mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 6381d4e110
			
		
	
	6381d4e110
	
	
	
		
			
			* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415)
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426)
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438)
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf :  inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613)
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp :  fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620)
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629)
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635)
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit 7e82d25f40.
* convert.py : n_head_kv optional and .gguf file extension
* convert.py : better always have n_head_kv and default it to n_head
* llama : sync with recent PRs on master
* editorconfig : ignore models folder
ggml-ci
* ci : update ".bin" to ".gguf" extension
ggml-ci
* llama : fix llama_model_loader memory leak
* gptneox : move as a WIP example
* llama : fix lambda capture
ggml-ci
* ggml : fix bug in gguf_set_kv
ggml-ci
* common.h : .bin --> .gguf
* quantize-stats.cpp : .bin --> .gguf
* convert.py : fix HF tensor permuting / unpacking
ggml-ci
* llama.cpp : typo
* llama : throw error if gguf fails to init from file
ggml-ci
* llama : fix tensor name grepping during quantization
ggml-ci
* gguf.py : write tensors in a single pass (#2644)
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : style fixes in simple conversion script
* gguf : refactor gptneox conversion script
* gguf : rename h5 to hf (for HuggingFace)
* gguf : refactor pth to gguf conversion script
* gguf : rm file_type key and method
* gguf.py : fix vertical alignment
* gguf.py : indentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert-gptneox-hf-to-gguf.py : fixes
* gguf.py : gptneox mapping
* convert-llama-hf-to-gguf.py : fixes
* convert-llama-7b-pth-to-gguf.py : fixes
* ggml.h : reverse GGUF_MAGIC
* gguf.py : reverse GGUF_MAGIC
* test-tokenizer-0.cpp : fix warning
* llama.cpp : print kv general.name
* llama.cpp : get special token kv and linefeed token id
* llama : print number of tensors per type + print arch + style
* tests : update vocab file with new magic
* editorconfig : fix whitespaces
* llama : re-order functions
* llama : remove C++ API + reorganize common source in /common dir
* llama : minor API updates
* llama : avoid hardcoded special tokens
* llama : fix MPI build
ggml-ci
* llama : introduce enum llama_vocab_type + remove hardcoded string constants
* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested
* falcon-main.cpp : falcon inference example
* convert-falcon-hf-to-gguf.py : remove extra kv
* convert-gptneox-hf-to-gguf.py : remove extra kv
* convert-llama-7b-pth-to-gguf.py : remove extra kv
* convert-llama-hf-to-gguf.py : remove extra kv
* gguf.py : fix for falcon 40b
* falcon-main.cpp : fix for falcon 40b
* convert-falcon-hf-to-gguf.py : update ref
* convert-falcon-hf-to-gguf.py : add tensor data layout
* cmpnct_gpt2bpe.hpp : fixes
* falcon-main.cpp : fixes
* gptneox-main.cpp : fixes
* cmpnct_gpt2bpe.hpp : remove non-general stuff
* Update examples/server/README.md
Co-authored-by: slaren <slarengh@gmail.com>
* cmpnct_gpt2bpe.hpp : cleanup
* convert-llama-hf-to-gguf.py : special tokens
* convert-llama-7b-pth-to-gguf.py : special tokens
* convert-permute-debug.py : permute debug print
* convert-permute-debug-master.py : permute debug for master
* convert-permute-debug.py : change permute type of attn_q
* convert.py : 70b model working (change attn_q permute)
* Delete convert-permute-debug-master.py
* Delete convert-permute-debug.py
* convert-llama-hf-to-gguf.py : fix attn_q permute
* gguf.py : fix rope scale kv
* convert-llama-hf-to-gguf.py : rope scale and added tokens
* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens
* llama.cpp : use rope scale kv
* convert-llama-7b-pth-to-gguf.py : rope scale fix
* convert-llama-hf-to-gguf.py : rope scale fix
* py : fix whitespace
* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)
* First pass at converting GGMLv3 LLaMA models to GGUF
* Cleanups, better output during conversion
* Fix vocab space conversion logic
* More vocab conversion fixes
* Add description to converted GGUF files
* Improve help text, expand warning
* Allow specifying name and description for output GGUF
* Allow overriding vocab and hyperparams from original model metadata
* Use correct params override var name
* Fix wrong type size for Q8_K
Better handling of original style metadata
* Set default value for gguf add_tensor raw_shape KW arg
* llama : improve token type support (#2668)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* llama : add API for token type
ggml-ci
* tests : use new tokenizer type API (#2692)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* Improve commentary
* Use token type API in test-tokenizer-1.cpp
* py : cosmetics
* readme : add notice about new file format
ggml-ci
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
		
	
		
			
				
	
	
		
			1113 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			Objective-C
		
	
	
	
	
	
			
		
		
	
	
			1113 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			Objective-C
		
	
	
	
	
