mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			170 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			170 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| static void print_usage(int, char ** argv) {
 | |
|     LOG("\nexample usage:\n");
 | |
|     LOG("\n    %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
 | |
|     LOG("\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     params.prompt = "Hello my name is";
 | |
|     params.n_predict = 32;
 | |
| 
 | |
|     if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     gpt_init();
 | |
| 
 | |
|     // total length of the sequence including the prompt
 | |
|     const int n_predict = params.n_predict;
 | |
| 
 | |
|     // init LLM
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // initialize the model
 | |
| 
 | |
|     llama_model_params model_params = llama_model_params_from_gpt_params(params);
 | |
| 
 | |
|     llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // initialize the context
 | |
| 
 | |
|     llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
 | |
| 
 | |
|     llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     auto sparams = llama_sampler_chain_default_params();
 | |
| 
 | |
|     sparams.no_perf = false;
 | |
| 
 | |
|     llama_sampler * smpl = llama_sampler_chain_init(sparams);
 | |
| 
 | |
|     llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
 | |
| 
 | |
|     // tokenize the prompt
 | |
| 
 | |
|     std::vector<llama_token> tokens_list;
 | |
|     tokens_list = ::llama_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|     const int n_ctx    = llama_n_ctx(ctx);
 | |
|     const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
 | |
| 
 | |
|     LOG("\n");
 | |
|     LOG_INF("%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
 | |
| 
 | |
|     // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | |
|     if (n_kv_req > n_ctx) {
 | |
|         LOG_ERR("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
 | |
|         LOG_ERR("%s:        either reduce n_predict or increase n_ctx\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // print the prompt token-by-token
 | |
| 
 | |
|     LOG("\n");
 | |
| 
 | |
|     for (auto id : tokens_list) {
 | |
|         LOG("%s", llama_token_to_piece(ctx, id).c_str());
 | |
|     }
 | |
| 
 | |
|     // create a llama_batch with size 512
 | |
|     // we use this object to submit token data for decoding
 | |
| 
 | |
|     llama_batch batch = llama_batch_init(512, 0, 1);
 | |
| 
 | |
|     // evaluate the initial prompt
 | |
|     for (size_t i = 0; i < tokens_list.size(); i++) {
 | |
|         llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
 | |
|     }
 | |
| 
 | |
|     // llama_decode will output logits only for the last token of the prompt
 | |
|     batch.logits[batch.n_tokens - 1] = true;
 | |
| 
 | |
|     if (llama_decode(ctx, batch) != 0) {
 | |
|         LOG("%s: llama_decode() failed\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // main loop
 | |
| 
 | |
|     int n_cur    = batch.n_tokens;
 | |
|     int n_decode = 0;
 | |
| 
 | |
|     const auto t_main_start = ggml_time_us();
 | |
| 
 | |
|     while (n_cur <= n_predict) {
 | |
|         // sample the next token
 | |
|         {
 | |
|             const llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1);
 | |
| 
 | |
|             // is it an end of generation?
 | |
|             if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
 | |
|                 LOG("\n");
 | |
| 
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | |
|             fflush(stdout);
 | |
| 
 | |
|             // prepare the next batch
 | |
|             llama_batch_clear(batch);
 | |
| 
 | |
|             // push this new token for next evaluation
 | |
|             llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
 | |
| 
 | |
|             n_decode += 1;
 | |
|         }
 | |
| 
 | |
|         n_cur += 1;
 | |
| 
 | |
|         // evaluate the current batch with the transformer model
 | |
|         if (llama_decode(ctx, batch)) {
 | |
|             LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG("\n");
 | |
| 
 | |
|     const auto t_main_end = ggml_time_us();
 | |
| 
 | |
|     LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | |
|             __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | |
| 
 | |
|     LOG("\n");
 | |
|     llama_perf_sampler_print(smpl);
 | |
|     llama_perf_context_print(ctx);
 | |
| 
 | |
|     LOG("\n");
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
|     llama_sampler_free(smpl);
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
