mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 afa8a9ec9b
			
		
	
	afa8a9ec9b
	
	
	
		
			
			* llama : functions -> methods (#11110) * llama : add struct llama_vocab to the API (#11156) ggml-ci * hparams : move vocab params to llama_vocab (#11159) ggml-ci * vocab : more pimpl (#11165) ggml-ci * vocab : minor tokenization optimizations (#11160) ggml-ci Co-authored-by: Diego Devesa <slarengh@gmail.com> * lora : update API names (#11167) ggml-ci * llama : update API names to use correct prefix (#11174) * llama : update API names to use correct prefix ggml-ci * cont ggml-ci * cont ggml-ci * minor [no ci] * vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174) ggml-ci * vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174) ggml-ci --------- Co-authored-by: Diego Devesa <slarengh@gmail.com>
		
			
				
	
	
		
			328 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "log.h"
 | |
| #include "common.h"
 | |
| #include "sampling.h"
 | |
| #include "clip.h"
 | |
| #include "llava.h"
 | |
| #include "llama.h"
 | |
| #include "ggml.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <vector>
 | |
| #include <iostream> // TODO: remove me
 | |
| 
 | |
| struct llava_context {
 | |
|     struct clip_ctx * ctx_clip = NULL;
 | |
|     struct llama_context * ctx_llama = NULL;
 | |
|     struct llama_model * model = NULL;
 | |
| };
 | |
| 
 | |
| static void show_additional_info(int /*argc*/, char ** argv) {
 | |
|     LOG("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
 | |
|     LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
 | |
| }
 | |
| 
 | |
| static struct llama_model * llava_init(common_params * params) {
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params->numa);
 | |
| 
 | |
|     llama_model_params model_params = common_model_params_to_llama(*params);
 | |
| 
 | |
|     llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
 | |
|     if (model == NULL) {
 | |
|         LOG_ERR("%s: unable to load model\n" , __func__);
 | |
|         return NULL;
 | |
|     }
 | |
|     return model;
 | |
| }
 | |
| 
 | |
| static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
 | |
|     auto prompt = params->prompt;
 | |
|     if (prompt.empty()) {
 | |
|         prompt = "describe the image in detail.";
 | |
|     }
 | |
| 
 | |
|     llama_context_params ctx_params = common_context_params_to_llama(*params);
 | |
|     if (params->n_ctx < 2048) {
 | |
|         // warn user here, "Image processing requires at least 2048 context, setting context to 2048"
 | |
|         LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
 | |
|         ctx_params.n_ctx = 2048;
 | |
|     } else {
 | |
|         ctx_params.n_ctx = params->n_ctx;
 | |
|     }
 | |
| 
 | |
|     llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx_llama == NULL) {
 | |
|         LOG_ERR("%s: failed to create the llama_context\n" , __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
 | |
| 
 | |
|     ctx_llava->ctx_llama = ctx_llama;
 | |
|     ctx_llava->model = model;
 | |
|     return ctx_llava;
 | |
| }
 | |
| 
 | |
| static void llava_free(struct llava_context * ctx_llava) {
 | |
|     if (ctx_llava->ctx_clip) {
 | |
|         clip_free(ctx_llava->ctx_clip);
 | |
|         ctx_llava->ctx_clip = NULL;
 | |
|     }
 | |
| 
 | |
|     llama_free(ctx_llava->ctx_llama);
 | |
|     llama_model_free(ctx_llava->model);
 | |
|     llama_backend_free();
 | |
| }
 | |
| 
 | |
| static struct clip_ctx * clip_init_context(common_params * params) {
 | |
|     const char * clip_path = params->mmproj.c_str();
 | |
| 
 | |
|     auto prompt = params->prompt;
 | |
|     if (prompt.empty()) {
 | |
|         prompt = "describe the image in detail.";
 | |
|     }
 | |
|     auto * ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
 | |
|     return ctx_clip;
 | |
| }
 | |
| 
 | |
| static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
 | |
|     int N = (int) tokens.size();
 | |
|     for (int i = 0; i < N; i += n_batch) {
 | |
|         int n_eval = (int) tokens.size() - i;
 | |
|         if (n_eval > n_batch) {
 | |
|             n_eval = n_batch;
 | |
|         }
 | |
|         if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
 | |
|             LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
 | |
|             return false;
 | |
|         }
 | |
|         *n_past += n_eval;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
 | |
|     std::vector<llama_token> tokens;