	
| #import "ggml-metal.h"
 | |
| 
 | |
| #import "ggml.h"
 | |
| 
 | |
| #import <Foundation/Foundation.h>
 | |
| 
 | |
| #import <Metal/Metal.h>
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| 
 | |
| #ifdef GGML_METAL_NDEBUG
 | |
| #define metal_printf(...)
 | |
| #else
 | |
| #define metal_printf(...) fprintf(stderr, __VA_ARGS__)
 | |
| #endif
 | |
| 
 | |
| #define UNUSED(x) (void)(x)
 | |
| 
 | |
| #define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
 | |
| 
 | |
| struct ggml_metal_buffer {
 | |
|     const char * name;
 | |
| 
 | |
|     void   * data;
 | |
|     size_t   size;
 | |
| 
 | |
|     id<MTLBuffer> metal;
 | |
| };
 | |
| 
 | |
| struct ggml_metal_context {
 | |
|     int n_cb;
 | |
| 
 | |
|     float * logits;
 | |
| 
 | |
|     id<MTLDevice>       device;
 | |
|     id<MTLCommandQueue> queue;
 | |
|     id<MTLLibrary>      library;
 | |
| 
 | |
|     int n_buffers;
 | |
|     struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
 | |
| 
 | |
|     int concur_list[GGML_MAX_CONCUR];
 | |
|     int concur_list_len;
 | |
| 
 | |
|     // custom kernels
 | |
| #define GGML_METAL_DECL_KERNEL(name) \
 | |
|     id<MTLFunction>             function_##name; \
 | |
|     id<MTLComputePipelineState> pipeline_##name
 | |
| 
 | |
|     GGML_METAL_DECL_KERNEL(add);
 | |
|     GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
 | |
|     GGML_METAL_DECL_KERNEL(mul);
 | |
|     GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
 | |
|     GGML_METAL_DECL_KERNEL(scale);
 | |
|     GGML_METAL_DECL_KERNEL(silu);
 | |
|     GGML_METAL_DECL_KERNEL(relu);
 | |
|     GGML_METAL_DECL_KERNEL(gelu);
 | |
|     GGML_METAL_DECL_KERNEL(soft_max);
 | |
|     GGML_METAL_DECL_KERNEL(diag_mask_inf);
 | |
|     GGML_METAL_DECL_KERNEL(get_rows_f16);
 | |
|     GGML_METAL_DECL_KERNEL(get_rows_q4_0);
 | |
|     GGML_METAL_DECL_KERNEL(get_rows_q4_1);
 | |
|     GGML_METAL_DECL_KERNEL(get_rows_q2_K);
 | |
|     GGML_METAL_DECL_KERNEL(get_rows_q3_K);
 | |
|     GGML_METAL_DECL_KERNEL(get_rows_q4_K);
 | |
|     GGML_METAL_DECL_KERNEL(get_rows_q5_K);
 | |
|     GGML_METAL_DECL_KERNEL(get_rows_q6_K);
 | |
|     GGML_METAL_DECL_KERNEL(rms_norm);
 | |
|     GGML_METAL_DECL_KERNEL(norm);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
 | |
|     GGML_METAL_DECL_KERNEL(rope);
 | |
|     GGML_METAL_DECL_KERNEL(alibi_f32);
 | |
|     GGML_METAL_DECL_KERNEL(cpy_f32_f16);
 | |
|     GGML_METAL_DECL_KERNEL(cpy_f32_f32);
 | |
|     GGML_METAL_DECL_KERNEL(cpy_f16_f16);
 | |
| 
 | |
| #undef GGML_METAL_DECL_KERNEL
 | |
| };
 | |
| 
 | |
| // MSL code
 | |
| // TODO: move the contents here when ready
 | |
| //       for now it is easier to work in a separate file
 | |
| static NSString * const msl_library_source = @"see metal.metal";
 | |
| 
 | |
| // Here to assist with NSBundle Path Hack
 | |
| @interface GGMLMetalClass : NSObject
 | |
| @end
 | |
| @implementation GGMLMetalClass
 | |
| @end
 | |
| 
 | |
| struct ggml_metal_context * ggml_metal_init(int n_cb) {
 | |
|     fprintf(stderr, "%s: allocating\n", __func__);
 | |
| 
 | |
|     struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
 | |
| 
 | |
|     ctx->n_cb   = n_cb;
 | |
|     ctx->device = MTLCreateSystemDefaultDevice();
 | |
|     ctx->queue  = [ctx->device newCommandQueue];
 | |
|     ctx->n_buffers = 0;
 | |
|     ctx->concur_list_len = 0;
 | |
| 
 | |
| 
 | |
| #if 0
 | |
|     // compile from source string and show compile log
 | |
|     {
 | |
|         NSError * error = nil;
 | |
| 
 | |
|         ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
 | |
|         if (error) {
 | |
|             fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     UNUSED(msl_library_source);
 | |
| 
 | |
|     // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
 | |
|     {
 | |
|         NSError * error = nil;
 | |
| 
 | |
|         //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
 | |
|         NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
 | |
|         NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
 | |
|         fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
 | |
| 
 | |
|         NSString * src  = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
 | |
|         if (error) {
 | |
|             fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
| #ifdef GGML_QKK_64
 | |
|         MTLCompileOptions* options = [MTLCompileOptions new];
 | |
|         options.preprocessorMacros = @{ @"QK_K" : @(64) };
 | |
|         ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
 | |
| #else
 | |
|         ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
 | |
| #endif
 | |
|         if (error) {
 | |
|             fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // load kernels
 | |
|     {
 | |
|         NSError * error = nil;
 | |
| #define GGML_METAL_ADD_KERNEL(name) \
 | |
|         ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
 | |
|         ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
 | |
|         fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name); \
 | |
|         if (error) { \
 | |
|             fprintf(stderr, "%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
 | |
|             return NULL; \
 | |
|         }
 | |
| 
 | |
|         GGML_METAL_ADD_KERNEL(add);
 | |
|         GGML_METAL_ADD_KERNEL(add_row);
 | |
|         GGML_METAL_ADD_KERNEL(mul);
 | |
|         GGML_METAL_ADD_KERNEL(mul_row);
 | |
|         GGML_METAL_ADD_KERNEL(scale);
 | |
|         GGML_METAL_ADD_KERNEL(silu);
 | |
|         GGML_METAL_ADD_KERNEL(relu);
 | |
|         GGML_METAL_ADD_KERNEL(gelu);
 | |
|         GGML_METAL_ADD_KERNEL(soft_max);
 | |
|         GGML_METAL_ADD_KERNEL(diag_mask_inf);
 | |
|         GGML_METAL_ADD_KERNEL(get_rows_f16);
 | |
|         GGML_METAL_ADD_KERNEL(get_rows_q4_0);
 | |
|         GGML_METAL_ADD_KERNEL(get_rows_q4_1);
 | |
|         GGML_METAL_ADD_KERNEL(get_rows_q2_K);
 | |
|         GGML_METAL_ADD_KERNEL(get_rows_q3_K);
 | |
|         GGML_METAL_ADD_KERNEL(get_rows_q4_K);
 | |
|         GGML_METAL_ADD_KERNEL(get_rows_q5_K);
 | |
|         GGML_METAL_ADD_KERNEL(get_rows_q6_K);
 | |
|         GGML_METAL_ADD_KERNEL(rms_norm);
 | |
|         GGML_METAL_ADD_KERNEL(norm);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
 | |
|         GGML_METAL_ADD_KERNEL(rope);
 | |
|         GGML_METAL_ADD_KERNEL(alibi_f32);
 | |
|         GGML_METAL_ADD_KERNEL(cpy_f32_f16);
 | |
|         GGML_METAL_ADD_KERNEL(cpy_f32_f32);
 | |
|         GGML_METAL_ADD_KERNEL(cpy_f16_f16);
 | |
| 
 | |
| #undef GGML_METAL_ADD_KERNEL
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
 | |
|     fprintf(stderr, "%s: hasUnifiedMemory             = %s\n",       __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
 | |
|     if (ctx->device.maxTransferRate != 0) {
 | |
|         fprintf(stderr, "%s: maxTransferRate              = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
 | |
|     } else {
 | |
|         fprintf(stderr, "%s: maxTransferRate              = built-in GPU\n", __func__);
 | |
|     }
 | |
| 
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| void ggml_metal_free(struct ggml_metal_context * ctx) {
 | |
|     fprintf(stderr, "%s: deallocating\n", __func__);
 | |
|     for (int i = 0; i < ctx->n_buffers; ++i) {
 | |
|         [ctx->buffers[i].metal release];
 | |
|     }
 | |
|     free(ctx);
 | |
| }
 | |
| 
 | |
| void * ggml_metal_host_malloc(size_t n) {
 | |
|     void * data = NULL;
 | |
|     const int result = posix_memalign((void **) &data, getpagesize(), n);
