mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			115 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			115 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import os
 | |
| import importlib
 | |
| import torch
 | |
| import numpy as np
 | |
| 
 | |
| from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
 | |
| from pathlib import Path
 | |
| 
 | |
| unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
 | |
| 
 | |
| parser = argparse.ArgumentParser(description='Process model with specified path')
 | |
| parser.add_argument('--model-path', '-m', help='Path to the model')
 | |
| args = parser.parse_args()
 | |
| 
 | |
| model_path = os.environ.get('MODEL_PATH', args.model_path)
 | |
| if model_path is None:
 | |
|     parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
 | |
| 
 | |
| config = AutoConfig.from_pretrained(model_path)
 | |
| 
 | |
| print("Model type:       ", config.model_type)
 | |
| print("Vocab size:       ", config.vocab_size)
 | |
| print("Hidden size:      ", config.hidden_size)
 | |
| print("Number of layers: ", config.num_hidden_layers)
 | |
| print("BOS token id:     ", config.bos_token_id)
 | |
| print("EOS token id:     ", config.eos_token_id)
 | |
| 
 | |
| print("Loading model and tokenizer using AutoTokenizer:", model_path)
 | |
| tokenizer = AutoTokenizer.from_pretrained(model_path)
 | |
| 
 | |
| if unreleased_model_name:
 | |
|     model_name_lower = unreleased_model_name.lower()
 | |
|     unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
 | |
|     class_name = f"{unreleased_model_name}ForCausalLM"
 | |
|     print(f"Importing unreleased model module: {unreleased_module_path}")
 | |
| 
 | |
|     try:
 | |
|         model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
 | |
|         model = model_class.from_pretrained(model_path)
 | |
|     except (ImportError, AttributeError) as e:
 | |
|         print(f"Failed to import or load model: {e}")
 | |
|         print("Falling back to AutoModelForCausalLM")
 | |
|         model = AutoModelForCausalLM.from_pretrained(model_path)
 | |
| else:
 | |
|     model = AutoModelForCausalLM.from_pretrained(model_path)
 | |
| print(f"Model class: {type(model)}")
 | |
| #print(f"Model file: {type(model).__module__}")
 | |
| 
 | |
| model_name = os.path.basename(model_path)
 | |
| print(f"Model name: {model_name}")
 | |
| 
 | |
| prompt = "Hello world today"
 | |
| input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | |
| print(f"Input tokens: {input_ids}")
 | |
| print(f"Input text: {repr(prompt)}")
 | |
| print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
 | |
| 
 | |
| with torch.no_grad():
 | |
|     outputs = model(input_ids, output_hidden_states=True)
 | |
| 
 | |
|     # Extract hidden states from the last layer
 | |
|     # outputs.hidden_states is a tuple of (num_layers + 1) tensors
 | |
|     # Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size]
 | |
|     last_hidden_states = outputs.hidden_states[-1]
 | |
| 
 | |
|     # Get embeddings for all tokens
 | |
|     token_embeddings = last_hidden_states[0].cpu().numpy()  # Remove batch dimension
 | |
| 
 | |
|     print(f"Hidden states shape: {last_hidden_states.shape}")
 | |
|     print(f"Token embeddings shape: {token_embeddings.shape}")
 | |
|     print(f"Hidden dimension: {token_embeddings.shape[-1]}")
 | |
|     print(f"Number of tokens: {token_embeddings.shape[0]}")
 | |
| 
 | |
|     # Save raw token embeddings
 | |
|     data_dir = Path("data")
 | |
|     data_dir.mkdir(exist_ok=True)
 | |
|     bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
 | |
|     txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
 | |
| 
 | |
|     # Save all token embeddings as binary
 | |
|     print(token_embeddings)
 | |
|     token_embeddings.astype(np.float32).tofile(bin_filename)
 | |
| 
 | |
|     # Save as text for inspection
 | |
|     with open(txt_filename, "w") as f:
 | |
|         for i, embedding in enumerate(token_embeddings):
 | |
|             for j, val in enumerate(embedding):
 | |
|                 f.write(f"{i} {j} {val:.6f}\n")
 | |
| 
 | |
|     # Print embeddings per token in the requested format
 | |
|     print("\nToken embeddings:")
 | |
|     tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
 | |
|     for i, embedding in enumerate(token_embeddings):
 | |
|         # Format: show first few values, ..., then last few values
 | |
|         if len(embedding) > 10:
 | |
|             # Show first 3 and last 3 values with ... in between
 | |
|             first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3])
 | |
|             last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:])
 | |
|             print(f"embedding {i}: {first_vals}  ... {last_vals}")
 | |
|         else:
 | |
|             # If embedding is short, show all values
 | |
|             vals = " ".join(f"{val:8.6f}" for val in embedding)
 | |
|             print(f"embedding {i}: {vals}")
 | |
| 
 | |
|     # Also show token info for reference
 | |
|     print(f"\nToken reference:")
 | |
|     for i, token in enumerate(tokens):
 | |
|         print(f"  Token {i}: {repr(token)}")
 | |
| 
 | |
|     print(f"Saved bin logits to: {bin_filename}")
 | |
|     print(f"Saved txt logist to: {txt_filename}")
 |