mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 6381d4e110
			
		
	
	6381d4e110
	
	
	
		
			
			* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415)
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426)
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438)
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf :  inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613)
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp :  fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620)
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629)
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635)
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit 7e82d25f40.
* convert.py : n_head_kv optional and .gguf file extension
* convert.py : better always have n_head_kv and default it to n_head
* llama : sync with recent PRs on master
* editorconfig : ignore models folder
ggml-ci
* ci : update ".bin" to ".gguf" extension
ggml-ci
* llama : fix llama_model_loader memory leak
* gptneox : move as a WIP example
* llama : fix lambda capture
ggml-ci
* ggml : fix bug in gguf_set_kv
ggml-ci
* common.h : .bin --> .gguf
* quantize-stats.cpp : .bin --> .gguf
* convert.py : fix HF tensor permuting / unpacking
ggml-ci
* llama.cpp : typo
* llama : throw error if gguf fails to init from file
ggml-ci
* llama : fix tensor name grepping during quantization
ggml-ci
* gguf.py : write tensors in a single pass (#2644)
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : style fixes in simple conversion script
* gguf : refactor gptneox conversion script
* gguf : rename h5 to hf (for HuggingFace)
* gguf : refactor pth to gguf conversion script
* gguf : rm file_type key and method
* gguf.py : fix vertical alignment
* gguf.py : indentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert-gptneox-hf-to-gguf.py : fixes
* gguf.py : gptneox mapping
* convert-llama-hf-to-gguf.py : fixes
* convert-llama-7b-pth-to-gguf.py : fixes
* ggml.h : reverse GGUF_MAGIC
* gguf.py : reverse GGUF_MAGIC
* test-tokenizer-0.cpp : fix warning
* llama.cpp : print kv general.name
* llama.cpp : get special token kv and linefeed token id
* llama : print number of tensors per type + print arch + style
* tests : update vocab file with new magic
* editorconfig : fix whitespaces
* llama : re-order functions
* llama : remove C++ API + reorganize common source in /common dir
* llama : minor API updates
* llama : avoid hardcoded special tokens
* llama : fix MPI build
ggml-ci
* llama : introduce enum llama_vocab_type + remove hardcoded string constants
* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested
* falcon-main.cpp : falcon inference example
* convert-falcon-hf-to-gguf.py : remove extra kv
* convert-gptneox-hf-to-gguf.py : remove extra kv
* convert-llama-7b-pth-to-gguf.py : remove extra kv
* convert-llama-hf-to-gguf.py : remove extra kv
* gguf.py : fix for falcon 40b
* falcon-main.cpp : fix for falcon 40b
* convert-falcon-hf-to-gguf.py : update ref
* convert-falcon-hf-to-gguf.py : add tensor data layout
* cmpnct_gpt2bpe.hpp : fixes
* falcon-main.cpp : fixes
* gptneox-main.cpp : fixes
* cmpnct_gpt2bpe.hpp : remove non-general stuff
* Update examples/server/README.md
Co-authored-by: slaren <slarengh@gmail.com>
* cmpnct_gpt2bpe.hpp : cleanup
* convert-llama-hf-to-gguf.py : special tokens
* convert-llama-7b-pth-to-gguf.py : special tokens
* convert-permute-debug.py : permute debug print
* convert-permute-debug-master.py : permute debug for master
* convert-permute-debug.py : change permute type of attn_q
* convert.py : 70b model working (change attn_q permute)
* Delete convert-permute-debug-master.py
* Delete convert-permute-debug.py
* convert-llama-hf-to-gguf.py : fix attn_q permute
* gguf.py : fix rope scale kv
* convert-llama-hf-to-gguf.py : rope scale and added tokens
* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens
* llama.cpp : use rope scale kv
* convert-llama-7b-pth-to-gguf.py : rope scale fix
* convert-llama-hf-to-gguf.py : rope scale fix
* py : fix whitespace
* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)
* First pass at converting GGMLv3 LLaMA models to GGUF
* Cleanups, better output during conversion
* Fix vocab space conversion logic
* More vocab conversion fixes
* Add description to converted GGUF files
* Improve help text, expand warning
* Allow specifying name and description for output GGUF
* Allow overriding vocab and hyperparams from original model metadata
* Use correct params override var name
* Fix wrong type size for Q8_K
Better handling of original style metadata
* Set default value for gguf add_tensor raw_shape KW arg
* llama : improve token type support (#2668)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* llama : add API for token type
ggml-ci
* tests : use new tokenizer type API (#2692)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* Improve commentary
* Use token type API in test-tokenizer-1.cpp
* py : cosmetics
* readme : add notice about new file format
ggml-ci
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
		