 | |
|     if (result != 0) {
 | |
|         fprintf(stderr, "%s: error: posix_memalign failed\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| void ggml_metal_host_free(void * data) {
 | |
|     free(data);
 | |
| }
 | |
| 
 | |
| void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
 | |
|     ctx->n_cb = n_cb;
 | |
| }
 | |
| 
 | |
| int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
 | |
|     return ctx->concur_list_len;
 | |
| }
 | |
| 
 | |
| int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
 | |
|     return ctx->concur_list;
 | |
| }
 | |
| 
 | |
| // finds the Metal buffer that contains the tensor data on the GPU device
 | |
| // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
 | |
| // Metal buffer based on the host memory pointer
 | |
| //
 | |
| static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
 | |
|     //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
 | |
| 
 | |
|     const int64_t tsize = ggml_nbytes(t);
 | |
| 
 | |
|     // find the view that contains the tensor fully
 | |
|     for (int i = 0; i < ctx->n_buffers; ++i) {
 | |
|         const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
 | |
| 
 | |
|         if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
 | |
|             *offs = (size_t) ioffs;
 | |
| 
 | |
|             //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
 | |
| 
 | |
|             return ctx->buffers[i].metal;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: error: buffer is nil\n", __func__);
 | |
| 
 | |
|     return nil;
 | |
| }
 | |
| 
 | |
| bool ggml_metal_add_buffer(
 | |
|         struct ggml_metal_context * ctx,
 | |
|                      const char * name,
 | |
|                            void * data,
 | |
|                          size_t   size,
 | |
|                          size_t   max_size) {
 | |
|     if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
 | |
|         fprintf(stderr, "%s: too many buffers\n", __func__);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (data) {
 | |
|         // verify that the buffer does not overlap with any of the existing buffers
 | |
|         for (int i = 0; i < ctx->n_buffers; ++i) {
 | |
|             const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
 | |
| 
 | |
|             if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
 | |
|                 fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const size_t size_page = getpagesize();
 | |
| 
 | |
|         size_t size_aligned = size;
 | |
|         if ((size_aligned % size_page) != 0) {
 | |
|             size_aligned += (size_page - (size_aligned % size_page));
 | |
|         }
 | |
| 
 | |
|         // the buffer fits into the max buffer size allowed by the device
 | |
|         if (size_aligned <= ctx->device.maxBufferLength) {
 | |
|             ctx->buffers[ctx->n_buffers].name = name;
 | |
|             ctx->buffers[ctx->n_buffers].data = data;
 | |
|             ctx->buffers[ctx->n_buffers].size = size;
 | |
| 
 | |
|             ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
 | |
| 
 | |
|             if (ctx->buffers[ctx->n_buffers].metal == nil) {
 | |
|                 fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
 | |
| 
 | |
|             ++ctx->n_buffers;
 | |
|         } else {
 | |
|             // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
 | |
|             // one of the views
 | |
|             const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
 | |
|             const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
 | |
|             const size_t size_view = ctx->device.maxBufferLength;
 | |
| 
 | |
|             for (size_t i = 0; i < size; i += size_step) {
 | |
|                 const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
 | |
| 
 | |
|                 ctx->buffers[ctx->n_buffers].name = name;
 | |
|                 ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
 | |
|                 ctx->buffers[ctx->n_buffers].size = size_step_aligned;
 | |
| 
 | |
|                 ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
 | |
| 
 | |
|                 if (ctx->buffers[ctx->n_buffers].metal == nil) {
 | |
|                     fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|                 fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
 | |
|                 if (i + size_step < size) {
 | |
|                     fprintf(stderr, "\n");
 | |
|                 }
 | |
| 
 | |
|                 ++ctx->n_buffers;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         fprintf(stderr, ", (%8.2f / %8.2f)",
 | |
|                 ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
 | |
|                 ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
 | |
| 
 | |
|         if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
 | |
|             fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n");
 | |
|         } else {
 | |
|             fprintf(stderr, "\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void ggml_metal_set_tensor(
 | |
|         struct ggml_metal_context * ctx,
 | |
|         struct ggml_tensor * t) {
 | |
|     metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
 | |
| 
 | |
|     size_t offs;
 | |
|     id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
 | |
| 
 | |
|     memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
 | |
| }
 | |
| 
 | |
| void ggml_metal_get_tensor(
 | |
|         struct ggml_metal_context * ctx,
 | |
|         struct ggml_tensor * t) {
 | |
|     metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
 | |
| 
 | |
|     size_t offs;
 | |
|     id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
 | |
| 
 | |
|     memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
 | |
| }
 | |
| 
 | |
| void ggml_metal_graph_find_concurrency(
 | |
|         struct ggml_metal_context * ctx,
 | |
|         struct ggml_cgraph * gf, bool check_mem) {
 | |
|     int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
 | |
|     int nodes_unused[GGML_MAX_CONCUR];
 | |
| 
 | |
|     for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
 | |
|     for (int i = 0; i < gf->n_nodes;     i++) { nodes_unused[i]     = 1; }
 | |
|     ctx->concur_list_len = 0;
 | |
| 
 | |
|     int n_left    = gf->n_nodes;
 | |
|     int n_start   = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
 | |
|     int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
 | |
| 
 | |
|     while (n_left > 0) {
 | |
|         // number of nodes at a layer (that can be issued concurrently)
 | |
|         int concurrency = 0;
 | |
|         for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
 | |
|             if (nodes_unused[i]) {
 | |
|                 // if the requirements for gf->nodes[i] are satisfied
 | |
|                 int exe_flag = 1;
 | |
| 
 | |
|                 // scan all srcs
 | |
|                 for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
 | |
|                     struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
 | |
|                     if (src_cur) {
 | |
|                         // if is leaf nodes it's satisfied.
 | |
|                         // TODO: ggml_is_leaf()
 | |
|                         if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
 | |
|                             continue;
 | |
|                         }
 | |
| 
 | |
|                         // otherwise this src should be the output from previous nodes.
 | |
