mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			268 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| # HF falcon--> gguf conversion
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import argparse
 | |
| import json
 | |
| import os
 | |
| import struct
 | |
| import sys
 | |
| from pathlib import Path
 | |
| from typing import Any
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| from transformers import AutoTokenizer  # type: ignore[import]
 | |
| 
 | |
| if 'NO_LOCAL_GGUF' not in os.environ:
 | |
|     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
 | |
| import gguf
 | |
| 
 | |
| 
 | |
| def bytes_to_unicode():
 | |
|     # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
 | |
|     """
 | |
|     Returns list of utf-8 byte and a corresponding list of unicode strings.
 | |
|     The reversible bpe codes work on unicode strings.
 | |
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | |
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | |
|     This is a significant percentage of your normal, say, 32K bpe vocab.
 | |
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | |
|     And avoids mapping to whitespace/control characters the bpe code barfs on.
 | |
|     """
 | |
|     bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
 | |
|     cs = bs[:]
 | |
|     n = 0
 | |
|     for b in range(2**8):
 | |
|         if b not in bs:
 | |
|             bs.append(b)
 | |
|             cs.append(2**8+n)
 | |
|             n += 1
 | |
|     return dict(zip(bs, (chr(n) for n in cs)))
 | |
| 
 | |
| 
 | |
| def count_model_parts(dir_model: Path) -> int:
 | |
|     num_parts = 0
 | |
|     for filename in os.listdir(dir_model):
 | |
|         if filename.startswith("pytorch_model-"):
 | |
|             num_parts += 1
 | |
| 
 | |
|     if num_parts > 0:
 | |
|         print("gguf: found " + str(num_parts) + " model parts")
 | |
|     return num_parts
 | |
| 
 | |
| 
 | |
| def parse_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
 | |
|     parser.add_argument("--vocab-only",  action="store_true",    help="extract only the vocab")
 | |
|     parser.add_argument("--outfile",     type=Path,              help="path to write to; default: based on input")
 | |
|     parser.add_argument("model",         type=Path,              help="directory containing model file, or model file itself (*.bin)")
 | |
|     parser.add_argument("ftype",     type=int, choices=[0, 1],   help="output format - use 0 for float32, 1 for float16", default = 1)
 | |
|     return parser.parse_args()
 | |
| 
 | |
| args = parse_args()
 | |
| 
 | |
| dir_model = args.model
 | |
| ftype = args.ftype
 | |
| if not dir_model.is_dir():
 | |
|     print(f'Error: {args.model} is not a directory', file = sys.stderr)
 | |
|     sys.exit(1)
 | |
| 
 | |
| # possible tensor data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| 
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| if args.outfile is not None:
 | |
|     fname_out = args.outfile
 | |
| else:
 | |
|     # output in the same directory as the model by default
 | |
|     fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
 | |
| 
 | |
| print("gguf: loading model "+dir_model.name)
 | |
| 
 | |
| with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| if hparams["architectures"][0] != "RWForCausalLM":
 | |
|     print("Model architecture not supported: " + hparams["architectures"][0])
 | |
| 
 | |
|     sys.exit(1)
 | |
| 
 | |
| # get number of model parts
 | |
| num_parts = count_model_parts(dir_model)
 | |
| 
 | |
| ARCH=gguf.MODEL_ARCH.FALCON
 | |
| gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | |
| 
 | |
| print("gguf: get model metadata")
 | |
| 
 | |
| block_count = hparams["n_layer"]
 | |
| 
 | |
| gguf_writer.add_name("Falcon")
 | |
| gguf_writer.add_context_length(2048) # not in config.json
 | |
| gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
 | |
| gguf_writer.add_embedding_length(hparams["hidden_size"])
 | |
| gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
 | |
| gguf_writer.add_block_count(block_count)
 | |
| gguf_writer.add_head_count(hparams["n_head"])
 | |
| if "n_head_kv" in hparams:
 | |
|     gguf_writer.add_head_count_kv(hparams["n_head_kv"])
 | |
| else:
 | |
|     gguf_writer.add_head_count_kv(1)
 | |
| gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
 | |
| gguf_writer.add_file_type(ftype)
 | |
| 
 | |
| # TOKENIZATION
 | |
| 
 | |
| print("gguf: get tokenizer metadata")
 | |
| 
 | |
| tokens: list[bytearray] = []
 | |
| scores: list[float] = []
 | |
| toktypes: list[int] = []
 | |
| 
 | |
| tokenizer_json_file = dir_model / 'tokenizer.json'
 | |
| if not tokenizer_json_file.is_file():
 | |
|     print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
 | |
|     sys.exit(1)
 | |
| 
 | |
| # gpt2 tokenizer
 | |
| gguf_writer.add_tokenizer_model("gpt2")
 | |
| 
 | |
| with open(tokenizer_json_file, "r", encoding="utf-8") as f:
 | |
|     tokenizer_json = json.load(f)
 | |
| 
 | |
| print("gguf: get gpt2 tokenizer vocab")
 | |
| 
 | |
| vocab_size = len(tokenizer_json["model"]["vocab"])
