf(" ");
 | |
|     }
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| static void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
 | |
|     for (int i=0; i<tokens->ne[0]; ++i) {
 | |
|         int token = ggml_get_i32_1d(tokens, i);
 | |
|         print_token(token, n_vocab);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
 | |
|     int n_tokens = tokens_input->ne[0];
 | |
|     int n_vocab = targets->ne[0];
 | |
|     float randomness = 0.0f;
 | |
|     // ggml_set_zero(targets);
 | |
|     ggml_set_f32(targets, -1.0f);
 | |
|     ggml_set_i32_1d(tokens_input, 0, 0);
 | |
|     for (int i=1; i<n_tokens+1; ++i) {
 | |
|         float x = example_id + i * 3.14159f * 2.0f * 1.0f * 0.5f / n_tokens;
 | |
|         float y = sinf(x);//*cosf(x*1.1f+1.0f);
 | |
|         float z = (y+1.0f)*0.5f; // scale to [0..1]
 | |
|         z += (frand()-0.5f)*(randomness/n_vocab);
 | |
|         z = (z < 0.0f) ? 0.0f : (z > 1.0f) ? 1.0f : z; // clamp to [0..1]
 | |
|         int token = std::max(1,std::min(1+(int)(z*(float)(n_vocab-1)), n_vocab-1));
 | |
|         ggml_set_f32_1d(targets, (i-1)*n_vocab + token, +1.0f);
 | |
|         if (i<n_tokens) {
 | |
|             ggml_set_i32_1d(tokens_input, i, token);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void get_example_targets_batch(
 | |
|     struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets
 | |
| ) {
 | |
|     GGML_ASSERT(ggml_is_matrix(tokens_input));
 | |
|     GGML_ASSERT(ggml_is_3d(targets));
 | |
|     int n_tokens = tokens_input->ne[0];
 | |
|     int n_batch  = tokens_input->ne[1];
 | |
|     GGML_ASSERT(n_tokens == targets->ne[1]);
 | |
|     GGML_ASSERT(n_batch  == targets->ne[2]);
 | |
| 
 | |
|     for (int k=0; k<n_batch; ++k) {
 | |
|         struct ggml_tensor * tokens_input_k = ggml_view_1d(ctx,
 | |
|                                                 tokens_input,
 | |
|                                                 tokens_input->ne[0],
 | |
|                                                 k*tokens_input->nb[1]);
 | |
|         struct ggml_tensor * targets_k    = ggml_view_2d(ctx,
 | |
|                                                 targets,
 | |
|                                                 targets->ne[0],
 | |
|                                                 targets->ne[1],
 | |
|                                                 targets->nb[1],
 | |
|                                                 k*targets->nb[2]);
 | |
|         get_example_targets(example_id*n_batch + k, tokens_input_k, targets_k);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) {
 | |
|     int n_tokens = tokens_input->ne[0];
 | |
|     int n_vocab = targets->ne[0];
 | |
|     for (int i=0; i<n_tokens-n_shift; ++i) {
 | |
|         ggml_set_i32_1d(tokens_input, i, ggml_get_i32_1d(tokens_input, i + n_shift));
 | |
|         for (int k=0; k<n_vocab; ++k) {
 | |
|             ggml_set_f32_1d(targets, i*n_vocab + k, ggml_get_f32_1d(targets, (i + n_shift)*n_vocab + k));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * square_error_loss(
 | |
|     struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b
 | |
| ) {
 | |
|     // todo: instead of a-b: a[1:]-b[:-1]
 | |
|     return ggml_sum(ctx, ggml_sqr(ctx, ggml_sub(ctx, a, b)));
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * cross_entropy_loss(
 | |
|     struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b
 | |
| ) {
 | |
|     const float eps = 1e-3f;
 | |
|     return
 | |
|         ggml_sum(ctx,
 | |
|             ggml_neg(ctx,
 | |
|                 ggml_sum_rows(ctx,
 | |
|                     ggml_mul(ctx,
 | |
|                         ggml_soft_max(ctx, a),
 | |
|                         ggml_log(ctx,
 | |
|                             ggml_add1(ctx,
 | |
|                                 ggml_soft_max(ctx, b),
 | |
|                                 ggml_new_f32(ctx, eps)))))));
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     if (argc < 1) {
 | |
|         fprintf(stderr, "usage: %s\n", argv[0]);
 | |
| 
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params lcparams;
 | |