	
		
			
				
	
	
		
			439 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			439 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "build-info.h"
 | |
| 
 | |
| #define LLAMA_API_INTERNAL
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <map>
 | |
| #include <numeric>
 | |
| #include <regex>
 | |
| #include <string>
 | |
| #include <unordered_map>
 | |
| #include <vector>
 | |
| #include <thread>
 | |
| #include <mutex>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| struct quantize_stats_params {
 | |
|     std::string model = "models/7B/ggml-model-f16.gguf";
 | |
|     bool verbose = false;
 | |
|     bool per_layer_stats = false;
 | |
|     bool print_histogram = false;
 | |
|     bool reference = false;
 | |
|     std::vector<std::string> include_layers;
 | |
|     std::vector<std::string> exclude_layers;
 | |
|     std::vector<enum ggml_type> include_types;
 | |
| };
 | |
| 
 | |
| const size_t HISTOGRAM_BUCKETS = 150;
 | |
| const double HISTOGRAM_RANGE = 0.03;
 | |
| 
 | |
| struct error_stats {
 | |
|     size_t num_samples;
 | |
|     double total_error;
 | |
|     double max_error;
 | |
|     uint64_t error_histogram[HISTOGRAM_BUCKETS];
 | |
| };
 | |
| 
 | |
| 
 | |
| void quantize_stats_print_usage(int /*argc*/, char ** argv) {
 | |
|     quantize_stats_params params;
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help            show this help message and exit\n");
 | |
|     fprintf(stderr, "  -m FNAME, --model FNAME\n");
 | |
|     fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
 | |
|     fprintf(stderr, "  -r, --reference\n");
 | |
|     fprintf(stderr, "                        use reference implementation (default: false)\n");
 | |
|     fprintf(stderr, "  -v, --verbose\n");
 | |
|     fprintf(stderr, "                        verbose output (default: false)\n");
 | |
|     fprintf(stderr, "  -p, --per-layer-stats\n");
 | |
|     fprintf(stderr, "                        print stats per layer (default: false)\n");
 | |
|     fprintf(stderr, "  --histogram\n");
 | |
|     fprintf(stderr, "                        print error histogram (default: false)\n");
 | |
|     fprintf(stderr, "  -l LAYER, --include-layer LAYER\n");
 | |
|     fprintf(stderr, "                        only test layers matching pattern\n");
 | |
|     fprintf(stderr, "  -L LAYER, --exclude-layer LAYER\n");
 | |
|     fprintf(stderr, "                        exclude layers matching pattern\n");
 | |
|     fprintf(stderr, "  -t TYPE, --type TYPE\n");
 | |
|     fprintf(stderr, "                        only test given type (q4_0, q4_1)\n");
 | |
|     fprintf(stderr, "\n");
 | |
| }
 | |
| 
 | |
| // Check if a layer is included/excluded by command line
 | |
| bool layer_included(const quantize_stats_params params, const std::string & layer) {
 | |
|     for (const auto& excluded : params.exclude_layers) {
 | |
|         if (std::regex_search(layer, std::regex(excluded))) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     for (const auto& included : params.include_layers) {
 | |
|         if (std::regex_search(layer, std::regex(included))) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return params.include_layers.empty();
 | |
| }
 | |
| 
 | |
| // Update error statistics given vectors with the before/after result of quantization
 | |
| void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
 | |
|     for (int64_t i = 0; i < nelements; i++) {
 | |
|         double diff = input[i] - output[i];
 | |
|         stats.total_error += diff * diff;
 | |
|         stats.max_error = fmax(fabs(diff), stats.max_error);
 | |
|         stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
 | |
|     }
 | |
|     stats.num_samples += nelements;
 | |
| }
 | |
| 
 | |
| void combine_error_stats(error_stats & into, const error_stats & from) {
 | |
|     into.num_samples += from.num_samples;
 | |
|     into.total_error += from.total_error;
 | |
|     if (from.max_error > into.max_error) into.max_error = from.max_error;
 | |
|     for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
 | |
| }