 | |
|     tokens.push_back(id);
 | |
|     return eval_tokens(ctx_llama, tokens, 1, n_past);
 | |
| }
 | |
| 
 | |
| static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
 | |
|     std::string              str2     = str;
 | |
|     std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
 | |
|     return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
 | |
| }
 | |
| 
 | |
| static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
 | |
|     float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
 | |
|     std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
 | |
| 
 | |
|     auto * slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
 | |
|     slice_embed->embed = image_embed;
 | |
|     slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
 | |
|     llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
 | |
|     llava_image_embed_free(slice_embed);
 | |
| }
 | |
| 
 | |
| static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, common_params * params, int &n_past) {
 | |
|     std::string system_prompt;
 | |
|     int idx = 0;
 | |
|     int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
 | |
|     int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
 | |
|     if (has_minicpmv_projector == 2) {
 | |
|         system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
 | |
|     }
 | |
|     else if (has_minicpmv_projector == 3) {
 | |
|         system_prompt = "<|im_start|>user\n";
 | |
|     }
 | |
|     LOG_INF("%s: image token past: %d\n", __func__, n_past);
 | |
|     eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
 | |
|     process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
 | |
|     eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
 | |
|     if (num_image_embeds > 1) {
 | |
|         size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
 | |
|         eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
 | |
|         for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
 | |
|             for (size_t j = 0; j < num_image_embeds_col; ++j) {
 | |
|                 eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
 | |
|                 process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
 | |
|                 eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
 | |
|                 if (j == num_image_embeds_col - 1) {
 | |
|                     eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
 | |
|     }
 | |
|     LOG_INF("%s: image token past: %d\n", __func__, n_past);
 | |
| }
 | |
| 
 | |
| static const char * sample(struct common_sampler * smpl,
 | |
|                            struct llama_context * ctx_llama,
 | |
|                            int * n_past) {
 | |
|     const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
 | |
|     common_sampler_accept(smpl, id, true);
 | |
| 
 | |
|     const llama_model * model = llama_get_model(ctx_llama);
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
| 
 | |
|     static std::string ret;
 | |
|     if (llama_vocab_is_eog(vocab, id)) {
 | |
|         ret = "</s>";
 | |
|     } else {
 | |
|         ret = common_token_to_piece(ctx_llama, id);
 | |
|     }
 | |
|     eval_id(ctx_llama, id, n_past);
 | |
|     return ret.c_str();
 | |
| }
 | |
| 
 | |
| static struct llava_context * minicpmv_init(common_params * params, const std::string & fname, int &n_past){
 | |
|     auto * ctx_clip = clip_init_context(params);
 | |
|     auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
 | |
|     if (!embeds) {
 | |
|         LOG_ERR("failed to load image %s. Terminating\n\n", fname.c_str());
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // process the prompt
 | |
|     if (params->prompt.empty() && params->interactive == false) {
 | |
|         LOG_ERR("prompt should be given or interactive mode should be on");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     auto * model = llava_init(params);
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
|     const int64_t t_llava_init_start_us = ggml_time_us();
 | |
|     auto * ctx_llava = llava_init_context(params, model);
 | |
|     ctx_llava->ctx_clip = ctx_clip;
 | |
|     const int64_t t_llava_init_end_us = ggml_time_us();
 | |
|     float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
 | |
|     LOG_INF("%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
 | |
| 
 | |
|     const int64_t t_process_image_start_us = ggml_time_us();
 | |