 | |
| 
 | |
| # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
 | |
| tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | |
| 
 | |
| reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | |
| byte_encoder = bytes_to_unicode()
 | |
| byte_decoder = {v: k for k, v in byte_encoder.items()}
 | |
| 
 | |
| for i in range(vocab_size):
 | |
|     if i in reverse_vocab:
 | |
|         try:
 | |
|             text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
 | |
|         except KeyError:
 | |
|             text = bytearray()
 | |
|             for c in reverse_vocab[i]:
 | |
|                 if ord(c) < 256:  # single byte character
 | |
|                     text.append(byte_decoder[ord(c)])
 | |
|                 else:  # multibyte special token character
 | |
|                     text.extend(c.encode('utf-8'))
 | |
|     else:
 | |
|         print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
 | |
|         pad_token = f"[PAD{i}]".encode("utf8")
 | |
|         text = bytearray(pad_token)
 | |
| 
 | |
|     tokens.append(text)
 | |
|     scores.append(0.0)                      # dymmy
 | |
|     toktypes.append(gguf.TokenType.NORMAL)  # dummy
 | |
| 
 | |
| gguf_writer.add_token_list(tokens)
 | |
| gguf_writer.add_token_scores(scores)
 | |
| gguf_writer.add_token_types(toktypes)
 | |
| 
 | |
| special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
 | |
| special_vocab.add_to_gguf(gguf_writer)
 | |
| 
 | |
| # TENSORS
 | |
| 
 | |
| tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | |
| 
 | |
| # params for qkv transform
 | |
| n_head    = hparams["n_head"]
 | |
| n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
 | |
| 
 | |
| head_dim = hparams["hidden_size"] // n_head
 | |
| 
 | |
| # tensor info
 | |
| print("gguf: get tensor metadata")
 | |
| 
 | |
| if num_parts == 0:
 | |
|     part_names = iter(("pytorch_model.bin",))
 | |
| else:
 | |
|     part_names = (
 | |
|         f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | |
|     )
 | |
| 
 | |
| for part_name in part_names:
 | |
|     if args.vocab_only:
 | |
|         break
 | |
|     print("gguf: loading model part '" + part_name + "'")
 | |
|     model_part = torch.load(dir_model / part_name, map_location="cpu")
 | |
| 
 | |
|     for name in model_part.keys():
 | |
|         data = model_part[name]
 | |
| 
 | |
|         old_dtype = data.dtype
 | |
| 
 | |
|         # convert any unsupported data types to float32
 | |
|         if data.dtype != torch.float16 and data.dtype != torch.float32:
 | |
|             data = data.to(torch.float32)
 | |
| 
 | |
|         # QKV tensor transform
 | |
|         # The original query_key_value tensor contains n_head_kv "kv groups",
 | |
|         # each consisting of n_head/n_head_kv query weights followed by one key
 | |
|         # and one value weight (shared by all query heads in the kv group).
 | |
|         # This layout makes it a big pain to work with in GGML.
 | |
|         # So we rearrange them here,, so that we have n_head query weights
 | |
|         # followed by n_head_kv key weights followed by n_head_kv value weights,
 | |
|         # in contiguous fashion.
 | |
|         # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
 | |
| 
 | |
|         if "query_key_value" in name:
 | |
|             qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
 | |
|             q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
 | |
|             k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | |
|             v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | |
|             data = torch.cat((q,k,v)).reshape_as(data)
 | |
| 
 | |
|         data = data.squeeze().numpy()
 | |
| 
 | |
|         # map tensor names
 | |
|         new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | |
|         if new_name is None:
 | |
|             print("Can not map tensor '" + name + "'")
 | |
|             sys.exit()
 | |
| 
 | |
|         n_dims = len(data.shape)
 | |
|         data_dtype = data.dtype
 | |
| 
 | |
|         # if f32 desired, convert any float16 to float32
 | |
|         if ftype == 0 and data_dtype == np.float16:
 | |
|             data = data.astype(np.float32)
 | |
| 
 | |
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|             data = data.astype(np.float32)
 | |
| 
 | |
|         # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|         if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|             data = data.astype(np.float16)
 | |
| 
 | |
|         print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | |
| 
 | |
|         gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| print("gguf: write header")
 | |
| gguf_writer.write_header_to_file()
 | |
| print("gguf: write metadata")
 | |
| gguf_writer.write_kv_data_to_file()
 | |
| if not args.vocab_only:
 | |
|     print("gguf: write tensors")
 | |
|     gguf_writer.write_tensors_to_file()
 | |
| 
 | |
| gguf_writer.close()
 | |
| 
 | |
| print(f"gguf: model successfully exported to '{fname_out}'")
 | |
| print("")
 | 