|                         int is_found = 0;
 | |
| 
 | |
|                         // scan 2*search_depth back because we inserted barrier.
 | |
|                         //for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
 | |
|                         for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
 | |
|                             if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
 | |
|                                 is_found = 1;
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                         if (is_found == 0) {
 | |
|                             exe_flag = 0;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 if (exe_flag && check_mem) {
 | |
|                     // check if nodes[i]'s data will be overwritten by a node before nodes[i].
 | |
|                     // if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
 | |
|                     int64_t data_start = (int64_t) gf->nodes[i]->data;
 | |
|                     int64_t length     = (int64_t) ggml_nbytes(gf->nodes[i]);
 | |
|                     for (int j = n_start; j < i; j++) {
 | |
|                         if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
 | |
|                                             && gf->nodes[j]->op != GGML_OP_VIEW \
 | |
|                                             && gf->nodes[j]->op != GGML_OP_TRANSPOSE \
 | |
|                                             && gf->nodes[j]->op != GGML_OP_PERMUTE) {
 | |
|                             if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
 | |
|                                 ((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
 | |
|                                 continue;
 | |
|                             }
 | |
| 
 | |
|                             exe_flag = 0;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 if (exe_flag) {
 | |
|                     ctx->concur_list[level_pos + concurrency] = i;
 | |
|                     nodes_unused[i] = 0;
 | |
|                     concurrency++;
 | |
|                     ctx->concur_list_len++;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         n_left -= concurrency;
 | |
|         // adding a barrier different layer
 | |
|         ctx->concur_list[level_pos + concurrency] = -1;
 | |
|         ctx->concur_list_len++;
 | |
|         // jump all sorted nodes at nodes_bak
 | |
|         while (!nodes_unused[n_start]) {
 | |
|             n_start++;
 | |
|         }
 | |
|         level_pos += concurrency + 1;
 | |
|     }
 | |
| 
 | |
|     if (ctx->concur_list_len > GGML_MAX_CONCUR) {
 | |
|         fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_metal_graph_compute(
 | |
|         struct ggml_metal_context * ctx,
 | |
|                struct ggml_cgraph * gf) {
 | |
|     metal_printf("%s: evaluating graph\n", __func__);
 | |
| 
 | |
|     // if there is ctx->concur_list, dispatch concurrently
 | |
|     // else fallback to serial dispatch
 | |
|     MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
 | |
| 
 | |
|     const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
 | |
| 
 | |
|     const int n_nodes  = has_concur ? ctx->concur_list_len      : gf->n_nodes;
 | |
|     edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
 | |
| 
 | |
|     // create multiple command buffers and enqueue them
 | |
|     // then, we encode the graph into the command buffers in parallel
 | |
| 
 | |
|     const int n_cb = ctx->n_cb;
 | |
| 
 | |
|     NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb];
 | |
| 
 | |
|     for (int i = 0; i < n_cb; ++i) {
 | |
|         command_buffers[i] = [ctx->queue commandBuffer];
 | |
| 
 | |
|         // enqueue the command buffers in order to specify their execution order
 | |
|         [command_buffers[i] enqueue];
 | |
|     }
 | |
| 
 | |
|     // TODO: is this the best way to start threads?
 | |
|     dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
 | |
| 
 | |
|     for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
 | |
|         const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
 | |
| 
 | |
|         dispatch_async(queue, ^{
 | |
|             size_t offs_src0 = 0;
 | |
|             size_t offs_src1 = 0;
 | |
|             size_t offs_dst  = 0;
 | |
| 
 | |
|             id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
 | |
| 
 | |
|             id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
 | |
| 
 | |
|             const int node_start =                                  (cb_idx + 0) * n_nodes_per_cb;
 | |
|             const int node_end   = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
 | |
| 
 | |
|             for (int ind = node_start; ind < node_end; ++ind) {
 | |
|                 const int i = has_concur ? ctx->concur_list[ind] : ind;
 | |
| 
 | |
|                 if (i == -1) {
 | |
|                     [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
 | |
| 
 | |
|                 struct ggml_tensor * src0 = gf->nodes[i]->src[0];
 | |
|                 struct ggml_tensor * src1 = gf->nodes[i]->src[1];
 | |
|                 struct ggml_tensor * dst  = gf->nodes[i];
 | |
| 
 | |
|                 const int64_t  ne00 = src0 ? src0->ne[0] : 0;
 | |
|                 const int64_t  ne01 = src0 ? src0->ne[1] : 0;
 | |
|                 const int64_t  ne02 = src0 ? src0->ne[2] : 0;
 | |
|                 const int64_t  ne03 = src0 ? src0->ne[3] : 0;
 | |
| 
 | |
|                 const uint64_t nb00 = src0 ? src0->nb[0] : 0;
 | |
|                 const uint64_t nb01 = src0 ? src0->nb[1] : 0;
 | |
|                 const uint64_t nb02 = src0 ? src0->nb[2] : 0;
 | |
|                 const uint64_t nb03 = src0 ? src0->nb[3] : 0;
 | |
| 
 | |
|                 const int64_t  ne10 = src1 ? src1->ne[0] : 0;
 | |
|                 const int64_t  ne11 = src1 ? src1->ne[1] : 0;
 | |
|                 const int64_t  ne12 = src1 ? src1->ne[2] : 0;
 | |
|                 const int64_t  ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
 | |
| 
 | |
|                 const uint64_t nb10 = src1 ? src1->nb[0] : 0;
 | |
|                 const uint64_t nb11 = src1 ? src1->nb[1] : 0;
 | |
|                 const uint64_t nb12 = src1 ? src1->nb[2] : 0;
 | |
|                 const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
 | |
| 
 | |
|                 const int64_t  ne0  = dst ? dst->ne[0] : 0;
 | |
|                 const int64_t  ne1  = dst ? dst->ne[1] : 0;
 | |
|                 const int64_t  ne2  = dst ? dst->ne[2] : 0;
 | |
|                 const int64_t  ne3  = dst ? dst->ne[3] : 0;
 | |
| 
 | |
|                 const uint64_t nb0  = dst ? dst->nb[0] : 0;
 | |
|                 const uint64_t nb1  = dst ? dst->nb[1] : 0;
 | |
|                 const uint64_t nb2  = dst ? dst->nb[2] : 0;
 | |
|                 const uint64_t nb3  = dst ? dst->nb[3] : 0;
 | |
| 
 | |
|                 const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
 | |
|                 const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
 | |
|                 const enum ggml_type dstt  = dst  ? dst->type  : GGML_TYPE_COUNT;
 | |
| 
 | |
|                 id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
 | |
|                 id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
 | |
|                 id<MTLBuffer> id_dst  = dst  ? ggml_metal_get_buffer(ctx, dst,  &offs_dst)  : nil;
 | |
| 
 | |
|                 //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
 | |
|                 //if (src0) {
 | |