|     process_image(ctx_llava, embeds, params, n_past);
 | |
|     const int64_t t_process_image_end_us = ggml_time_us();
 | |
|     float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
 | |
|     LOG_INF("%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
 | |
| 
 | |
|     llava_image_embed_free(embeds);
 | |
|     return ctx_llava;
 | |
| }
 | |
| 
 | |
| static struct common_sampler * llama_init(struct llava_context * ctx_llava, common_params * params, const std::string & prompt, int & n_past, bool is_first = false){
 | |
|     std::string user_prompt = prompt;
 | |
|     int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
 | |
|     if (!is_first) {
 | |
|         if (has_minicpmv_projector == 2) {
 | |
|             user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
 | |
|         }
 | |
|         else if (has_minicpmv_projector == 3) {
 | |
|             user_prompt = "<|im_start|>user\n" + prompt;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
 | |
|     if (has_minicpmv_projector == 2) {
 | |
|         eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
 | |
|     }
 | |
|     else if (has_minicpmv_projector == 3) {
 | |
|         eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
 | |
|     }
 | |
| 
 | |
|     // generate the response
 | |
| 
 | |
|     LOG_INF("\n");
 | |
| 
 | |
|     struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
 | |
|     return smpl;
 | |
| }
 | |
| 
 | |
| static const char * llama_loop(struct llava_context * ctx_llava,struct common_sampler * smpl, int &n_past){
 | |
| 
 | |
|     const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     common_params params;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     if (params.mmproj.empty() || (params.image.empty())) {
 | |
|         show_additional_info(argc, argv);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     for (auto & image : params.image) {
 | |
|         int n_past = 0;
 | |
|         auto * ctx_llava = minicpmv_init(¶ms, image, n_past);
 | |
| 
 | |
|         if (!params.prompt.empty()) {
 | |
|             LOG("<user>%s\n", params.prompt.c_str());
 | |
|             LOG("<assistant>");
 | |
|             auto * smpl = llama_init(ctx_llava, ¶ms, params.prompt, n_past, true);
 | |
|             const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
 | |
|             std::string response;
 | |
|             bool have_tmp = false;
 | |
|             for (int i = 0; i < max_tgt_len; i++) {
 | |
|                 const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
 | |
|                 response += tmp;
 | |
|                 if (strcmp(tmp, "</s>") == 0){
 | |
|                     if (!have_tmp) {
 | |
|                         continue;
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|                 if (strstr(tmp, "###")) break; // Yi-VL behavior
 | |
|                 have_tmp = true;
 | |
|                 printf("%s", tmp);
 | |
|                 if (strstr(response.c_str(), "<user>")) break; // minicpm-v
 | |
| 
 | |
|                 fflush(stdout);
 | |
|             }
 | |
|             common_sampler_free(smpl);
 | |
|         }else {
 | |
|             while (true) {
 | |
|                 LOG("<user>");
 | |
|                 std::string prompt;
 | |
|                 std::getline(std::cin, prompt);
 | |
|                 LOG("<assistant>");
 | |
|                 auto * smpl = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
 | |
|                 const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
 | |
|                 std::string response;
 | |
|                 for (int i = 0; i < max_tgt_len; i++) {
 | |
|                     const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
 | |
|                     response += tmp;
 | |
|                     if (strcmp(tmp, "</s>") == 0) break;
 | |
|                     if (strstr(tmp, "###")) break; // Yi-VL behavior
 | |
|                     printf("%s", tmp);// mistral llava-1.6
 | |
|                     if (strstr(response.c_str(), "<user>")) break; // minicpm-v
 | |
|                     fflush(stdout);
 | |
|                 }
 | |
|                 common_sampler_free(smpl);
 | |
|             }
 | |
|         }
 | |
|         printf("\n");
 | |
|         llama_perf_context_print(ctx_llava->ctx_llama);
 | |
| 
 | |
|         ctx_llava->model = NULL;
 | |
|         llava_free(ctx_llava);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 |