 | |
| 
 | |
| double find_quantile(const error_stats & stats, double quantile) {
 | |
|     double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
 | |
| 
 | |
|     double accum = 0;
 | |
|     for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
 | |
|         accum += stats.error_histogram[i];
 | |
|         if (accum >= sum*quantile) {
 | |
|             return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
 | |
|         }
 | |
|     }
 | |
|     return INFINITY;
 | |
| }
 | |
| 
 | |
| void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
 | |
|     double rmse = sqrt(stats.total_error / (double) stats.num_samples);
 | |
|     double median = find_quantile(stats, .5);
 | |
|     double pct95 = find_quantile(stats, .95);
 | |
|     printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
 | |
|     if (print_histogram) {
 | |
|         printf("Error distribution:\n");
 | |
|         for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
 | |
|             double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
 | |
|             double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
 | |
|             if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
 | |
|             printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // copied from ggml.h - verify that we can access this as a flat array
 | |
| static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return
 | |
|         tensor->nb[0] == ggml_type_size(tensor->type) &&
 | |
|         tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
 | |
|         tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
 | |
|         tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
 | |
| }
 | |
| 
 | |
| void test_roundtrip_on_chunk(
 | |
|         const ggml_tensor * layer,
 | |
|         int64_t offset,
 | |
|         int64_t chunk_size,
 | |
|         const ggml_type_traits_t & qfns,
 | |
|         bool use_reference,
 | |
|         float * input_scratch,
 | |
|         char * quantized_scratch,
 | |
|         float * output_scratch,
 | |
|         error_stats & stats) {
 | |
| 
 | |
|     if (layer->type == GGML_TYPE_F16) {
 | |
|         for (int i = 0; i < chunk_size; i++) {
 | |
|             input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
 | |
|         }
 | |
|     } else {
 | |
|         input_scratch = ggml_get_data_f32(layer) + offset;
 | |
|     }
 | |
| 
 | |
|     if (use_reference) {
 | |
|         qfns.from_float_reference(input_scratch, quantized_scratch, chunk_size);
 | |
|     } else {
 | |
|         qfns.from_float(input_scratch, quantized_scratch, chunk_size);
 | |
|     }
 | |
|     qfns.to_float(quantized_scratch, output_scratch, chunk_size);
 | |
| 
 | |
|     update_error_stats(chunk_size, input_scratch, output_scratch, stats);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Run quantization function for a single layer and update error stats
 | |
| void test_roundtrip_on_layer(
 | |
|         std::string & name,
 | |
|         bool print_layer_stats,
 | |
|         const ggml_type_traits_t & qfns,
 | |
|         bool use_reference,
 | |
|         const ggml_tensor * layer,
 | |
|         std::vector<float> & input_scratch,
 | |
|         std::vector<char> & quantized_scratch,
 | |
|         std::vector<float> & output_scratch,
 | |
|         error_stats & total_error,
 | |
|         int max_thread = 0) {
 | |
| 
 | |
|     assert(tensor_is_contiguous(layer));
 | |
|     error_stats layer_error {};
 | |
|     uint64_t nelements = ggml_nelements(layer);
 | |
| 
 | |
|     float* input_scratch_ptr = nullptr;
 | |
|     if (layer->type == GGML_TYPE_F16) {
 | |
|         if (input_scratch.size() < nelements) input_scratch.resize(nelements);
 | |
|         input_scratch_ptr = input_scratch.data();
 | |
|     }
 | |
|     if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
 | |
|     if (output_scratch.size() < nelements) output_scratch.resize(nelements);
 | |
| 
 | |
|     if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
 | |
|     int chunk_size = 32*512;
 | |