|                 //    metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
 | |
|                 //            ggml_is_contiguous(src0), src0->name);
 | |
|                 //}
 | |
|                 //if (src1) {
 | |
|                 //    metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
 | |
|                 //            ggml_is_contiguous(src1), src1->name);
 | |
|                 //}
 | |
|                 //if (dst) {
 | |
|                 //    metal_printf("%s: dst  - %4s [%5lld, %5lld, %5lld], 1, %s\n",  __func__, ggml_type_name(dstt),  ne0,  ne1,  ne2,
 | |
|                 //            dst->name);
 | |
|                 //}
 | |
| 
 | |
|                 switch (dst->op) {
 | |
|                     case GGML_OP_NONE:
 | |
|                     case GGML_OP_RESHAPE:
 | |
|                     case GGML_OP_VIEW:
 | |
|                     case GGML_OP_TRANSPOSE:
 | |
|                     case GGML_OP_PERMUTE:
 | |
|                         {
 | |
|                             // noop
 | |
|                         } break;
 | |
|                     case GGML_OP_ADD:
 | |
|                         {
 | |
|                             if (ggml_nelements(src1) == ne10) {
 | |
|                                 // src1 is a row
 | |
|                                 [encoder setComputePipelineState:ctx->pipeline_add_row];
 | |
|                             } else {
 | |
|                                 [encoder setComputePipelineState:ctx->pipeline_add];
 | |
|                             }
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                             [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
 | |
| 
 | |
|                             const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_MUL:
 | |
|                         {
 | |
|                             if (ggml_nelements(src1) == ne10) {
 | |
|                                 // src1 is a row
 | |
|                                 [encoder setComputePipelineState:ctx->pipeline_mul_row];
 | |
|                             } else {
 | |
|                                 [encoder setComputePipelineState:ctx->pipeline_mul];
 | |
|                             }
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                             [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
 | |
| 
 | |
|                             const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_SCALE:
 | |
|                         {
 | |
|                             const float scale = *(const float *) src1->data;
 | |
| 
 | |
|                             [encoder setComputePipelineState:ctx->pipeline_scale];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                             [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
 | |
| 
 | |
|                             const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_UNARY:
 | |
|                         switch (ggml_get_unary_op(gf->nodes[i])) {
 | |
|                             case GGML_UNARY_OP_SILU:
 | |
|                                 {
 | |
|                                     [encoder setComputePipelineState:ctx->pipeline_silu];
 | |
|                                     [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                     [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                     const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                                 } break;
 | |
|                             case GGML_UNARY_OP_RELU:
 | |
|                                 {
 | |
|                                     [encoder setComputePipelineState:ctx->pipeline_relu];
 | |
|                                     [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                     [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                     const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                                 } break;
 | |
|                             case GGML_UNARY_OP_GELU:
 | |
|                                 {
 | |
|                                     [encoder setComputePipelineState:ctx->pipeline_gelu];
 | |
|                                     [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                     [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                     const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                                 } break;
 | |
|                             default:
 | |
|                                 {
 | |
|                                     fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
 | |
|                                     GGML_ASSERT(false);
 | |
|                                 }
 | |
|                         } break;
 | |
|                     case GGML_OP_SOFT_MAX:
 | |
|                         {
 | |
|                             const int nth = 32;
 | |
| 
 | |
|                             [encoder setComputePipelineState:ctx->pipeline_soft_max];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                             [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
 | |
|                             [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
 | |
|                             [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
 | |
|                             [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_DIAG_MASK_INF:
 | |
|                         {
 | |
|                             const int n_past = ((int32_t *)(dst->op_params))[0];
 | |
| 
 | |
|                             [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                             [encoder setBytes:&ne00   length:sizeof(ne00) atIndex:2];
 | |
|                             [encoder setBytes:&ne01   length:sizeof(ne01) atIndex:3];
 | |
|                             [encoder setBytes:&n_past length:sizeof(int)  atIndex:4];
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_MUL_MAT:
 | |
|                         {
 | |
|                             // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
 | |
| 
 | |
|                             GGML_ASSERT(ne00 == ne10);
 | |
|                             // GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
 | |
|                             uint gqa = ne12/ne02;
 | |
|                             GGML_ASSERT(ne03 == ne13);
 | |
| 
 | |
|                             // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
 | |
|                             // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
 | |
|                             if (ggml_is_contiguous(src0) &&
 | |
|                                 ggml_is_contiguous(src1) &&
 | |
|                                 src1t == GGML_TYPE_F32 &&
 | |
|                                 [ctx->device supportsFamily:MTLGPUFamilyApple7] &&
 | |
|                                 ne00%32 == 0 &&
 | |
|                                 ne11 > 1) {
 | |
|                                     switch (src0->type) {
 | |
|                                         case GGML_TYPE_F16:  [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
 | |
|                                         case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
 | |
|                                         case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
 | |
|                                         case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
 | |