|     lcparams.mem_size   = 1024ll*1024ll*1024ll;
 | |
|     lcparams.mem_buffer = NULL;
 | |
|     lcparams.no_alloc   = false;
 | |
| 
 | |
|     struct llama_model model;
 | |
|     model.hparams.n_vocab = 8;
 | |
|     model.hparams.n_ctx   = 8;
 | |
|     model.hparams.n_embd  = 32;
 | |
|     model.hparams.n_mult  = 2;
 | |
|     model.hparams.n_head  = 8;
 | |
|     model.hparams.n_layer = 1;
 | |
|     model.hparams.n_rot   = std::min(16u, model.hparams.n_embd / model.hparams.n_head);
 | |
| 
 | |
|     // model.hparams.n_embd  = 32;
 | |
|     // model.hparams.n_mult  = 2;
 | |
|     // model.hparams.n_head  = 4;
 | |
|     // model.hparams.n_layer = 8;
 | |
|     // model.hparams.n_rot   = 8;
 | |
| 
 | |
|     model.ctx = ggml_init(lcparams);
 | |
|     printf("init model\n");
 | |
|     init_model(&model);
 | |
|     set_param_model(&model);
 | |
| 
 | |
|     randomize_model(&model, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
 | |
| 
 | |
| /*
 | |
|     struct llama_model_lora model_lora;
 | |
|     // model.hparams.n_vocab = 6;
 | |
|     // model.hparams.n_ctx   = 64;
 | |
|     // model.hparams.n_embd  = 128;
 | |
|     // model.hparams.n_mult  = 2;
 | |
|     // model.hparams.n_head  = 8;
 | |
|     // model.hparams.n_layer = 6;
 | |
|     // model.hparams.n_rot   = model.hparams.n_embd / model.hparams.n_head;
 | |
| 
 | |
|     model_lora.hparams.n_vocab = 16;
 | |
|     model_lora.hparams.n_ctx   = 32;
 | |
|     model_lora.hparams.n_embd  = 256;
 | |
|     model_lora.hparams.n_mult  = 2;
 | |
|     model_lora.hparams.n_head  = 16;
 | |
|     model_lora.hparams.n_layer = 1;
 | |
|     model_lora.hparams.n_lora  = 64;
 | |
|     model_lora.hparams.n_rot   = MIN(16, model_lora.hparams.n_embd / model_lora.hparams.n_head);
 | |
|     // model.hparams.n_rot   = (model.hparams.n_embd / model.hparams.n_head) / 2;
 | |
| 
 | |
|     // model.hparams.n_embd  = 32;
 | |
|     // model.hparams.n_mult  = 2;
 | |
|     // model.hparams.n_head  = 4;
 | |
|     // model.hparams.n_layer = 8;
 | |
|     // model.hparams.n_rot   = 8;
 | |
| 
 | |
|     model_lora.ctx = ggml_init(lcparams);
 | |
|     printf("init model_lora\n");
 | |
|     init_model_lora(&model_lora);
 | |
|     set_param_model_lora(&model_lora);
 | |
| 
 | |
|     randomize_model_lora(&model_lora, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
 | |
| */
 | |
|     int n_batch = 8;
 | |
|     // key + value cache for the self attention
 | |
|     struct llama_kv_cache kv_self;
 | |
|     printf("init_kv_cache\n");
 | |
|     kv_self.ctx = model.ctx;
 | |
|     init_kv_cache(&kv_self, &model, n_batch);
 | |
|     //init_kv_cache_lora(&kv_self, &model_lora);
 | |
| 
 | |
|     size_t    compute_size = 1024ll*1024ll*1024ll;
 | |
|     uint8_t * compute_addr = new uint8_t[compute_size];
 | |
| 
 | |
|     int n_examples = 256;
 | |
|     int n_tokens = model.hparams.n_ctx;
 | |
|     int n_vocab  = model.hparams.n_vocab;
 | |
| 
 | |
|     std::vector<uint8_t> work_buffer;
 | |
| 
 | |
|     for (int ex=0; ex<n_examples; ++ex) {
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ compute_size,
 | |
|             /*.mem_buffer =*/ compute_addr,
 | |
|             /*.no_alloc   =*/ false,
 | |
|         };
 | |
| 
 | |
|         struct ggml_context * ctx0 = ggml_init(params);
 | |
| 
 | |
|         struct ggml_tensor * after_opt_best_samples  = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
 | |
|         struct ggml_tensor * after_opt_probs         = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
 | |
|         struct ggml_tensor * tokens_input            = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
 | |
|         struct ggml_tensor * targets                 = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
 | |
| 
 | |
|         int n_past = 0;
 | |
| 
 | |
|         struct ggml_cgraph * gf = NULL;
 | |
|         gf = ggml_new_graph_custom(ctx0, LLAMA_TRAIN_MAX_NODES, true);
 | |
| 
 | |
|         get_example_targets_batch(ctx0, 64*ex+0,  tokens_input, targets);
 | |
| 
 | |
|         struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, gf, tokens_input, n_tokens, n_past, n_batch);