|     int num_chunks = (nelements + chunk_size - 1)/chunk_size;
 | |
| 
 | |
|     if (num_chunks < 2 || max_thread < 2) {
 | |
|         test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
 | |
|                 output_scratch.data(), print_layer_stats ? layer_error : total_error);
 | |
|     } else {
 | |
|         auto & stats = print_layer_stats ? layer_error : total_error;
 | |
|         std::mutex mutex;
 | |
|         uint64_t counter = 0;
 | |
|         auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
 | |
|              &quantized_scratch, &output_scratch, chunk_size] () {
 | |
|             error_stats local_stats {};
 | |
|             while (true) {
 | |
|                 std::unique_lock<std::mutex> lock(mutex);
 | |
|                 uint64_t offset = counter; counter += chunk_size;
 | |
|                 if (offset >= nelements) {
 | |
|                     combine_error_stats(stats, local_stats);
 | |
|                     break;
 | |
|                 }
 | |
|                 lock.unlock();
 | |
|                 uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
 | |
|                 test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
 | |
|                         quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
 | |
|             }
 | |
|         };
 | |
|         int nthread = std::min(num_chunks, max_thread);
 | |
|         std::vector<std::thread> workers(nthread-1);
 | |
|         for (auto& w : workers) w = std::thread(compute);
 | |
|         compute();
 | |
|         for (auto& w : workers) w.join();
 | |
|     }
 | |
| 
 | |
|     if (print_layer_stats) {
 | |
|         print_error_stats(name, layer_error, false);
 | |
|         combine_error_stats(total_error, layer_error);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     quantize_stats_params params;
 | |
| 
 | |
|     // read command line
 | |
| 
 | |
|     int max_thread = 0;
 | |
|     bool invalid_param = false;
 | |
|     std::string arg;
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
| 
 | |
|         if (arg == "-h" || arg == "--help") {
 | |
|             quantize_stats_print_usage(argc, argv);
 | |
|             exit(0);
 | |
|         } else if (arg == "-r" || arg == "--reference") {
 | |
|             params.reference = true;
 | |
|         } else if (arg == "-v") {
 | |
|             params.verbose = true;
 | |
|         } else if (arg == "-p" || arg == "--per-layer-stats") {
 | |
|             params.per_layer_stats = true;
 | |
|         } else if (arg == "--histogram") {
 | |
|             params.print_histogram = true;
 | |
|         } else if (arg == "-m" || arg == "--model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model = argv[i];
 | |
|         } else if (arg == "-l" || arg == "--include-layer") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.include_layers.push_back(argv[i]);
 | |
|         } else if (arg == "-L" || arg == "--exclude-layer") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.exclude_layers.push_back(argv[i]);
 | |
|         } else if (arg == "-t" || arg == "--type") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             int j;
 | |
|             for (j = 0; j < GGML_TYPE_COUNT; ++j) {
 | |
|                const auto * name = ggml_type_name((ggml_type) j);
 | |
|                if (name && strcmp(argv[i], name) == 0) break;
 | |
|             }
 | |
|             if (j < GGML_TYPE_COUNT) {
 | |
|                 params.include_types.push_back((ggml_type) j);
 | |
|             } else {
 | |
|                 fprintf(stderr, "error: %s not in list of types\n", argv[i]);
 | |
|                 invalid_param = true;
 | |
|             }
 | |
|         } else if (arg == "-n" || arg == "--num-threads") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             max_thread = atoi(argv[i]);
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             quantize_stats_print_usage(argc, argv);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         quantize_stats_print_usage(argc, argv);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | |
| 
 | |
|     // load the model
 | |
|     fprintf(stderr, "Loading model\n");
 | |
| 
 | |
|     const int64_t t_main_start_us = ggml_time_us();
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     {
 | |
|         auto lparams = llama_context_default_params();
 | |
| 
 | |
|         lparams.n_ctx      = 256;
 | |
|         lparams.seed       = 1;
 | |
|         lparams.f16_kv     = false;
 | |
|         lparams.use_mlock  = false;
 | |
| 
 | |
|         model = llama_load_model_from_file(params.model.c_str(), lparams);
 | |
| 
 | |
|         if (model == NULL) {
 | |
|             fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         ctx = llama_new_context_with_model(model, lparams);
 | |
| 
 | |
|         if (ctx == NULL) {
 | |
|             fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const auto &tensors = llama_internal_get_tensor_map(ctx);
 | |
| 
 | |
|     // check layer tensors
 | |
|     int included_layers = 0;
 | |
|     int64_t max_nelements = 0;
 | |
|     bool is_f16 = false;
 | |
|     for (const auto& kv_tensor : tensors) {
 | |
|         if (!layer_included(params, kv_tensor.first)) {
 | |
|             continue;
 | |
|         }
 | |
|         if (params.verbose) {
 | |
|             printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
 | |
|         }
 | |
|         if (kv_tensor.second->type == GGML_TYPE_F16) {
 | |
|             is_f16 = true;
 | |
|         } else if (kv_tensor.second->type != GGML_TYPE_F32) {
 | |
|             fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
 | |
|                 "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
 | |
|             llama_free(ctx);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
|         included_layers++;
 | |
|         max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
 | |
|     }
 | |
| 
 | |
|     if (is_f16) {
 | |
|         printf("note: source model is f16\n");
 | |
|     }
 | |
|     printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
 | |
|     // allocate scratch space
 | |
|     std::vector<float> input_scratch;
 | |
|     std::vector<char> quantized_scratch;
 | |
|     std::vector<float> output_scratch;
 | |
| 
 | |
|     // loop throught quantization types
 | |
|     for (int i = 0; i < GGML_TYPE_COUNT; i++) {
 | |
|         const ggml_type type = (ggml_type) i;
 | |
|         if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
 | |
|             continue;
 | |
|         }
 | |
|         ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
 | |
|         if (qfns.from_float && qfns.to_float) {
 | |
|             if (params.verbose) {
 | |
|                 printf("testing %s ...\n",  ggml_type_name(type));
 | |
|             }
 | |
| 
 | |
|             error_stats global_stats {};
 | |
| 
 | |
|             for (const auto& kv_tensor : tensors) {
 | |
|                 if (!layer_included(params, kv_tensor.first)) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (params.verbose) {
 | |
|                     printf("  %s ...\n",  kv_tensor.first.c_str());
 | |
|                 }
 | |
|                 std::string layer_name { ggml_type_name(type) };
 | |
|                 layer_name += "::" + kv_tensor.first;
 | |
|                 test_roundtrip_on_layer(
 | |
|                         layer_name,
 | |
|                         params.per_layer_stats,
 | |
|                         qfns,
 | |
|                         params.reference,
 | |
|                         kv_tensor.second,
 | |
|                         input_scratch,
 | |
|                         quantized_scratch,
 | |
|                         output_scratch,
 | |
|                         global_stats,
 | |
|                         max_thread
 | |
|                 );
 | |
|             }
 | |
| 
 | |
|             print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
|     // report timing
 | |
|     {
 | |
|         const int64_t t_main_end_us = ggml_time_us();
 | |
| 
 | |
|         printf("\n");
 | |
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 |