|                                         case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
 | |
|                                         case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
 | |
|                                         case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
 | |
|                                         case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
 | |
|                                         default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
 | |
|                                     }
 | |
|                                     [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                     [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                                     [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                                     [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
 | |
|                                     [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
 | |
|                                     [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
 | |
|                                     [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
 | |
|                                     [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
 | |
|                                     [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
 | |
|                                     [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
 | |
|                                     [encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
 | |
|                                     [encoder setThreadgroupMemoryLength:8192 atIndex:0];
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
 | |
|                                 }
 | |
|                             else {
 | |
|                                 int nth0 = 32;
 | |
|                                 int nth1 = 1;
 | |
| 
 | |
|                                 // use custom matrix x vector kernel
 | |
|                                 switch (src0t) {
 | |
|                                     case GGML_TYPE_F16:
 | |
|                                         {
 | |
|                                             nth0 = 64;
 | |
|                                             nth1 = 1;
 | |
|                                             [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
 | |
|                                         } break;
 | |
|                                     case GGML_TYPE_Q4_0:
 | |
|                                         {
 | |
|                                             GGML_ASSERT(ne02 == 1);
 | |
|                                             GGML_ASSERT(ne12 == 1);
 | |
| 
 | |
|                                             nth0 = 8;
 | |
|                                             nth1 = 8;
 | |
|                                             [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
 | |
|                                         } break;
 | |
|                                     case GGML_TYPE_Q4_1:
 | |
|                                         {
 | |
|                                             GGML_ASSERT(ne02 == 1);
 | |
|                                             GGML_ASSERT(ne12 == 1);
 | |
| 
 | |
|                                             nth0 = 8;
 | |
|                                             nth1 = 8;
 | |
|                                             [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
 | |
|                                         } break;
 | |
|                                     case GGML_TYPE_Q2_K:
 | |
|                                         {
 | |
|                                             GGML_ASSERT(ne02 == 1);
 | |
|                                             GGML_ASSERT(ne12 == 1);
 | |
| 
 | |
|                                             nth0 = 2;
 | |
|                                             nth1 = 32;
 | |
|                                             [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
 | |
|                                         } break;
 | |
|                                     case GGML_TYPE_Q3_K:
 | |
|                                         {
 | |
|                                             GGML_ASSERT(ne02 == 1);
 | |
|                                             GGML_ASSERT(ne12 == 1);
 | |
| 
 | |
|                                             nth0 = 2;
 | |
|                                             nth1 = 32;
 | |
|                                             [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
 | |
|                                         } break;
 | |
|                                     case GGML_TYPE_Q4_K:
 | |
|                                         {
 | |
|                                             GGML_ASSERT(ne02 == 1);
 | |
|                                             GGML_ASSERT(ne12 == 1);
 | |
| 
 | |
|                                             nth0 = 2;
 | |
|                                             nth1 = 32;
 | |
|                                             [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
 | |
|                                         } break;
 | |
|                                     case GGML_TYPE_Q5_K:
 | |
|                                         {
 | |
|                                             GGML_ASSERT(ne02 == 1);
 | |
|                                             GGML_ASSERT(ne12 == 1);
 | |
| 
 | |
|                                             nth0 = 2;
 | |
|                                             nth1 = 32;
 | |
|                                             [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32];
 | |
|                                         } break;
 | |
|                                     case GGML_TYPE_Q6_K:
 | |
|                                         {
 | |
|                                             GGML_ASSERT(ne02 == 1);
 | |
|                                             GGML_ASSERT(ne12 == 1);
 | |
| 
 | |
|                                             nth0 = 2;
 | |
|                                             nth1 = 32;
 | |
|                                             [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32];
 | |
|                                         } break;
 | |
|                                     default:
 | |
|                                         {
 | |
|                                             fprintf(stderr, "Asserting on type %d\n",(int)src0t);
 | |
|                                             GGML_ASSERT(false && "not implemented");
 | |
|                                         }
 | |
|                                 };
 | |
| 
 | |
|                                 [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                 [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                                 [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                                 [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
 | |
|                                 [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
 | |
|                                 [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
 | |
|                                 [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
 | |
|                                 [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
 | |
|                                 [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