 | |
|         // struct ggml_tensor * e = cross_entropy_loss(ctx0, targets, logits);
 | |
|         struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, e);
 | |
|         ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
 | |
| 
 | |
|         float error_before_opt = ggml_get_f32_1d(e, 0);
 | |
| 
 | |
|         struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS);
 | |
|         opt_params_lbfgs.print_forward_graph = false;
 | |
|         opt_params_lbfgs.print_backward_graph = false;
 | |
|         opt_params_lbfgs.lbfgs.n_iter = 16;
 | |
|         ggml_opt(ctx0, opt_params_lbfgs, e);
 | |
|         //
 | |
|         ggml_build_forward_expand(gf, e);
 | |
|         ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
 | |
| 
 | |
|         float error_after_opt = ggml_get_f32_1d(e, 0);
 | |
| 
 | |
|         if (ex % 8 == 0) {
 | |
|             printf("Example %d\n", (ex+1));
 | |
|             printf("error_before_opt: %.2f\n", error_before_opt);
 | |
|             printf("error_after_opt:  %.2f\n", error_after_opt);
 | |
|         }
 | |
| 
 | |
|         if (ex % 64 == 0) {
 | |
|             sample_softmax_batch(ctx0, logits, after_opt_probs, after_opt_best_samples);
 | |
|             // printf("probabilities after optimization:\n");
 | |
|             // print_matrix(after_opt_probs);
 | |
|             printf("best samples after optimization:\n");
 | |
|             print_tokens(after_opt_best_samples, n_vocab);
 | |
|         }
 | |
| 
 | |
|         ggml_free(ctx0);
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         int n_gen = 128;
 | |
|         int sample_ctx = n_tokens-n_tokens/8;
 | |
| 
 | |
|         printf("Generating %d tokens.\n", n_gen);
 | |
| 
 | |
|         struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens);
 | |
|         struct ggml_tensor * targets      = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
 | |
| 
 | |
|         get_example_targets(137, tokens_input, targets);
 | |
|         for (int i=sample_ctx; i<n_tokens; ++i) {
 | |
|             ggml_set_i32_1d(tokens_input, i, n_vocab/2);
 | |
|         }
 | |
| 
 | |
|         for (int i=0; i<sample_ctx-1; ++i) {
 | |
|             print_token(ggml_get_i32_1d(tokens_input, i), n_vocab);
 | |
|         }
 | |
|         printf("---\n");
 | |
|         for (int i=0; i<n_gen; ++i) {
 | |
|             struct ggml_init_params params = {
 | |
|                 /*.mem_size   =*/ compute_size,
 | |
|                 /*.mem_buffer =*/ compute_addr,
 | |
|                 /*.no_alloc   =*/ false,
 | |
|             };
 | |
|             struct ggml_context * ctx0 = ggml_init(params);
 | |
| 
 | |
|             struct ggml_cgraph * gf = NULL;
 | |
|             gf = ggml_new_graph_custom(ctx0, LLAMA_TRAIN_MAX_NODES, true);
 | |
| 
 | |
|             int n_past = 0;
 | |
|             struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, gf, tokens_input, sample_ctx, n_past);
 | |
| 
 | |
|             ggml_build_forward_expand(gf, logits);
 | |
|             ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
 | |
| 
 | |
|             struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
 | |
|             struct ggml_tensor * probs        = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
 | |
| 
 | |
|             sample_softmax(logits, probs, best_samples);
 | |
| 
 | |
|             // int sample_at = n_tokens-1;
 | |
|             int token = ggml_get_i32_1d(best_samples, sample_ctx-1);
 | |
| 
 | |
|             // print_row(probs, sample_at);
 | |
|             print_token(token, n_vocab);
 | |
| 
 | |
|             lshift_examples(tokens_input, targets, 1);
 | |
|             ggml_set_i32_1d(tokens_input, 0, 0);
 | |
|             ggml_set_i32_1d(tokens_input, sample_ctx-1, token);
 | |
| 
 | |
|             ggml_free(ctx0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     print_matrix(model.tok_embeddings);
 | |
|     printf("done\n");
 | |
| 
 | |
|     // ggml_free(kv_self.ctx);
 | |
|     // ggml_free(model_lora.ctx);
 | |
|     ggml_free(model.ctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