 | |
|                                 [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
 | |
|                                 [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
 | |
|                                 [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
 | |
|                                 [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
 | |
|                                 [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
 | |
|                                 [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
 | |
|                                 [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:15];
 | |
|                                 [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:16];
 | |
|                                 [encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
 | |
| 
 | |
|                                 if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
 | |
|                                     src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                                 }
 | |
|                                 else if (src0t == GGML_TYPE_Q3_K) {
 | |
| #ifdef GGML_QKK_64
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
| #else
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
| #endif
 | |
|                                 }
 | |
|                                 else if (src0t == GGML_TYPE_Q5_K) {
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                                 }
 | |
|                                 else if (src0t == GGML_TYPE_Q6_K) {
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                                 } else {
 | |
|                                     [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
 | |
|                                     [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                                 }
 | |
|                             }
 | |
|                         } break;
 | |
|                     case GGML_OP_GET_ROWS:
 | |
|                         {
 | |
|                             switch (src0->type) {
 | |
|                                 case GGML_TYPE_F16:  [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
 | |
|                                 case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
 | |
|                                 case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
 | |
|                                 case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
 | |
|                                 case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
 | |
|                                 case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
 | |
|                                 case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break;
 | |
|                                 case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break;
 | |
|                                 default: GGML_ASSERT(false && "not implemented");
 | |
|                             }
 | |
| 
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                             [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
 | |
|                             [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
 | |
|                             [encoder setBytes:&(dst->nb[1])  length:sizeof(uint64_t) atIndex:5];
 | |
| 
 | |
|                             const int64_t n = ggml_nelements(src1);
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_RMS_NORM:
 | |
|                         {
 | |
|                             float eps;
 | |
|                             memcpy(&eps, dst->op_params, sizeof(float));
 | |
| 
 | |
|                             const int nth = 512;
 | |
| 
 | |
|                             [encoder setComputePipelineState:ctx->pipeline_rms_norm];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                             [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
 | |
|                             [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
 | |
|                             [encoder setBytes:&eps  length:sizeof(   float) atIndex:4];
 | |
|                             [encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
 | |
| 
 | |
|                             const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_NORM:
 | |
|                         {
 | |
|                             const float eps = 1e-5f;
 | |
| 
 | |
|                             const int nth = 256;
 | |
| 
 | |
|                             [encoder setComputePipelineState:ctx->pipeline_norm];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                             [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
 | |
|                             [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
 | |
|                             [encoder setBytes:&eps  length:sizeof(   float) atIndex:4];
 | |
|                             [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
 | |
| 
 | |
|                             const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_ALIBI:
 | |
|                         {
 | |
|                             GGML_ASSERT((src0t == GGML_TYPE_F32));
 | |
| 
 | |
|                             const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
 | |
|                             const int n_head = ((int32_t *) dst->op_params)[1];
 | |
|                             float max_bias;
 | |
|                             memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
 | |
| 
 | |
|                             if (__builtin_popcount(n_head) != 1) {
 | |
|                                 GGML_ASSERT(false && "only power-of-two n_head implemented");
 | |
|                             }
 | |
| 
 | |
|                             const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
 | |
|                             const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
 | |
| 
 | |
|                             [encoder setComputePipelineState:ctx->pipeline_alibi_f32];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                             [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
 | |
|                             [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
 | |
|                             [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
 | |
|                             [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
 | |
|                             [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
 | |
|                             [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
 | |
|                             [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
 | |
|                             [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
 | |
|                             [encoder setBytes:&ne0  length:sizeof( int64_t) atIndex:10];
 | |
|                             [encoder setBytes:&ne1  length:sizeof( int64_t) atIndex:11];
 | |
|                             [encoder setBytes:&ne2  length:sizeof( int64_t) atIndex:12];
 | |
|                             [encoder setBytes:&ne3  length:sizeof( int64_t) atIndex:13];
 | |
|                             [encoder setBytes:&nb0  length:sizeof(uint64_t) atIndex:14];
 | |
|                             [encoder setBytes:&nb1  length:sizeof(uint64_t) atIndex:15];
 | |
|                             [encoder setBytes:&nb2  length:sizeof(uint64_t) atIndex:16];
 | |
|                             [encoder setBytes:&nb3  length:sizeof(uint64_t) atIndex:17];
 | |
|                             [encoder setBytes:&m0  length:sizeof(    float) atIndex:18];
 | |
|                             const int nth = 32;
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_ROPE:
 | |
|                         {
 | |
|                             const int n_past = ((int32_t *) dst->op_params)[0];
 | |
|                             const int n_dims = ((int32_t *) dst->op_params)[1];
 | |
|                             const int mode   = ((int32_t *) dst->op_params)[2];
 | |
| 
 | |
|                             float freq_base;
 | |
|                             float freq_scale;
 | |
|                             memcpy(&freq_base,  (int32_t *) dst->op_params + 4, sizeof(float));
 | |
|                             memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
 | |
| 
 | |
|                             [encoder setComputePipelineState:ctx->pipeline_rope];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                             [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
 | |
|                             [encoder setBytes:&ne01    length:sizeof( int64_t) atIndex:3];
 | |
|                             [encoder setBytes:&ne02    length:sizeof( int64_t) atIndex:4];
 | |
|                             [encoder setBytes:&ne03    length:sizeof( int64_t) atIndex:5];
 | |
|                             [encoder setBytes:&nb00    length:sizeof(uint64_t) atIndex:6];
 | |
|                             [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:7];
 | |
|                             [encoder setBytes:&nb02    length:sizeof(uint64_t) atIndex:8];
 | |
|                             [encoder setBytes:&nb03    length:sizeof(uint64_t) atIndex:9];
 | |
|                             [encoder setBytes:&ne0     length:sizeof( int64_t) atIndex:10];
 | |
|                             [encoder setBytes:&ne1     length:sizeof( int64_t) atIndex:11];
 | |
|                             [encoder setBytes:&ne2     length:sizeof( int64_t) atIndex:12];
 | |
|                             [encoder setBytes:&ne3     length:sizeof( int64_t) atIndex:13];
 | |
|                             [encoder setBytes:&nb0     length:sizeof(uint64_t) atIndex:14];
 | |
|                             [encoder setBytes:&nb1     length:sizeof(uint64_t) atIndex:15];
 | |
|                             [encoder setBytes:&nb2     length:sizeof(uint64_t) atIndex:16];
 | |
|                             [encoder setBytes:&nb3     length:sizeof(uint64_t) atIndex:17];
 | |
|                             [encoder setBytes:&n_past  length:sizeof(     int) atIndex:18];
 | |
|                             [encoder setBytes:&n_dims  length:sizeof(     int) atIndex:19];
 | |
|                             [encoder setBytes:&mode    length:sizeof(     int) atIndex:20];
 | |
|                             [encoder setBytes:&freq_base  length:sizeof(float) atIndex:21];
 | |
|                             [encoder setBytes:&freq_scale length:sizeof(float) atIndex:22];
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         } break;
 | |
|                     case GGML_OP_DUP:
 | |
|                     case GGML_OP_CPY:
 | |
|                     case GGML_OP_CONT:
 | |
|                         {
 | |
|                             const int nth = 32;
 | |
| 
 | |
|                             switch (src0t) {
 | |
|                                 case GGML_TYPE_F32:
 | |
|                                     {
 | |
|                                         switch (dstt) {
 | |
|                                             case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
 | |
|                                             case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
 | |
|                                             default: GGML_ASSERT(false && "not implemented");
 | |
|                                         };
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_F16:
 | |
|                                     {
 | |
|                                         switch (dstt) {
 | |
|                                             case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
 | |
|                                             case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
 | |
|                                             default: GGML_ASSERT(false && "not implemented");
 | |
|                                         };
 | |
|                                     } break;
 | |
|                                 default: GGML_ASSERT(false && "not implemented");
 | |
|                             }
 | |
| 
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                             [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
 | |
|                             [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
 | |
|                             [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
 | |
|                             [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
 | |
|                             [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
 | |
|                             [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
 | |
|                             [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
 | |
|                             [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
 | |
|                             [encoder setBytes:&ne0  length:sizeof( int64_t) atIndex:10];
 | |
|                             [encoder setBytes:&ne1  length:sizeof( int64_t) atIndex:11];
 | |
|                             [encoder setBytes:&ne2  length:sizeof( int64_t) atIndex:12];
 | |
|                             [encoder setBytes:&ne3  length:sizeof( int64_t) atIndex:13];
 | |
|                             [encoder setBytes:&nb0  length:sizeof(uint64_t) atIndex:14];
 | |
|                             [encoder setBytes:&nb1  length:sizeof(uint64_t) atIndex:15];
 | |
|                             [encoder setBytes:&nb2  length:sizeof(uint64_t) atIndex:16];
 | |
|                             [encoder setBytes:&nb3  length:sizeof(uint64_t) atIndex:17];
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                         } break;
 | |
|                     default:
 | |
|                         {
 | |
|                             fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
 | |
|                             GGML_ASSERT(false);
 | |
|                         }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (encoder != nil) {
 | |
|                 [encoder endEncoding];
 | |
|                 encoder = nil;
 | |
|             }
 | |
| 
 | |
|             [command_buffer commit];
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     // wait for all threads to finish
 | |
|     dispatch_barrier_sync(queue, ^{});
 | |
| 
 | |
|     [command_buffers[n_cb - 1] waitUntilCompleted];
 | |
| 
 | |
|     // check status of command buffers
 | |
|     // needed to detect if the device ran out-of-memory for example (#1881)
 | |
|     for (int i = 0; i < n_cb; i++) {
 | |
|         MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status];
 | |
|         if (status != MTLCommandBufferStatusCompleted) {
 | |
|             fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status);
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|     }
 | |
| }
 |