#include "llama-model.h" #include "llama-impl.h" #include "llama-mmap.h" #include "llama-batch.h" #include "llama-cparams.h" #include "llama-model-loader.h" #include "llama-kv-cache.h" #include "llama-kv-cache-iswa.h" #include "llama-memory-hybrid.h" #include "llama-memory-recurrent.h" #include "ggml-cpp.h" #include "models/models.h" #include #include #include #include #include #include #include #include #include #include const char * llm_type_name(llm_type type) { switch (type) { case LLM_TYPE_14M: return "14M"; case LLM_TYPE_17M: return "17M"; case LLM_TYPE_22M: return "22M"; case LLM_TYPE_33M: return "33M"; case LLM_TYPE_60M: return "60M"; case LLM_TYPE_70M: return "70M"; case LLM_TYPE_80M: return "80M"; case LLM_TYPE_109M: return "109M"; case LLM_TYPE_137M: return "137M"; case LLM_TYPE_140M: return "140M"; case LLM_TYPE_160M: return "160M"; case LLM_TYPE_190M: return "190M"; case LLM_TYPE_220M: return "220M"; case LLM_TYPE_250M: return "250M"; case LLM_TYPE_256M: return "256M"; case LLM_TYPE_270M: return "270M"; case LLM_TYPE_335M: return "335M"; case LLM_TYPE_350M: return "350M"; case LLM_TYPE_360M: return "360M"; case LLM_TYPE_410M: return "410M"; case LLM_TYPE_450M: return "450M"; case LLM_TYPE_475M: return "475M"; case LLM_TYPE_558M: return "558M"; case LLM_TYPE_700M: return "700M"; case LLM_TYPE_770M: return "770M"; case LLM_TYPE_780M: return "780M"; case LLM_TYPE_950M: return "950M"; case LLM_TYPE_0_3B: return "0.3B"; case LLM_TYPE_0_5B: return "0.5B"; case LLM_TYPE_0_6B: return "0.6B"; case LLM_TYPE_1B: return "1B"; case LLM_TYPE_1_2B: return "1.2B"; case LLM_TYPE_1_3B: return "1.3B"; case LLM_TYPE_1_4B: return "1.4B"; case LLM_TYPE_1_5B: return "1.5B"; case LLM_TYPE_1_6B: return "1.6B"; case LLM_TYPE_1_7B: return "1.7B"; case LLM_TYPE_1_8B: return "1.8B"; case LLM_TYPE_2B: return "2B"; case LLM_TYPE_2_6B: return "2.6B"; case LLM_TYPE_2_8B: return "2.8B"; case LLM_TYPE_2_9B: return "2.9B"; case LLM_TYPE_3B: return "3B"; case LLM_TYPE_4B: return "4B"; case LLM_TYPE_6B: return "6B"; case LLM_TYPE_6_9B: return "6.9B"; case LLM_TYPE_7B: return "7B"; case LLM_TYPE_8B: return "8B"; case LLM_TYPE_9B: return "9B"; case LLM_TYPE_11B: return "11B"; case LLM_TYPE_12B: return "12B"; case LLM_TYPE_13B: return "13B"; case LLM_TYPE_14B: return "14B"; case LLM_TYPE_15B: return "15B"; case LLM_TYPE_16B: return "16B"; case LLM_TYPE_20B: return "20B"; case LLM_TYPE_27B: return "27B"; case LLM_TYPE_30B: return "30B"; case LLM_TYPE_32B: return "32B"; case LLM_TYPE_34B: return "34B"; case LLM_TYPE_35B: return "35B"; case LLM_TYPE_36B: return "36B"; case LLM_TYPE_40B: return "40B"; case LLM_TYPE_65B: return "65B"; case LLM_TYPE_70B: return "70B"; case LLM_TYPE_120B: return "120B"; case LLM_TYPE_142B: return "142B"; case LLM_TYPE_236B: return "236B"; case LLM_TYPE_290B: return "290B"; case LLM_TYPE_314B: return "314B"; case LLM_TYPE_405B: return "405B"; case LLM_TYPE_671B: return "671B"; case LLM_TYPE_SMALL: return "0.1B"; case LLM_TYPE_MEDIUM: return "0.4B"; case LLM_TYPE_LARGE: return "0.8B"; case LLM_TYPE_XL: return "1.5B"; case LLM_TYPE_A1_7B: return "A1.7B"; case LLM_TYPE_A2_7B: return "A2.7B"; case LLM_TYPE_8x7B: return "8x7B"; case LLM_TYPE_8x22B: return "8x22B"; case LLM_TYPE_16x12B: return "16x12B"; case LLM_TYPE_16x3_8B: return "16x3.8B"; case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B"; case LLM_TYPE_57B_A14B: return "57B.A14B"; case LLM_TYPE_17B_16E: return "17Bx16E (Scout)"; case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)"; case LLM_TYPE_A13B: return "A13B"; case LLM_TYPE_7B_A1B: return "7B.A1B"; case LLM_TYPE_8B_A1B: return "8B.A1B"; case LLM_TYPE_16B_A1B: return "16B.A1B"; case LLM_TYPE_21B_A3B: return "21B.A3B"; case LLM_TYPE_30B_A3B: return "30B.A3B"; case LLM_TYPE_100B_A6B: return "100B.A6B"; case LLM_TYPE_106B_A12B: return "106B.A12B"; case LLM_TYPE_230B_A10B: return "230B.A10B"; case LLM_TYPE_235B_A22B: return "235B.A22B"; case LLM_TYPE_300B_A47B: return "300B.A47B"; case LLM_TYPE_355B_A32B: return "355B.A32B"; case LLM_TYPE_E2B: return "E2B"; case LLM_TYPE_E4B: return "E4B"; default: return "?B"; } } static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) { switch (type) { case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax"; case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid"; default: return "unknown"; } } static const std::map LLAMA_ROPE_SCALING_TYPES = { { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" }, }; std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) { return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type); } static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { if (kv.second == name) { return (llama_rope_scaling_type) kv.first; } } return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; } // checks if the weight tensor can be used with the specified buffer type and device static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) { GGML_ASSERT(w != nullptr); if (op == GGML_OP_NONE) { return true; } ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead()*8, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context_ptr ctx_ptr { ggml_init(params) }; if (!ctx_ptr) { throw std::runtime_error(format("failed to create ggml context")); } ggml_context * ctx = ctx_ptr.get(); ggml_tensor * op_tensor = nullptr; switch (op) { case GGML_OP_GET_ROWS: { ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512); op_tensor = ggml_get_rows(ctx, w, b); } break; case GGML_OP_MUL_MAT: { ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]); op_tensor = ggml_mul_mat(ctx, w, b); } break; case GGML_OP_MUL_MAT_ID: { int n_expert_used = hparams.n_expert_used; ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512); ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512); op_tensor = ggml_mul_mat_id(ctx, w, b, ids); } break; case GGML_OP_ADD: { ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]); op_tensor = ggml_add(ctx, a, w); } break; case GGML_OP_ADD_ID: { int n_expert_used = hparams.n_expert_used; ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512); ggml_tensor * c = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512); op_tensor = ggml_add_id(ctx, a, w, c); } break; case GGML_OP_MUL: { ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]); op_tensor = ggml_mul(ctx, a, w); } break; case GGML_OP_DIV: { ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]); op_tensor = ggml_div(ctx, a, w); } break; case GGML_OP_ROPE: { int n_embd_head = hparams.n_embd_head_v; int n_head = hparams.n_head(); ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512); ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512); op_tensor = ggml_rope_ext( ctx, a, b, w, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); } break; case GGML_OP_SSM_CONV: { const int64_t n_seq_tokens = 512; const int64_t n_seqs = 3; ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs); op_tensor = ggml_ssm_conv(ctx, conv_x, w); } break; case GGML_OP_SSM_SCAN: { // w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2 const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0]; const int64_t n_head = w->ne[1]; const int64_t head_dim = hparams.ssm_d_inner / n_head; const int64_t n_group = hparams.ssm_n_group ? hparams.ssm_n_group : 1; const int64_t n_seq_tokens = 512; const int64_t n_seqs = 3; ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs); ggml_tensor * x = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs); ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs); ggml_tensor * B = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs); ggml_tensor * C = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs); ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs); op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids); } break; case GGML_OP_RWKV_WKV6: { // FIXME const int64_t S = 123; const int64_t H = 123; const int64_t n_tokens = 123; const int64_t n_seqs = 123; ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens); ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens); ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens); ggml_tensor * tf = w; ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens); ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H); op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state); } break; case GGML_OP_IM2COL: { const int n_embd = hparams.n_embd; ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1); op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16); } break; case GGML_OP_SCALE: { op_tensor = ggml_scale(ctx, w, 1.0f); } break; default: GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name); } // create a temporary dummy buffer for the weight so that supports_op can check the buffer type GGML_ASSERT(w->buffer == nullptr); w->buffer = ggml_backend_buft_alloc_buffer(buft, 0); bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor); ggml_backend_buffer_free(w->buffer); w->buffer = nullptr; return op_supported; } // lists of buffer types used for each layer using buft_list_t = std::vector>; // find the first buffer type in the list that can use the tensor static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) { GGML_ASSERT(!buft_list.empty()); for (const auto & cur : buft_list) { ggml_backend_dev_t cur_dev = cur.first; ggml_backend_buffer_type_t cur_buft = cur.second; if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) { return cur_buft; } } return nullptr; } // CPU: ACCEL -> GPU host -> CPU extra -> CPU static buft_list_t make_cpu_buft_list(const std::vector & devices, bool use_extra_bufts, bool no_host) { buft_list_t buft_list; // add ACCEL buffer types for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) { auto * buft = ggml_backend_dev_buffer_type(dev); // skip if (buft != ggml_backend_cpu_buffer_type()) { buft_list.emplace_back(dev, buft); } } } // add a host buffer type // storing the tensors in a host buffer is useful when the processing of large batches // is offloaded to a GPU device, since it reduces the time spent on data transfers // generally, this will be done using the first device in the list // a better approach would be to handle this on a weight-by-weight basis using the offload_op // function of the device to determine if it would benefit from being stored in a host buffer if (!no_host) { for (auto * dev : devices) { ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev); if (buft) { buft_list.emplace_back(dev, buft); break; } } } // add extra buffer types if (use_extra_bufts) { auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); if (cpu_dev == nullptr) { throw std::runtime_error(format("%s: no CPU backend found", __func__)); } auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev); auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts"); if (ggml_backend_dev_get_extra_bufts_fn) { ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev); while (extra_bufts && *extra_bufts) { buft_list.emplace_back(cpu_dev, *extra_bufts); ++extra_bufts; } } } // add the CPU buffer type for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) { buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev)); } } return buft_list; } // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) { buft_list_t buft_list; // add the device split buffer type if requested and available if (split_mode == LLAMA_SPLIT_MODE_ROW) { ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev); auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type"); if (ggml_backend_split_buffer_type_fn) { size_t dev_index = [&]() { auto * reg = ggml_backend_dev_backend_reg(dev); for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) { if (ggml_backend_reg_dev_get(reg, i) == dev) { return i; } } throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev))); }(); auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split); if (buft != nullptr) { buft_list.emplace_back(dev, buft); } } } // add the device default buffer type buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev)); // add the device extra buffer type (if any) ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev); auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts"); if (ggml_backend_dev_get_extra_bufts_fn) { ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev); while (extra_bufts && *extra_bufts) { buft_list.emplace_back(dev, *extra_bufts); ++extra_bufts; } } return buft_list; } struct llama_model::impl { impl() {} ~impl() {} uint64_t n_elements = 0; size_t n_bytes = 0; std::string desc_str; // model memory mapped files llama_mmaps mappings; // objects representing data potentially being locked in memory llama_mlocks mlock_bufs; llama_mlocks mlock_mmaps; // contexts where the model tensors metadata is stored as well ass the corresponding buffers: std::vector>> ctxs_bufs; buft_list_t cpu_buft_list; std::map gpu_buft_list; struct layer_dev { ggml_backend_dev_t dev; buft_list_t * buft_list; }; layer_dev dev_input = {}; layer_dev dev_output = {}; std::vector dev_layer; bool has_tensor_overrides; }; llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique()) { pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern; } llama_model::~llama_model() {} void llama_model::load_stats(llama_model_loader & ml) { pimpl->n_elements = ml.n_elements; pimpl->n_bytes = ml.n_bytes; } void llama_model::load_arch(llama_model_loader & ml) { arch = ml.get_arch(); if (arch == LLM_ARCH_UNKNOWN) { throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); } } void llama_model::load_hparams(llama_model_loader & ml) { const gguf_context * ctx = ml.meta.get(); // get metadata as string for (int i = 0; i < gguf_get_n_kv(ctx); i++) { gguf_type type = gguf_get_kv_type(ctx, i); if (type == GGUF_TYPE_ARRAY) { continue; } const char * name = gguf_get_key(ctx, i); const std::string value = gguf_kv_to_str(ctx, i); gguf_kv.emplace(name, value); } // get general kv ml.get_key(LLM_KV_GENERAL_NAME, name, false); // everything past this point is not vocab-related // for CLIP models, we only need to load tensors, no hparams if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) { return; } ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false); ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false); if (arch == LLM_ARCH_WAVTOKENIZER_DEC) { ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features); ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd); ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer); ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd); ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer); } GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); if (hparams.n_expert > 0) { GGML_ASSERT(hparams.n_expert_used > 0); GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert); if (hparams.n_expert_groups > 1) { GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0); GGML_ASSERT(hparams.n_group_used > 0); GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups); } } else { GGML_ASSERT(hparams.n_expert_used == 0); GGML_ASSERT(hparams.n_expert_groups == 0); } std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0); std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0); std::fill( hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), llm_arch_is_recurrent(ml.get_arch())); std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0); std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0); std::fill(hparams.xielu_alpha_n.begin(), hparams.xielu_alpha_n.end(), 0.0f); std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f); std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f); std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f); ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false); ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false); // n_head_kv is optional, default to n_head hparams.n_head_kv_arr = hparams.n_head_arr; ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false); bool rope_finetuned = false; ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); hparams.rope_finetuned = rope_finetuned; hparams.n_ctx_orig_yarn = hparams.n_ctx_train; ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false); // rope_freq_base (optional) hparams.rope_freq_base_train = 10000.0f; ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false); std::string rope_scaling("linear"); ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); // rope_freq_scale (inverse of the kv) is optional float ropescale = 0.0f; if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) { // try the old key name ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false); } hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train; hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train; ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false); // non-transformer models do not have attention heads if (hparams.n_head() > 0) { // gpt-neox n_rot = rotary_pct * (n_embd / n_head) // gpt-j n_rot = rotary_dim hparams.n_embd_head_k = hparams.n_embd / hparams.n_head(); ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); hparams.n_embd_head_v = hparams.n_embd / hparams.n_head(); ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); // sanity check for n_rot (optional) hparams.n_rot = hparams.n_embd_head_k; ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) { if (hparams.n_rot != hparams.n_embd_head_k) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); } } } else { hparams.n_rot = 0; hparams.n_embd_head_k = 0; hparams.n_embd_head_v = 0; } // for differentiating model types uint32_t n_vocab = 0; ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false); // for classifier models ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false); if (!classifier_labels.empty()) { hparams.n_cls_out = classifier_labels.size(); } // arch-specific KVs switch (arch) { case LLM_ARCH_LLAMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (hparams.n_expert == 8) { switch (hparams.n_layer) { case 32: type = LLM_TYPE_8x7B; break; case 56: type = LLM_TYPE_8x22B; break; default: type = LLM_TYPE_UNKNOWN; } } else { switch (hparams.n_layer) { case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B case 22: type = LLM_TYPE_1B; break; case 26: type = LLM_TYPE_3B; break; case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B case 30: type = LLM_TYPE_256M; break; // smoldocling 256M // granite uses a vocab with len 49152 case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break; case 36: type = LLM_TYPE_8B; break; // granite case 40: type = LLM_TYPE_13B; break; case 48: type = LLM_TYPE_34B; break; case 60: type = LLM_TYPE_30B; break; case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break; default: type = LLM_TYPE_UNKNOWN; } } } break; case LLM_ARCH_LLAMA4: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step); const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); if (found_swa && hparams.n_swa == 0) { hparams.swa_type = LLAMA_SWA_TYPE_NONE; hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope } else { hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED; hparams.n_swa = 8192; hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full } switch (hparams.n_expert) { case 0: { // MobileLLM (no MoE) switch (hparams.n_embd) { case 2048: type = LLM_TYPE_140M; break; case 4096: type = LLM_TYPE_360M; break; case 6144: type = LLM_TYPE_950M; break; default: type = LLM_TYPE_UNKNOWN; } } break; case 16: type = LLM_TYPE_17B_16E; break; case 128: type = LLM_TYPE_17B_128E; break; default: type = LLM_TYPE_UNKNOWN; } hparams.use_kq_norm = type != LLM_TYPE_17B_128E; } break; case LLM_ARCH_ARCEE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); // Arcee uses the same structure as Llama switch (hparams.n_layer) { case 36: type = LLM_TYPE_4B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DECI: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 80: type = LLM_TYPE_70B; break; case 162: type = LLM_TYPE_405B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_MINICPM: { // Backward-compatible defaults for older MiniCPM GGUFs hparams.f_embedding_scale = 12.0f; hparams.f_residual_scale = 1.4f / sqrtf(float(hparams.n_layer)); hparams.f_logit_scale = hparams.n_embd ? (256.0f / float(hparams.n_embd)) : 1.0f; ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); // Optional KV reads, override defaults if present in newer GGUF exports ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /*required=*/false); ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /*required=*/false); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /*required=*/false); // MiniCPM uses rope by default, unlike Granite which uses it as a switch hparams.rope_finetuned = true; switch (hparams.n_layer) { case 52: type = LLM_TYPE_1B; break; case 40: type = LLM_TYPE_2B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_MINICPM3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); switch (hparams.n_layer) { case 62: type = LLM_TYPE_4B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GROK: { // defaults for old GGUFs hparams.yarn_beta_fast = 8.0f; hparams.f_logit_scale = 0.5773502691896257f; hparams.f_embedding_scale = 78.38367176906169f; hparams.f_attn_out_scale = 0.08838834764831845f; hparams.f_attn_logit_softcapping = 30.0f; hparams.f_router_logit_softcapping = 30.0f; // no final_logit_softcapping in grok-1 hparams.f_final_logit_softcapping = 0.0f; ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, false); ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, false); ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE, hparams.f_attn_out_scale, false); ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false); ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING, hparams.f_router_logit_softcapping, false); ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false); ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.attn_temp_length, false); ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, hparams.yarn_ext_factor, false); ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false); ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false); ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false); switch (hparams.n_layer) { case 64: type = LLM_TYPE_314B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_FALCON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 60: type = LLM_TYPE_40B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_BAICHUAN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_13B; break; default: type = LLM_TYPE_UNKNOWN; } if (type == LLM_TYPE_13B) { // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } } break; case LLM_ARCH_STARCODER: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 36: type = LLM_TYPE_3B; break; case 42: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_15B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_REFACT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_1B; break; default: type = LLM_TYPE_UNKNOWN; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); switch (hparams.n_layer) { case 3: type = LLM_TYPE_17M; break; // bge-micro case 6: type = LLM_TYPE_22M; break; // MiniLM-L6 case 12: switch (hparams.n_embd) { case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small case 768: type = LLM_TYPE_109M; break; // bge-base default: type = LLM_TYPE_UNKNOWN; } break; case 24: type = LLM_TYPE_335M; break; // bge-large default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_JINA_BERT_V2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); hparams.f_max_alibi_bias = 8.0f; switch (hparams.n_layer) { case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_JINA_BERT_V3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); switch (hparams.n_layer) { case 24: type = LLM_TYPE_558M; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0); if (hparams.n_layer == 12 && hparams.n_embd == 768) { if (arch == LLM_ARCH_NOMIC_BERT) { type = LLM_TYPE_137M; } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) { type = LLM_TYPE_475M; } } } break; case LLM_ARCH_NEO_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); if (hparams.n_layer == 28) { type = LLM_TYPE_250M; } } break; case LLM_ARCH_BLOOM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 30: switch (hparams.n_embd) { case 2560: type = LLM_TYPE_3B; break; case 4096: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_MPT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 48: type = LLM_TYPE_30B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_STABLELM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_3B; break; case 40: type = LLM_TYPE_12B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_13B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN2VL: { ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true); } // fall through case LLM_ARCH_QWEN2: { ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break; case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break; case 32: type = LLM_TYPE_7B; break; case 36: type = LLM_TYPE_3B; break; case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break; case 48: type = LLM_TYPE_14B; break; case 64: type = LLM_TYPE_32B; break; case 80: type = LLM_TYPE_70B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DREAM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); // Dream models are primarily 7B with 28 layers switch (hparams.n_layer) { case 28: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } // Set non-causal attention for diffusion models hparams.causal_attn = false; } break; case LLM_ARCH_LLADA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion switch (hparams.n_layer) { case 32: type = LLM_TYPE_8B; break; default: type = LLM_TYPE_UNKNOWN; } // Set non-causal attention for diffusion models hparams.causal_attn = false; } break; case LLM_ARCH_LLADA_MOE: { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); // diffusion language model uses non-causal attention hparams.causal_attn = false; switch (hparams.n_layer) { case 16: type = LLM_TYPE_A1_7B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN2MOE: { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_A2_7B; break; case 28: type = LLM_TYPE_57B_A14B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN3: { ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break; case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break; case 40: type = LLM_TYPE_14B; break; case 64: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN3VL: { ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false); ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 28: type = LLM_TYPE_1_7B; break; case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break; case 64: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } // since vision model stacks deepstack features along feature dim // we also create a fake "n_embd" for text model to be the main embd + deepstack embds hparams.n_embd *= hparams.n_deepstack_layers + 1; } break; case LLM_ARCH_QWEN3MOE: { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 48: type = LLM_TYPE_30B_A3B; break; case 94: type = LLM_TYPE_235B_A22B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN3VLMOE: { ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false); ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 48: type = LLM_TYPE_30B_A3B; break; case 94: type = LLM_TYPE_235B_A22B; break; default: type = LLM_TYPE_UNKNOWN; } // since vision model stacks deepstack features along feature dim // we also create a fake "n_embd" for text model to be the main embd + deepstack embds hparams.n_embd *= hparams.n_deepstack_layers + 1; } break; case LLM_ARCH_PHI2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_PHI3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_3B; break; case 40: type = LLM_TYPE_14B; break; default: type = LLM_TYPE_UNKNOWN; } const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); if (found_swa && hparams.n_swa > 0) { LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n", __func__, "https://github.com/ggml-org/llama.cpp/pull/13676"); // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern` hparams.swa_type = LLAMA_SWA_TYPE_NONE; hparams.n_swa = 0; hparams.set_swa_pattern(1); } } break; case LLM_ARCH_PHIMOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_16x3_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_PLAMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: type = LLM_TYPE_13B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_PLAMO2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); // Load Mamba SSM parameters ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group); for (uint32_t i = 0; i < hparams.n_layer; ++i) { hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0; } switch (hparams.n_layer) { case 16: type = LLM_TYPE_1B; break; case 32: if (hparams.n_embd == 2048) { type = LLM_TYPE_2B; } else if (hparams.n_embd == 4096) { type = LLM_TYPE_8B; } break; default: type = LLM_TYPE_UNKNOWN; } // Load attention parameters ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); } break; case LLM_ARCH_GPT2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 12: type = LLM_TYPE_SMALL; break; case 24: type = LLM_TYPE_MEDIUM; break; case 36: type = LLM_TYPE_LARGE; break; case 48: type = LLM_TYPE_XL; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_CODESHELL: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 42: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_ORION: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: type = LLM_TYPE_14B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_INTERNLM2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 48: type = LLM_TYPE_20B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GEMMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 18: type = LLM_TYPE_2B; break; case 28: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GEMMA2: { hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; hparams.n_swa = 4096; // default value of gemma 2 hparams.set_swa_pattern(2); hparams.attn_soft_cap = true; ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false); ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false); switch (hparams.n_layer) { case 26: type = LLM_TYPE_2B; break; case 42: type = LLM_TYPE_9B; break; case 46: type = LLM_TYPE_27B; break; default: type = LLM_TYPE_UNKNOWN; } // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173 hparams.f_attention_scale = type == LLM_TYPE_27B ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0))) : 1.0f / std::sqrt(float(hparams.n_embd_head_k)); } break; case LLM_ARCH_GEMMA3: { hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; hparams.set_swa_pattern(6); hparams.rope_freq_base_train_swa = 10000.0f; hparams.rope_freq_scale_train_swa = 1.0f; ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 18: type = LLM_TYPE_270M; break; case 26: type = LLM_TYPE_1B; break; case 34: type = LLM_TYPE_4B; break; case 48: type = LLM_TYPE_12B; break; case 62: type = LLM_TYPE_27B; break; default: type = LLM_TYPE_UNKNOWN; } // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289 hparams.f_attention_scale = type == LLM_TYPE_27B ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0))) : 1.0f / std::sqrt(float(hparams.n_embd_head_k)); } break; case LLM_ARCH_GEMMA3N: { hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; hparams.set_swa_pattern(5); hparams.n_layer_kv_from_start = 20; hparams.rope_freq_base_train_swa = 10000.0f; hparams.rope_freq_scale_train_swa = 1.0f; hparams.f_attention_scale = 1.0f; ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 30: type = LLM_TYPE_E2B; break; case 35: type = LLM_TYPE_E4B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GEMMA_EMBEDDING: { hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC; hparams.set_swa_pattern(6); hparams.causal_attn = false; // embeddings do not use causal attention hparams.rope_freq_base_train_swa = 10000.0f; hparams.rope_freq_scale_train_swa = 1.0f; ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); //applied only if model converted with --sentence-transformers-dense-modules ml.get_key(LLM_KV_DENSE_2_FEAT_IN, hparams.dense_2_feat_in, false); ml.get_key(LLM_KV_DENSE_2_FEAT_OUT, hparams.dense_2_feat_out, false); ml.get_key(LLM_KV_DENSE_3_FEAT_IN, hparams.dense_3_feat_in, false); ml.get_key(LLM_KV_DENSE_3_FEAT_OUT, hparams.dense_3_feat_out, false); GGML_ASSERT((hparams.dense_2_feat_in == 0 || hparams.dense_2_feat_in == hparams.n_embd) && "dense_2_feat_in must be equal to n_embd"); GGML_ASSERT((hparams.dense_3_feat_out == 0 || hparams.dense_3_feat_out == hparams.n_embd) && "dense_3_feat_out must be equal to n_embd"); switch (hparams.n_layer) { case 24: type = LLM_TYPE_0_3B; break; default: type = LLM_TYPE_UNKNOWN; } hparams.f_attention_scale = 1.0f / std::sqrt(float(hparams.n_embd_head_k)); } break; case LLM_ARCH_STARCODER2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 30: type = LLM_TYPE_3B; break; case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_15B; break; case 52: type = LLM_TYPE_20B; break; // granite case 88: type = LLM_TYPE_34B; break; // granite default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_MAMBA: { ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: switch (hparams.n_embd) { case 768: type = LLM_TYPE_SMALL; break; default: type = LLM_TYPE_UNKNOWN; } break; case 48: switch (hparams.n_embd) { case 1024: type = LLM_TYPE_MEDIUM; break; case 1536: type = LLM_TYPE_LARGE; break; case 2048: type = LLM_TYPE_XL; break; default: type = LLM_TYPE_UNKNOWN; } break; case 64: switch (hparams.n_embd) { case 2560: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_MAMBA2: { ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: switch (hparams.n_embd) { case 768: type = LLM_TYPE_SMALL; break; default: type = LLM_TYPE_UNKNOWN; } break; case 48: switch (hparams.n_embd) { case 1024: type = LLM_TYPE_MEDIUM; break; case 1536: type = LLM_TYPE_LARGE; break; case 2048: type = LLM_TYPE_XL; break; default: type = LLM_TYPE_UNKNOWN; } break; case 64: switch (hparams.n_embd) { case 2560: type = LLM_TYPE_3B; break; case 4096: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_JAMBA: { ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); for (uint32_t i = 0; i < hparams.n_layer; ++i) { hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0; } switch (hparams.n_layer) { // TODO: Jamba layers are a bit heterogenous, so naming this is hard. case 12: // 900M 8x???M case 32: // 51B 16x?B default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_XVERSE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_13B; break; case 80: type = LLM_TYPE_65B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_COMMAND_R: { ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: type = LLM_TYPE_35B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_COHERE2: { hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; hparams.set_swa_pattern(4); ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DBRX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv); switch (hparams.n_layer) { case 40: type = LLM_TYPE_16x12B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OLMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); switch (hparams.n_layer) { case 22: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_7B; break; case 80: type = LLM_TYPE_70B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OLMO2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); if (found_swa && hparams.n_swa > 0) { hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; hparams.set_swa_pattern(4); } else { hparams.swa_type = LLAMA_SWA_TYPE_NONE; } switch (hparams.n_layer) { case 16: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_13B; break; case 64: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_SEED_OSS: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 64: type = LLM_TYPE_36B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OLMOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 16: type = LLM_TYPE_A1_7B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OPENELM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 16: type = LLM_TYPE_270M; break; case 20: type = LLM_TYPE_450M; break; case 28: type = LLM_TYPE_1B; break; case 36: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GPTNEOX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res); switch (hparams.n_layer) { case 6: switch (hparams.n_ff()) { case 512: type = LLM_TYPE_14M; break; case 2048: type = LLM_TYPE_70M; break; default: type = LLM_TYPE_UNKNOWN; } break; case 12: switch (hparams.n_ff()) { case 3072: type = LLM_TYPE_160M; break; default: type = LLM_TYPE_UNKNOWN; } break; case 16: switch (hparams.n_ff()) { case 8192: type = LLM_TYPE_1B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 24: switch (hparams.n_ff()) { case 4096: type = LLM_TYPE_410M; break; case 8192: type = LLM_TYPE_1_4B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 32: switch (hparams.n_ff()) { case 10240: type = LLM_TYPE_2_8B; break; case 16384: type = LLM_TYPE_6_9B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 36: switch (hparams.n_ff()) { case 20480: type = LLM_TYPE_12B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 44: switch (hparams.n_ff()) { case 24576: type = LLM_TYPE_20B; break; default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_ARCTIC: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (hparams.n_expert == 128) { switch (hparams.n_layer) { case 35: type = LLM_TYPE_10B_128x3_66B; break; default: type = LLM_TYPE_UNKNOWN; } } else { type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DEEPSEEK: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); switch (hparams.n_layer) { case 28: type = LLM_TYPE_20B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DEEPSEEK2: { bool is_lite = (hparams.n_layer == 27); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); if (!is_lite) { ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); } ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false); ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) { // for compatibility with existing DeepSeek V2 and V2.5 GGUFs // that have no expert_gating_func model parameter set hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX; } ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false); switch (hparams.n_layer) { case 27: type = LLM_TYPE_16B; break; case 60: type = LLM_TYPE_236B; break; case 61: type = LLM_TYPE_671B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_PLM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); switch (hparams.n_layer) { case 32: type = LLM_TYPE_1_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_CHATGLM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 28: { if (hparams.n_head(0) == 16) { type = LLM_TYPE_1_5B; } else { type = LLM_TYPE_6B; } } break; case 40: { if (hparams.n_head(0) == 24) { type = LLM_TYPE_4B; } else { type = LLM_TYPE_9B; } } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GLM4: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: type = LLM_TYPE_9B; break; case 61: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GLM4_MOE: { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); // MoE parameters ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert); ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); // Expert gating function (GLM-4.5 uses sigmoid) ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) { hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID; } // NextN/MTP parameters ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false); // TODO: when MTP is implemented, this should probably be updated if needed hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers; switch (hparams.n_layer) { case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer) case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer) default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_BITNET: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 26: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_T5: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); uint32_t dec_start_token_id; if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) { hparams.dec_start_token_id = dec_start_token_id; } hparams.dec_n_layer = hparams.n_layer; ml.get_key(LLM_KV_DECODER_BLOCK_COUNT, hparams.dec_n_layer, false); switch (hparams.n_layer) { case 6: type = LLM_TYPE_60M; break; // t5-small case 8: type = LLM_TYPE_80M; break; // flan-t5-small case 12: switch (hparams.n_ff()) { case 3072: type = LLM_TYPE_220M; break; // t5-base case 2048: type = LLM_TYPE_250M; break; // flan-t5-base default: type = LLM_TYPE_UNKNOWN; } break; case 24: switch (hparams.n_ff()) { case 4096: type = LLM_TYPE_770M; break; // t5-large case 2816: type = LLM_TYPE_780M; break; // flan-t5-large case 16384: type = LLM_TYPE_3B; break; // t5-3b case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl case 65536: type = LLM_TYPE_11B; break; // t5-11b case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_T5ENCODER: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); type = LLM_TYPE_UNKNOWN; } break; case LLM_ARCH_JAIS: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1_3B; break; case 40: type = LLM_TYPE_13B; break; /* TODO: add variants */ default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_NEMOTRON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_4B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_NEMOTRON_H: { ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group); // A layer is recurrent IFF the n_head_kv value is set to 0 and // the n_ff value is set to 0 for (uint32_t i = 0; i < hparams.n_layer; ++i) { hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0); } ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 56: type = LLM_TYPE_9B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_EXAONE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_EXAONE4: { if (hparams.n_layer == 64) { // 32B hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; hparams.n_swa = 4096; hparams.set_swa_pattern(4); } ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 30: type = LLM_TYPE_1_2B; break; case 64: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6QWEN2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false); ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size); ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim); ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim); ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false); ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1_6B; break; case 32: switch (hparams.n_embd) { case 2560: type = LLM_TYPE_3B; break; case 4096: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 61: type = LLM_TYPE_14B; break; case 64: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_RWKV7: case LLM_ARCH_ARWKV7: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false); ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size); ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay); ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr); ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix); ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false); ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false); switch (hparams.n_layer) { case 12: switch (hparams.n_embd) { case 768: type = LLM_TYPE_190M; break; default: type = LLM_TYPE_UNKNOWN; } break; case 24: switch (hparams.n_embd) { case 1024: type = LLM_TYPE_450M; break; case 2048: type = LLM_TYPE_1_5B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 28: switch (hparams.n_embd) { case 1536: type = LLM_TYPE_1_5B; break; case 3584: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 32: switch (hparams.n_embd) { case 2560: type = LLM_TYPE_2_9B; break; case 4096: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 61: switch (hparams.n_embd) { case 4096: type = LLM_TYPE_14B; break; default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale); ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale); ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale); // Granite uses rope_finetuned as a switch for rope, so default to true bool rope_finetuned = true; ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); hparams.rope_finetuned = rope_finetuned; switch (hparams.n_layer) { case 32: type = LLM_TYPE_3B; break; case 40: type = LLM_TYPE_3B; break; // Add additional layer/vocab/etc checks here for other model sizes default: type = LLM_TYPE_UNKNOWN; } // For Granite MoE Shared ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false); } break; case LLM_ARCH_GRANITE_HYBRID: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /* required */ false); ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /* required */ false); ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /* required */ false); ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale, /* required */ false); ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group); // Granite uses rope_finetuned as a switch for rope, so default to true bool rope_finetuned = true; ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); hparams.rope_finetuned = rope_finetuned; // A layer is recurrent IFF the n_head_kv value is set to 0 for (uint32_t i = 0; i < hparams.n_layer; ++i) { hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0; } ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_embd) { case 768: type = LLM_TYPE_350M; break; case 1536: type = (hparams.n_embd == 2048 ? LLM_TYPE_7B_A1B : LLM_TYPE_1B); break; case 2048: case 2560: type = LLM_TYPE_3B; break; case 4096: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } // For Granite MoE Shared ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false); } break; case LLM_ARCH_CHAMELEON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 48: type = LLM_TYPE_34B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_WAVTOKENIZER_DEC: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps); ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); } break; case LLM_ARCH_BAILINGMOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); switch (hparams.n_layer) { case 28: type = LLM_TYPE_16B; break; case 88: type = LLM_TYPE_290B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_BAILINGMOE2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func); ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false); // TODO: when MTP is implemented, this should probably be updated if needed hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers; switch (hparams.n_layer) { case 20: type = LLM_TYPE_16B_A1B; break; case 21: type = LLM_TYPE_16B_A1B; break; case 32: type = LLM_TYPE_100B_A6B; break; case 33: type = LLM_TYPE_100B_A6B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DOTS1: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); switch (hparams.n_layer) { case 62: type = LLM_TYPE_142B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_ERNIE4_5: case LLM_ARCH_ERNIE4_5_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (arch == LLM_ARCH_ERNIE4_5_MOE) { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); } switch (hparams.n_layer) { case 18: type = LLM_TYPE_0_3B; break; case 28: type = LLM_TYPE_21B_A3B; break; case 54: type = LLM_TYPE_300B_A47B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_FALCON_H1: { // Common parameters ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); // SSM parameters ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group); std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true); switch (hparams.n_layer) { case 36: type = LLM_TYPE_0_5B; break; case 24: type = LLM_TYPE_1_5B; break; case 66: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_3B; break; case 44: type = LLM_TYPE_7B; break; case 72: type = LLM_TYPE_34B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_HUNYUAN_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp); switch (hparams.n_layer) { case 32: type = LLM_TYPE_A13B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_HUNYUAN_DENSE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_embd) { case 1024: type = LLM_TYPE_0_5B; break; case 2048: type = LLM_TYPE_1_8B; break; case 3072: type = LLM_TYPE_4B; break; case 4096: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_SMOLLM3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); hparams.n_no_rope_layer_step = 4; switch (hparams.n_layer) { case 36: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OPENAI_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; hparams.set_swa_pattern(2); switch (hparams.n_layer) { case 24: type = LLM_TYPE_20B; break; case 36: type = LLM_TYPE_120B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_LFM2: { ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); for (uint32_t il = 0; il < hparams.n_layer; ++il) { hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0; } hparams.n_layer_dense_lead = hparams.n_layer; switch (hparams.n_ff()) { case 4608: type = LLM_TYPE_350M; break; case 6912: type = LLM_TYPE_700M; break; case 8192: type = LLM_TYPE_1_2B; break; case 10752: type = LLM_TYPE_2_6B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_LFM2MOE: { ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func); for (uint32_t il = 0; il < hparams.n_layer; ++il) { hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0; } type = LLM_TYPE_8B_A1B; } break; case LLM_ARCH_SMALLTHINKER: { const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); if (found_swa && hparams.n_swa > 0) { hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; hparams.n_swa = 4096; hparams.set_swa_pattern(4, true); } else { hparams.swa_type = LLAMA_SWA_TYPE_NONE; hparams.n_no_rope_layer_step = hparams.n_layer; } ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); switch (hparams.n_layer) { case 32: type = LLM_TYPE_4B; break; case 52: type = LLM_TYPE_20B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GROVEMOE: { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, hparams.n_ff_chexp); ml.get_key(LLM_KV_EXPERT_GROUP_SCALE, hparams.expert_group_scale); ml.get_key(LLM_KV_EXPERTS_PER_GROUP, hparams.n_group_experts); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 48: type = LLM_TYPE_30B_A3B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_APERTUS: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_N, hparams.xielu_alpha_n, hparams.n_layer); ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_P, hparams.xielu_alpha_p, hparams.n_layer); ml.get_key_or_arr(LLM_KV_XIELU_BETA, hparams.xielu_beta, hparams.n_layer); ml.get_key_or_arr(LLM_KV_XIELU_EPS, hparams.xielu_eps, hparams.n_layer); switch (hparams.n_layer) { case 32: type = LLM_TYPE_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_MINIMAX_M2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); switch (hparams.n_layer) { case 62: type = LLM_TYPE_230B_A10B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_COGVLM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_13B; break; default: type = LLM_TYPE_UNKNOWN; } } break; default: throw std::runtime_error("unsupported model architecture"); } pimpl->n_bytes = ml.n_bytes; pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name(); if (hparams.f_max_alibi_bias > 0.0f) { hparams.use_alibi = true; } hparams.rope_type = llama_model_rope_type(this); } void llama_model::load_vocab(llama_model_loader & ml) { const auto kv = LLM_KV(arch); vocab.load(ml, kv); } bool llama_model::load_tensors(llama_model_loader & ml) { const auto & split_mode = params.split_mode; const auto & n_gpu_layers = params.n_gpu_layers; const auto & use_mlock = params.use_mlock; const auto & tensor_split = params.tensor_split; const int n_layer = hparams.n_layer; const bool use_mmap_buffer = true; LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false"); // build a list of buffer types for the CPU and GPU devices pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts, params.no_host); for (auto * dev : devices) { buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split); // add CPU buffer types as a fallback buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end()); pimpl->gpu_buft_list.emplace(dev, std::move(buft_list)); } // calculate the split points bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; }); std::vector splits(n_devices()); if (all_zero) { // default split, by free memory for (size_t i = 0; i < n_devices(); ++i) { ggml_backend_dev_t dev = devices[i]; size_t total; size_t free; ggml_backend_dev_memory(dev, &free, &total); splits[i] = free; } } else { std::copy(tensor_split, tensor_split + n_devices(), splits.begin()); } // sum and normalize the splits to get the split points float split_sum = 0.0f; for (size_t i = 0; i < n_devices(); ++i) { split_sum += splits[i]; splits[i] = split_sum; } for (size_t i = 0; i < n_devices(); ++i) { splits[i] /= split_sum; } ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); if (cpu_dev == nullptr) { throw std::runtime_error(format("%s: no CPU backend found", __func__)); } const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0); const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1); auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev { const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il); if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) { LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa); return {cpu_dev, &pimpl->cpu_buft_list}; } const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin(); auto * dev = devices.at(layer_gpu); LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa); return {dev, &pimpl->gpu_buft_list.at(dev)}; }; // assign the input layer // there is very little benefit to offloading the input layer, so always keep it on the CPU pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list }; // assign the repeating layers to the devices according to the splits pimpl->dev_layer.resize(n_layer); for (int il = 0; il < n_layer; ++il) { pimpl->dev_layer[il] = get_layer_buft_list(il); } // assign the output layer pimpl->dev_output = get_layer_buft_list(n_layer); // one ggml context per buffer type int max_n_tensors = ml.n_tensors; max_n_tensors += 1; // duplicated output tensor max_n_tensors += n_layer*2; // duplicated rope freq tensors const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors; // define a comparator for the buft -> ctx map to ensure that the order is well-defined: struct ggml_backend_buft_comparator { bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const { return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0; } }; std::map ctx_map; auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { throw std::runtime_error(format("failed to create ggml context")); } ctx_map.emplace(buft, ctx); return ctx; } return it->second.get(); }; const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED; const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED; const auto TENSOR_SKIP = llama_model_loader::TENSOR_SKIP; // create tensors for the weights { // note: cast to int64_t since we will use these for the tensor dimensions const int64_t n_head = hparams.n_head(); const int64_t n_head_kv = hparams.n_head_kv(); const int64_t n_embd = hparams.n_embd; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_head_k = hparams.n_embd_head_k; const int64_t n_embd_head_v = hparams.n_embd_head_v; const int64_t n_ff = hparams.n_ff(); const int64_t n_embd_gqa = n_embd_v_gqa; const int64_t n_vocab = vocab.n_tokens(); const int64_t n_token_types = vocab.n_token_types(); const int64_t n_rot = hparams.n_rot; const int64_t n_expert = hparams.n_expert; const int64_t n_expert_used = hparams.n_expert_used; const int64_t n_ctx_train = hparams.n_ctx_train; if (n_expert > 0 && hparams.n_expert_used == 0) { throw std::runtime_error("model has expert layers but no expert layers are used"); } int n_moved_tensors = 0; ggml_tensor * first_moved_tensor = nullptr; ggml_backend_buffer_type_t first_moved_from_buft = nullptr; ggml_backend_buffer_type_t first_moved_to_buft = nullptr; auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list & ne, int flags) -> ggml_tensor * { ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str()); if (!t_meta) { if (flags & TENSOR_NOT_REQUIRED) { return nullptr; } throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str())); } // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops // the tensor is duplicated // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor llm_tensor tn_tensor = tn.tensor; if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) { tn_tensor = LLM_TENSOR_OUTPUT; } llm_tensor_info info; try { info = llm_tensor_info_for(tn_tensor); } catch (const std::out_of_range & e) { throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str())); } // skip unused tensors if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) { const size_t nbytes = ggml_nbytes(t_meta); LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes); ml.size_data -= nbytes; ml.n_created++; return nullptr; } // tensors with "bias" suffix are always used with GGML_OP_ADD or GGML_OP_ADD_ID ggml_op op; bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0; if (bias) { if (info.op == GGML_OP_MUL_MAT_ID) { op = GGML_OP_ADD_ID; } else { op = GGML_OP_ADD; } } else { op = info.op; } // sanity checks if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) { if (tn.bid != -1) { GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str()); } } else { if (tn.bid == -1) { GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str()); } } // select the buffer type for this tensor buft_list_t * buft_list; switch (info.layer) { case LLM_TENSOR_LAYER_INPUT: buft_list = pimpl->dev_input.buft_list; break; case LLM_TENSOR_LAYER_OUTPUT: buft_list = pimpl->dev_output.buft_list; break; case LLM_TENSOR_LAYER_REPEATING: buft_list = pimpl->dev_layer.at(tn.bid).buft_list; break; default: GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str()); } ggml_backend_buffer_type_t buft = nullptr; // check overrides if (ml.tensor_buft_overrides) { std::string tensor_name = tn.str(); for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) { std::regex pattern(overrides->pattern); if (std::regex_search(tensor_name, pattern)) { if (overrides->buft == ggml_backend_cpu_buffer_type()) { // when overriding to a CPU buffer, consider the extra buffer types buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list); } else { buft = overrides->buft; } LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n", tensor_name.c_str(), ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type), ggml_backend_buft_name(buft)); break; } } } if (!buft) { buft = select_weight_buft(hparams, t_meta, op, *buft_list); if (!buft) { throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str())); } } // avoid using a host buffer when using mmap auto * buft_dev = ggml_backend_buft_get_device(buft); if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) { auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); if (!cpu_dev) { throw std::runtime_error("no CPU backend found"); } buft = ggml_backend_dev_buffer_type(cpu_dev); } if (buft != buft_list->front().second) { n_moved_tensors++; if (!first_moved_tensor) { first_moved_tensor = t_meta; first_moved_from_buft = buft_list->front().second; first_moved_to_buft = buft; } } ggml_context * ctx = ctx_for_buft(buft); // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one if (flags & TENSOR_DUPLICATED) { ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str()); if (t) { return t; } } return ml.create_tensor(ctx, tn, ne, flags); }; layers.resize(n_layer); // TODO: move to a separate function const auto tn = LLM_TN(arch); switch (arch) { case LLM_ARCH_LLAMA: case LLM_ARCH_REFACT: case LLM_ARCH_MINICPM: case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } else { layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } if (n_expert == 0) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional MLP bias layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); } else { layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); // For Granite MoE Shared if (hparams.n_ff_shexp > 0) { layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0); } } } } break; case LLM_ARCH_LLADA: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0); // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0); // optional MLP bias layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_LLADA_MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe"); GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe"); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used; layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); } } break; case LLM_ARCH_LLAMA4: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0; auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); if (is_moe_layer) { int n_ff_exp = hparams.n_ff_exp; layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); // Shared expert const int64_t n_ff_shexp = n_ff_exp; layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); } else { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } } break; case LLM_ARCH_DECI: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i); const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i); const int64_t n_ff = hparams.n_ff(i); const int64_t n_head = hparams.n_head(i); const int64_t n_head_kv = hparams.n_head_kv(i); if (n_head_kv == 0 && n_head > 0) { // linear attention for DeciLMCausalModel layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); } else if (n_head_kv > 0) { layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); } // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); if (n_ff > 0) { layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); } if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } else { layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } if (n_ff > 0) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } // optional MLP bias layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_MINICPM3: { const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; const int64_t q_lora_rank = hparams.n_lora_q; const int64_t kv_lora_rank = hparams.n_lora_kv; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0); layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0); layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0); layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_GROK: { if (n_expert == 0) { throw std::runtime_error("Grok model cannot have zero experts"); } tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); if (!layer.ffn_post_norm) { layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } } break; case LLM_ARCH_DBRX: { if (n_expert == 0) { throw std::runtime_error("DBRX model cannot have zero experts"); } tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; case LLM_ARCH_BAICHUAN: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_FALCON: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); if (!output) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU } } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_STARCODER: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); // output { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); if (!output) { // needs to be on GPU output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: case LLM_ARCH_JINA_BERT_V3: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED); if (arch == LLM_ARCH_BERT) { pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED); cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED); cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED); cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED); } tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); if (!layer.wqkv) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0); if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) { layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); } else { layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); if (arch == LLM_ARCH_NOMIC_BERT) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); } } layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0); layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0); } } break; case LLM_ARCH_NEO_BERT: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED); cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED); cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED); cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED); output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); } } break; case LLM_ARCH_JINA_BERT_V2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED); cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; // JinaBertLayer layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0); layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0); layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0); } } break; case LLM_ARCH_BLOOM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_MPT: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); if (!output) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); // AWQ ScaleActivation layer layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_STABLELM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors, present in Stable LM 2 1.6B layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); // optional q and k layernorms, present in StableLM 2 12B layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED); // optional FFN norm, not present in StableLM 2 12B which uses parallel residual layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_QWEN: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0); } } break; case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2VL: case LLM_ARCH_DREAM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_QWEN2MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0 for QWEN2MOE"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE"); } // MoE branch const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used; layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff; layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0); layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); } } break; case LLM_ARCH_QWEN3: case LLM_ARCH_QWEN3VL: { // for model loading, the weights only have the main embd // so we need to divide by the number of deepstack layers + 1 // n_embd is const int so we declare a new variable int64_t n_embd = hparams.n_embd / (hparams.n_deepstack_layers + 1); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } // output rerank head cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_QWEN3MOE: case LLM_ARCH_QWEN3VLMOE: { // for model loading, the weights only have the main embd // so we need to divide by the number of deepstack layers + 1 // n_embd is const int so we declare a new variable int64_t n_embd = hparams.n_embd / (hparams.n_deepstack_layers + 1); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0 for QWEN3MOE"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE"); } // MoE branch const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used; layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); } } break; case LLM_ARCH_PHI2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_PHI3: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0); layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_PHIMOE: { const int64_t n_embd_head = n_embd / n_head; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0); output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_PLAMO: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_PLAMO2: { // mamba parameters const uint32_t d_conv = hparams.ssm_d_conv; const uint32_t d_state = hparams.ssm_d_state; const uint32_t num_heads = hparams.ssm_dt_rank; const uint32_t intermediate_size = hparams.ssm_d_inner; const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16)); // attention parameters const uint32_t qk_dim = hparams.n_embd_head_k; const uint32_t v_dim = hparams.n_embd_head_v; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; bool is_mamba_layer = hparams.is_recurrent(i); layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (is_mamba_layer) { layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2 * intermediate_size}, 0); layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0); layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {intermediate_size, dt_dim + 2*d_state}, 0); layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_dim, num_heads}, 0); layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {num_heads}, 0); layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {num_heads}, 0); layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {num_heads}, 0); layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {intermediate_size, n_embd}, 0); layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, i), {dt_dim}, 0); layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0); layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0); } else { const int64_t num_attention_heads = hparams.n_head(i); const int64_t q_num_heads = num_attention_heads; const int64_t num_key_value_heads = hparams.n_head_kv(i); const int64_t k_num_heads = num_key_value_heads; const int64_t v_num_heads = num_key_value_heads; const int64_t q_proj_dim = q_num_heads * qk_dim; const int64_t k_proj_dim = k_num_heads * qk_dim; const int64_t v_proj_dim = v_num_heads * v_dim; layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0); } // All layers have post-attention norm, FFN norm, and FFN tensors layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0); } } break; case LLM_ARCH_GPT2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_CODESHELL: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if tok embd is NULL, init from output if (tok_embd == NULL) { tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_ORION: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_INTERNLM2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_GEMMA: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); } } break; case LLM_ARCH_GEMMA2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_GEMMA3: case LLM_ARCH_GEMMA_EMBEDDING: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } // Dense linear weights dense_2_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_2_OUT, "weight"), {n_embd, hparams.dense_2_feat_out}, TENSOR_NOT_REQUIRED); dense_3_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_3_OUT, "weight"), {hparams.dense_3_feat_in, n_embd}, TENSOR_NOT_REQUIRED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_GEMMA3N: { const int64_t n_altup = hparams.n_altup; const int64_t laurel_rank = hparams.laurel_rank; const int64_t n_embd_altup = hparams.n_embd_altup; output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_embd_per_layer = create_tensor(tn(LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "weight"), {n_embd_altup * n_layer, n_vocab}, 0); altup_proj = create_tensor(tn(LLM_TENSOR_ALTUP_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0); altup_unembd_proj = create_tensor(tn(LLM_TENSOR_ALTUP_UNEMBD_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0); per_layer_model_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_MODEL_PROJ, "weight"), {n_embd, n_embd_altup * n_layer}, 0); per_layer_proj_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ_NORM, "weight"), {n_embd_altup}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); // altup & laurel layer.per_layer_inp_gate = create_tensor(tn(LLM_TENSOR_PER_LAYER_INP_GATE, "weight", i), {n_embd, n_embd_altup}, 0); layer.per_layer_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ, "weight", i), {n_embd_altup, n_embd}, 0); layer.per_layer_post_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_POST_NORM, "weight", i), {n_embd}, 0); layer.altup_correct_coef = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_COEF, "weight", i), {n_altup, n_altup}, 0); layer.altup_correct_scale = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_SCALE, "weight", i), {n_embd}, 0); layer.altup_predict_coef = create_tensor(tn(LLM_TENSOR_ALTUP_PREDICT_COEF, "weight", i), {n_altup, n_altup * n_altup}, 0); layer.altup_router = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER, "weight", i), {n_embd, n_altup}, 0); layer.altup_router_norm = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER_NORM, "weight", i), {n_embd}, 0); layer.laurel_l = create_tensor(tn(LLM_TENSOR_LAUREL_L, "weight", i), {n_embd, laurel_rank}, 0); layer.laurel_r = create_tensor(tn(LLM_TENSOR_LAUREL_R, "weight", i), {laurel_rank, n_embd}, 0); layer.laurel_post_norm = create_tensor(tn(LLM_TENSOR_LAUREL_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_STARCODER2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional bias tensors layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0); } } break; case LLM_ARCH_MAMBA: { const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t dt_rank = hparams.ssm_dt_rank; // only an expansion factor of 2 is supported for now if (2 * n_embd != d_inner) { throw std::runtime_error("only an expansion factor of 2 is supported for now"); } tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed, duplicated to allow offloading if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; // norm layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0); layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0); layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0); layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0); layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0); layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0); // no "weight" suffix for these layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0); layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0); // out_proj layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0); } } break; case LLM_ARCH_MAMBA2: { const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t n_head = hparams.ssm_dt_rank; const int64_t n_group = hparams.ssm_n_group; const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head; // only an expansion factor of 2 is supported for now GGML_ASSERT(2 * n_embd == d_inner); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed, duplicated to allow offloading if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; // norm layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0); layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0); layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0); layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0); // no "weight" suffix for these layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0); layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0); layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0); // out_proj layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0); } } break; case LLM_ARCH_JAMBA: { const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t dt_rank = hparams.ssm_dt_rank; // only an expansion factor of 2 is supported for now GGML_ASSERT(2 * n_embd == d_inner); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed, duplicated to allow offloading if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } } for (int i = 0; i < n_layer; ++i) { const int64_t n_head_kv = hparams.n_head_kv(i); const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i); auto & layer = layers[i]; // norm layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (n_head_kv == 0) { // Mamba layer layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0); layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0); layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0); layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0); layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0); layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0); layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0); layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0); layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0); // no "weight" suffix for these layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0); layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0); // out_proj layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0); } else { // Attention layers layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); } layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED); if (layer.ffn_gate_inp) { // MoE layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } else { // FFN (no MoE) layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } } break; case LLM_ARCH_GRANITE_HYBRID: { // mamba2 Mixer SSM params // NOTE: int64_t for tensor dimensions const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t n_ssm_head = hparams.ssm_dt_rank; const int64_t n_group = hparams.ssm_n_group; const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head; // only an expansion factor of 2 is supported for now GGML_ASSERT(2 * n_embd == d_inner); // embeddings tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed, duplicated to allow offloading if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; // norm layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (hparams.is_recurrent(i)) { // ssm layers layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0); layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0); layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED); layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0); // no "weight" suffix for these layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0); layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0); layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0); // out_proj layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0); } else { // attention layers (with optional bias) const int64_t n_head_i = hparams.n_head(i); const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i); const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); } // feed forward (w/ optional biases) if (n_expert > 0) { // MoE FFN layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); // For Granite MoE Shared if (hparams.n_ff_shexp > 0) { layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0); } } else { layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); } } } break; case LLM_ARCH_XVERSE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_COMMAND_R: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); // init output from the input tok embed output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (n_layer >= 64){ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0); } layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_COHERE2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); // init output from the input tok embed output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0); } } break; case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_OLMO2: { const int64_t n_embd_head = n_embd / n_head; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_SEED_OSS: { const uint32_t head_dim = hparams.n_embd_head_k; const int64_t n_qo_dim = n_head * head_dim; const int64_t n_kv_dim = n_head_kv * head_dim; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_qo_dim}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED); layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); } } break; case LLM_ARCH_OLMOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } // MoE branch layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; case LLM_ARCH_OPENELM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); // init output from the input tok embed output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { const int64_t n_head = hparams.n_head(i); const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head; const int64_t n_ff = hparams.n_ff(i); auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_GPTNEOX: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_ARCTIC: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; case LLM_ARCH_DEEPSEEK: { const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (i < (int) hparams.n_layer_dense_lead) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } else { layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } // MoE branch layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } } break; case LLM_ARCH_DEEPSEEK2: { const bool is_lite = (hparams.n_layer == 27); const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0); // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k; const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v; const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope; const int64_t q_lora_rank = hparams.n_lora_q; const int64_t kv_lora_rank = hparams.n_lora_kv; const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (!is_lite) { layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0); } layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); if (!is_lite) { layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0); } else { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0); } layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0); // note: only old legacy GGUF files will have the unsplit wkv_b tensor in if (is_mla) { layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0); layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0); } else { layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (i < (int) hparams.n_layer_dense_lead) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } else { layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } // MoE branch layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } } break; case LLM_ARCH_PLM: { const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; const int64_t kv_lora_rank = hparams.n_lora_kv; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0); layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_BITNET: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_T5: { const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } // n_layer: number of encoder_layers // dec_n_layer: number of decoder_layers const int dec_n_layer = hparams.dec_n_layer; if (dec_n_layer > n_layer) { layers.resize(dec_n_layer); } // load encoder layers for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED); layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } // load decoder layers for (int i = 0; i < dec_n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED); layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0); // this tensor seems to be unused in HF transformers implementation layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED); layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_T5ENCODER: { const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED); layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_JAIS: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_CHATGLM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); } } break; case LLM_ARCH_GLM4: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_GLM4_MOE: { const int64_t n_expert = hparams.n_expert; const int64_t n_expert_used = hparams.n_expert_used; const int64_t n_expert_shared = hparams.n_expert_shared; GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers"); GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers"); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED); } // Load ALL tensors including NextN layer to satisfy total tensor count // but only PROCESS up to last layer (skipping final NextN layer) in forward pass for (int i = 0; i < n_layer; ++i) { int flags = 0; if (hparams.nextn_predict_layers > 0 && static_cast(i) >= n_layer - hparams.nextn_predict_layers) { // skip all tensors in the NextN layers flags |= TENSOR_SKIP; } auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags); // GLM-style attention with bias terms layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags); // K/Q norm tensors (optional for GLM-4.5 355B variant) layer.attn_q_norm = create_tensor( tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags); layer.attn_k_norm = create_tensor( tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags); // Check if this layer uses MoE or dense FFN based on n_layer_dense_lead // GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE const bool use_moe = (static_cast(i) >= hparams.n_layer_dense_lead); if (use_moe) { // MoE layers layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags); layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags); // MoE branch const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used; layer.ffn_gate_exps = create_tensor( tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags); layer.ffn_down_exps = create_tensor( tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags); layer.ffn_up_exps = create_tensor( tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags); // Shared expert if (n_expert_shared > 0) { const int64_t n_ff_shexp = n_ff_exp * n_expert_shared; layer.ffn_gate_shexp = create_tensor( tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags); layer.ffn_down_shexp = create_tensor( tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags); layer.ffn_up_shexp = create_tensor( tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags); } } else { // Dense layers (first k layers) - GLM uses separate gate/up projections layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, flags); } // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers if (hparams.nextn_predict_layers > 0 && static_cast(i) >= n_layer - hparams.nextn_predict_layers) { layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags); layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags); layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags); // Optional tensors layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED); layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED); layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED); } } } break; case LLM_ARCH_NEMOTRON: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional MLP bias layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_NEMOTRON_H: { // mamba2 Mixer SSM params // NOTE: int64_t for tensor dimensions const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t n_ssm_head = hparams.ssm_dt_rank; const int64_t n_group = hparams.ssm_n_group; const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head; // embeddings tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed, duplicated to allow offloading if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; // all blocks use the attn norm layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (hparams.is_recurrent(i)) { // ssm layers layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0); layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0); layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED); layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0); // no "weight" suffix for these layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0); layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0); layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0); // out_proj layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0); } else if (hparams.n_ff(i) == 0) { // attention layers (with optional bias) const int64_t n_head_i = hparams.n_head(i); const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i); const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); } else { // mlp layers layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED); } } } break; case LLM_ARCH_EXAONE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_EXAONE4: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_RWKV6: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // Block 0, LN0 tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int time_mix_extra_dim = hparams.time_mix_extra_dim; const int time_decay_extra_dim = hparams.time_decay_extra_dim; const int head_size = hparams.wkv_head_size; const int attn_hidden_size = n_embd; const int ffn_size = hparams.n_ff_arr[0]; for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0); layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0); layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0); layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0); layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0); layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED); GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL)); layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0); layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0); layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0); layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0); layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0); layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0); layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0); layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0); layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0); layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0); layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0); } } break; case LLM_ARCH_RWKV6QWEN2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int time_mix_extra_dim = hparams.time_mix_extra_dim; const int time_decay_extra_dim = hparams.time_decay_extra_dim; const int head_size = hparams.wkv_head_size; const int attn_hidden_size = n_embd; const int n_head_kv = hparams.n_head_kv(); int attn_key_value_size; if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) { attn_key_value_size = attn_hidden_size; } else { attn_key_value_size = n_head_kv * head_size; } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0); layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0); layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0); layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0); layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED); layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0); layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0); layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0); layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0); layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0); layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0); // optional bias tensors layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED); layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED); layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED); layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_RWKV7: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // Block 0, LN0 tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int n_lora_decay = hparams.n_lora_decay; const int n_lora_iclr = hparams.n_lora_iclr; const int n_lora_value_res_mix = hparams.n_lora_value_res_mix; const int n_lora_gate = hparams.n_lora_gate; const int attn_hidden_size = n_embd; const int ffn_size = hparams.n_ff_arr[0]; for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0); layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0); layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0); layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0); layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0); layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0); layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0); layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0); if (i == 0) { // actually not used layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0); layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0); layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0); } else { layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0); layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0); layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0); } layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0); layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0); layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0); layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0); layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0); layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0); layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0); layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0); layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0); layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0); layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0); } } break; case LLM_ARCH_ARWKV7: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int n_lora_decay = hparams.n_lora_decay; const int n_lora_iclr = hparams.n_lora_iclr; const int n_lora_value_res_mix = hparams.n_lora_value_res_mix; const int n_lora_gate = hparams.n_lora_gate; const int attn_hidden_size = n_embd; for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0); layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0); layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0); layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0); layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0); layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0); if (i == 0) { // actually not used layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0); layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0); layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0); } else { layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0); layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0); layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0); } layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED); layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED); try { layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0); } catch(std::runtime_error & e) { // ARWKV models may not have gate tensors layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0); } layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0); layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0); layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0); layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_CHAMELEON: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0); layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED); layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_WAVTOKENIZER_DEC: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0); conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0); conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0); // posnet { const int64_t n_embd = hparams.posnet.n_embd; for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) { auto & layer = layers[i].posnet; // posnet: // // - resnet // - resnet // - attn // - resnet // - resnet // - norm // switch (i) { case 0: case 1: case 3: case 4: { layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0); layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0); layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0); layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0); layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0); layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0); layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0); layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0); } break; case 2: { layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0); layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0); layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0); layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0); layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0); layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0); layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0); layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0); layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0); } break; case 5: { layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0); layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0); } break; default: GGML_ABORT("unknown posnet layer"); }; } } GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd); tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0); // convnext { const int64_t n_embd = hparams.convnext.n_embd; for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) { auto & layer = layers[i].convnext; layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0); layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0); layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0); layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0); layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0); layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0); layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0); layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0); layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0); } // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); } output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0); output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0); } break; case LLM_ARCH_BAILINGMOE: { const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } break; case LLM_ARCH_BAILINGMOE2: { const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2"); GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2"); for (int i = 0; i < n_layer; ++i) { int flags = 0; if (hparams.nextn_predict_layers > 0 && static_cast(i) >= n_layer - hparams.nextn_predict_layers) { // skip all tensors in the NextN layers flags |= TENSOR_SKIP; } auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags); if (static_cast(i) >= hparams.n_layer_dense_lead) { // MoE layers const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared; layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags); layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags); layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags); } else { // Dense layers layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags); } // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers if (hparams.nextn_predict_layers > 0 && static_cast(i) >= n_layer - hparams.nextn_predict_layers) { layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags); layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags); layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags); layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags); layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags); layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags); layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags); } } } break; case LLM_ARCH_DOTS1: { const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (i < (int) hparams.n_layer_dense_lead) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } else { layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } // MoE branch layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } } break; case LLM_ARCH_ARCEE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_ERNIE4_5: case LLM_ARCH_ERNIE4_5_MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast(i) >= hparams.n_layer_dense_lead) { // MoE layers int n_ff_exp = hparams.n_ff_exp; layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); // Shared expert (if present) if (hparams.n_ff_shexp > 0) { layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd }, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0); } } else { // Dense layers layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } } break; case LLM_ARCH_FALCON_H1: { // Common const int64_t hidden_size = hparams.n_embd; // hidden_size // mamba2 Mixer SSM params const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size; const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads; // attn params const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head const int64_t attn_num_key_value_head = hparams.n_head_kv(0); // ffn params const int64_t ffn_intermediate_size = hparams.n_ff(0); // embeddings tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0); // output output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; /*SSM LAYERS*/ // ssm in layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0); // ssm 1d conv layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0); layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED); // ssm_dt layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0); // no "weight" suffix for these layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0); layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0); // ssm_norm layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED); // out_proj layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0); /*ATTENTION LAYERS*/ // attention layers (with optional bias) layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED); layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0); // feed forward (w/ optional biases) layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size, ffn_intermediate_size}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { ffn_intermediate_size, hidden_size}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {hidden_size, ffn_intermediate_size}, 0); layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_HUNYUAN_MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0); } } break; case LLM_ARCH_HUNYUAN_DENSE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_SMOLLM3: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_OPENAI_MOE: { const int64_t n_ff_exp = hparams.n_ff_exp; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0); layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // bias layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_head * n_rot}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_head_kv * n_rot}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_head_kv * n_rot}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_gate_inp_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "bias", i), {n_expert}, 0); layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0); layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), { n_embd, n_expert}, 0); layer.ffn_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "bias", i), {n_ff_exp, n_expert}, 0); } } break; case LLM_ARCH_LFM2: case LLM_ARCH_LFM2MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; const bool is_moe_layer = i >= static_cast(hparams.n_layer_dense_lead); // ffn/moe is same for transformer and conv layers layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (is_moe_layer) { GGML_ASSERT(n_expert && n_expert_used); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0); layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0); } else { // dense layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } // for operator_norm layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (!hparams.is_recurrent(i)) { layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); GGML_ASSERT(n_embd_v_gqa == n_embd_k_gqa); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, hparams.n_embd_k_gqa(i)}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, hparams.n_embd_v_gqa(i)}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); } else { layer.shortconv.conv = create_tensor(tn(LLM_TENSOR_SHORTCONV_CONV, "weight", i), {hparams.n_shortconv_l_cache, n_embd}, 0); layer.shortconv.in_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_INPROJ, "weight", i), {n_embd, 3 * n_embd}, 0); layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0); } } } break; case LLM_ARCH_SMALLTHINKER: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER"); GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER"); // MoE branch const int64_t n_ff_exp = hparams.n_ff_exp; layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0); } } break; case LLM_ARCH_GROVEMOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for GROVEMOE"); GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for GROVEMOE"); GGML_ASSERT(hparams.n_group_experts > 0 && "n_group_experts must be > 0 for GROVEMOE"); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); // MoE branch const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used; const int64_t n_ff_chexp = hparams.n_ff_chexp ? hparams.n_ff_chexp : n_embd_head_k; const int64_t n_chunk_expert = n_expert / hparams.n_group_experts; layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_gate_chexps = create_tensor(tn(LLM_TENSOR_FFN_GATE_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0); layer.ffn_down_chexps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_CHEXPS, "weight", i), {n_ff_chexp, n_embd, n_chunk_expert}, 0); layer.ffn_up_chexps = create_tensor(tn(LLM_TENSOR_FFN_UP_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0); } } break; case LLM_ARCH_APERTUS: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } else { layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0); // Q and K layernorms for Apertus layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0); layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0); layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_MINIMAX_M2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0); layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k * n_head}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_k_gqa}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0); } } break; case LLM_ARCH_COGVLM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.visexp_attn_wqkv = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0); layer.visexp_attn_wo = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.visexp_ffn_gate = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.visexp_ffn_down = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.visexp_ffn_up = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; default: throw std::runtime_error("unknown architecture"); } if (n_moved_tensors > 0) { LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n", __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1, ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft)); } } ml.done_getting_tensors(); ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr); pimpl->mappings.reserve(ml.mappings.size()); // create the backend buffers std::vector> ctx_buf_maps; ctx_buf_maps.reserve(ctx_map.size()); // Ensure we have enough capacity for the maximum backend buffer we will potentially create const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size(); pimpl->ctxs_bufs.reserve(n_max_backend_buffer); for (auto & [buft, ctx_ptr] : ctx_map) { ggml_context * ctx = ctx_ptr.get(); // skip contexts without tensors if (ggml_get_first_tensor(ctx) == nullptr) { continue; } llama_buf_map buf_map; buf_map.reserve(n_max_backend_buffer); // check if it is possible to use buffer_from_host_ptr with this buffer type ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft); if (!dev) { // FIXME: workaround for CPU backend buft having a NULL device dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); if (!dev) { throw std::runtime_error(format("%s: no CPU backend found", __func__)); } } ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr; bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev); std::vector bufs; if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { // only the mmap region containing the tensors in the model is mapped to the backend buffer // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size void * addr = nullptr; size_t first, last; // NOLINT ml.get_mapping_range(&first, &last, &addr, idx, ctx); if (first >= last) { continue; } const size_t max_size = ggml_get_max_tensor_size(ctx); ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size); if (buf == nullptr) { throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft))); } bufs.emplace_back(buf); buf_map.emplace(idx, buf); } } else { ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (buf == nullptr) { throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft))); } if (use_mlock && ggml_backend_buffer_is_host(buf)) { pimpl->mlock_bufs.emplace_back(new llama_mlock); auto & mlock_buf = pimpl->mlock_bufs.back(); mlock_buf->init (ggml_backend_buffer_get_base(buf)); mlock_buf->grow_to(ggml_backend_buffer_get_size(buf)); } bufs.emplace_back(buf); for (uint32_t idx = 0; idx < ml.files.size(); idx++) { buf_map.emplace(idx, buf); } } pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), std::move(bufs)); for (auto & buf : buf_map) { // indicate that this buffer contains weights // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); } ctx_buf_maps.emplace_back(ctx, buf_map); } if (llama_supports_gpu_offload()) { const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__); } const int max_backend_supported_layers = hparams.n_layer + 1; const int max_offloadable_layers = hparams.n_layer + 1; LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); } // print memory requirements per buffer type for (auto & [_, bufs] : pimpl->ctxs_bufs) { for (auto & buf: bufs) { LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0); } } // populate tensors_by_name for (auto & [ctx, _] : pimpl->ctxs_bufs) { for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) { tensors_by_name.emplace_back(ggml_get_name(cur), cur); } } // load tensor data for (auto & [ctx, buf_map] : ctx_buf_maps) { if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) { return false; } } if (use_mmap_buffer) { for (auto & mapping : ml.mappings) { pimpl->mappings.emplace_back(std::move(mapping)); } } return true; } std::string llama_model::arch_name() const { return llm_arch_name(arch); } std::string llama_model::type_name() const { return llm_type_name(type); } std::string llama_model::desc() const { return pimpl->desc_str; } size_t llama_model::size() const { return pimpl->n_bytes; } size_t llama_model::n_tensors() const { return tensors_by_name.size(); } size_t llama_model::n_devices() const { return devices.size(); } std::map llama_model::memory_breakdown() const { std::map ret; for (const auto & [_, bufs] : pimpl->ctxs_bufs) { for (const auto & buf : bufs) { ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get()); } } return ret; } uint64_t llama_model::n_elements() const { return pimpl->n_elements; } void llama_model::print_info() const { const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train); auto print_f = [](const std::function & f, uint32_t n) { bool is_var = false; std::vector v; for (uint32_t i = 0; i < n; ++i) { v.push_back(f(i)); if (v[i] != v[0]) { is_var = true; } } std::stringstream ss; if (is_var) { ss << "["; for (uint32_t i = 0; i < n; ++i) { ss << v[i]; if (i < n - 1) { ss << ", "; } } ss << "]"; } else { ss << v[0]; } return ss.str(); }; // hparams LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str()); LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only); if (!hparams.vocab_only) { LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa); LLAMA_LOG_INFO("%s: is_swa_any = %u\n", __func__, hparams.is_swa_any()); LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k); LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v); LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias); LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale); LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale); LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert); LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used); LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups); LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used); LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn); LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type); LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type); LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str()); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn); LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown"); // MRoPE (Multi-axis Rotary Position Embedding) sections if (const auto & s = hparams.rope_sections; s[0] || s[1] || s[2] || s[3]) { LLAMA_LOG_INFO("%s: mrope sections = [%d, %d, %d, %d]\n", __func__, s[0], s[1], s[2], s[3]); } if (!classifier_labels.empty()) { LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out); size_t i = 0; for (auto label : classifier_labels) { LLAMA_LOG_INFO("%s: cls_label[%2zu] = %s\n", __func__, i++, label.c_str()); } } } if (arch == LLM_ARCH_MAMBA || arch == LLM_ARCH_MAMBA2 || arch == LLM_ARCH_JAMBA || arch == LLM_ARCH_FALCON_H1 || arch == LLM_ARCH_PLAMO2 || arch == LLM_ARCH_GRANITE_HYBRID || arch == LLM_ARCH_NEMOTRON_H) { LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv); LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner); LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state); LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank); LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group); LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms); } LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str()); if (pimpl->n_elements >= 1e12) { LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12); } else if (pimpl->n_elements >= 1e9) { LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9); } else if (pimpl->n_elements >= 1e6) { LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6); } else { LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3); } // general kv LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str()); if (arch == LLM_ARCH_DEEPSEEK) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); } if (arch == LLM_ARCH_DEEPSEEK2) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q); LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv); LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla); LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla); LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func)); LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul); } if (arch == LLM_ARCH_QWEN2MOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); } if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); } if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE || arch == LLM_ARCH_GRANITE_HYBRID) { LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale); LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale); LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale); LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); } if (arch == LLM_ARCH_BAILINGMOE) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); } if (arch == LLM_ARCH_BAILINGMOE2) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func)); LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n", __func__, hparams.nextn_predict_layers); } if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func)); } if (arch == LLM_ARCH_GROVEMOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_ff_chexp = %d\n", __func__, hparams.n_ff_chexp); LLAMA_LOG_INFO("%s: n_group_experts = %d\n", __func__, hparams.n_group_experts); LLAMA_LOG_INFO("%s: expert_group_scale = %.2f\n", __func__, hparams.expert_group_scale); } vocab.print_info(); } ggml_backend_dev_t llama_model::dev_layer(int il) const { return pimpl->dev_layer.at(il).dev; } ggml_backend_dev_t llama_model::dev_output() const { return pimpl->dev_output.dev; } template static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) { ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead()*8, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context_ptr ctx { ggml_init(params) }; if (!ctx) { throw std::runtime_error(format("failed to create ggml context")); } ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) }; ggml_tensor * op_tensor = fn(ctx.get()); for (int i = 0; i < GGML_MAX_SRC; i++) { if (op_tensor->src[i] != nullptr) { assert(op_tensor->src[i]->buffer == nullptr); op_tensor->src[i]->buffer = buf.get(); } } bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor); return op_supported; } template static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) { for (const auto & cur : buft_list) { ggml_backend_dev_t cur_dev = cur.first; ggml_backend_buffer_type_t cur_buft = cur.second; if (buft_supported(cur_buft, cur_dev, fn)) { return cur_buft; } } throw std::runtime_error(format("no suitable buffer type found")); } ggml_backend_buffer_type_t llama_model::select_buft(int il) const { return ::select_buft( *pimpl->dev_layer.at(il).buft_list, [&](ggml_context * ctx) { ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd); ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd); return ggml_add(ctx, cur, layer_dir); }); } bool llama_model::has_tensor_overrides() const { return pimpl->has_tensor_overrides; } const ggml_tensor * llama_model::get_tensor(const char * name) const { auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(), [name](const std::pair & it) { return it.first == name; }); if (it == tensors_by_name.end()) { return nullptr; } return it->second; } float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const { return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base; } float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const { return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale; } ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const { const uint32_t n_ctx_seq = cparams.n_ctx_seq; // choose long/short freq factors based on the context size if (layers[il].rope_freqs != nullptr) { return layers[il].rope_freqs; } if (n_ctx_seq > hparams.n_ctx_orig_yarn) { return layers[il].rope_long; } return layers[il].rope_short; } llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const { llama_memory_i * res; switch (arch) { // Models that need specific instantiation should be handled in the // switch statement case LLM_ARCH_BERT: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_JINA_BERT_V3: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: case LLM_ARCH_NEO_BERT: case LLM_ARCH_WAVTOKENIZER_DEC: case LLM_ARCH_GEMMA_EMBEDDING: case LLM_ARCH_DREAM: case LLM_ARCH_LLADA: case LLM_ARCH_LLADA_MOE: { res = nullptr; } break; // Models that need standard caching should rely on recurrent/hybrid // checks default: { if (llm_arch_is_recurrent(arch)) { res = new llama_memory_recurrent( *this, GGML_TYPE_F32, GGML_TYPE_F32, cparams.offload_kqv, std::max((uint32_t) 1, cparams.n_seq_max), cparams.n_seq_max, nullptr); } else if (llm_arch_is_hybrid(arch)) { // The main difference between hybrid architectures is the // layer filters, so pick the right one here llama_memory_hybrid::layer_filter_cb filter_attn = nullptr; llama_memory_hybrid::layer_filter_cb filter_recr = nullptr; if (arch == LLM_ARCH_FALCON_H1) { filter_attn = [&](int32_t) { return true; }; filter_recr = [&](int32_t) { return true; }; } else if (arch == LLM_ARCH_NEMOTRON_H) { filter_attn = [&](int32_t il) { return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0; }; filter_recr = [&](int32_t il) { return hparams.is_recurrent(il) && hparams.n_ff(il) == 0; }; } res = new llama_memory_hybrid( /* model */ *this, /* attn_type_k */ params.type_k, /* attn_type_v */ params.type_v, /* attn_v_trans */ !cparams.flash_attn, /* attn_kv_size */ cparams.n_ctx, /* attn_n_pad */ 1, /* attn_n_swa */ hparams.n_swa, /* attn_swa_type */ hparams.swa_type, /* recurrent_type_k */ GGML_TYPE_F32, /* recurrent_type_v */ GGML_TYPE_F32, /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max), /* n_seq_max */ cparams.n_seq_max, /* offload */ cparams.offload_kqv, /* unified */ cparams.kv_unified, /* filter_attn */ std::move(filter_attn), /* filter_recr */ std::move(filter_recr)); } else { llama_memory_i::layer_reuse_cb reuse = nullptr; if (arch == LLM_ARCH_GEMMA3N) { reuse = [&](int32_t il) { if (il >= (int32_t) hparams.n_layer_kv_from_start) { return (int32_t) hparams.n_layer_kv_from_start - (hparams.is_swa(il) ? 2 : 1); } return -1; }; } if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) { GGML_ASSERT(hparams.is_swa_any()); res = new llama_kv_cache_iswa( *this, params.type_k, params.type_v, !cparams.flash_attn, cparams.offload_kqv, params.swa_full, cparams.kv_unified, cparams.n_ctx_seq, cparams.n_seq_max, cparams.n_ubatch, 1, nullptr, reuse); } else { GGML_ASSERT(!hparams.is_swa_any()); res = new llama_kv_cache( *this, params.type_k, params.type_v, !cparams.flash_attn, cparams.offload_kqv, cparams.kv_unified, cparams.n_ctx_seq, cparams.n_seq_max, 1, hparams.n_swa, hparams.swa_type, nullptr, nullptr); } } } } return res; } ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { std::unique_ptr llm; switch (arch) { case LLM_ARCH_LLAMA: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_LLAMA4: { if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) { llm = std::make_unique(*this, params); } else { llm = std::make_unique(*this, params); } } break; case LLM_ARCH_DECI: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_BAICHUAN: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_FALCON: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GROK: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_STARCODER: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_REFACT: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_BERT: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_JINA_BERT_V3: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_NEO_BERT: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_BLOOM: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_MPT: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_STABLELM: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_DREAM: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_LLADA: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_LLADA_MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN2VL: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN2MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN3: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN3MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN3VL: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN3VLMOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_PHI2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_PHI3: case LLM_ARCH_PHIMOE: { if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) { llm = std::make_unique> (*this, params); } else { llm = std::make_unique>(*this, params); } } break; case LLM_ARCH_PLAMO: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_PLAMO2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GPT2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_CODESHELL: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_ORION: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_INTERNLM2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_MINICPM3: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA3: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA3N: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA_EMBEDDING: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_STARCODER2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_MAMBA: case LLM_ARCH_MAMBA2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_JAMBA: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_XVERSE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_COMMAND_R: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_COHERE2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_DBRX: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_OLMO: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_OLMO2: { if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) { llm = std::make_unique>(*this, params); } else { llm = std::make_unique>(*this, params); } } break; case LLM_ARCH_OLMOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_OPENELM: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GPTNEOX: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_ARCTIC: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_DEEPSEEK: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_DEEPSEEK2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_CHATGLM: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GLM4: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GLM4_MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_BITNET: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_T5: { switch (params.gtype) { case LLM_GRAPH_TYPE_ENCODER: llm = std::make_unique(*this, params); break; case LLM_GRAPH_TYPE_DEFAULT: case LLM_GRAPH_TYPE_DECODER: llm = std::make_unique(*this, params); break; default: GGML_ABORT("invalid graph type"); }; } break; case LLM_ARCH_T5ENCODER: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_JAIS: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_NEMOTRON: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_NEMOTRON_H: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_EXAONE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_EXAONE4: { if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) { llm = std::make_unique>(*this, params); } else { llm = std::make_unique>(*this, params); } } break; case LLM_ARCH_RWKV6: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_RWKV6QWEN2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_RWKV7: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_ARWKV7: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: case LLM_ARCH_MINICPM: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_GRANITE_HYBRID: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_CHAMELEON: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_WAVTOKENIZER_DEC: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_PLM: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_BAILINGMOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_BAILINGMOE2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_SEED_OSS: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_DOTS1: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_ARCEE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_ERNIE4_5: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_ERNIE4_5_MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_HUNYUAN_MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_HUNYUAN_DENSE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_SMOLLM3: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_OPENAI_MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_FALCON_H1: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_LFM2: case LLM_ARCH_LFM2MOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_SMALLTHINKER: { if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) { llm = std::make_unique> (*this, params); } else { llm = std::make_unique>(*this, params); } } break; case LLM_ARCH_GROVEMOE: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_APERTUS: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_MINIMAX_M2: { llm = std::make_unique(*this, params); } break; case LLM_ARCH_COGVLM: { llm = std::make_unique(*this, params); } break; default: GGML_ABORT("fatal error"); } // add on pooling layer llm->build_pooling(cls, cls_b, cls_out, cls_out_b); // if the gguf model was converted with --sentence-transformers-dense-modules // there will be two additional dense projection layers // dense linear projections are applied after pooling // TODO: move reranking logic here and generalize llm->build_dense_out(dense_2_out_layers, dense_3_out_layers); return llm->res->get_gf(); } // // interface implementation // llama_model_params llama_model_default_params() { llama_model_params result = { /*.devices =*/ nullptr, /*.tensor_buft_overrides =*/ nullptr, /*.n_gpu_layers =*/ 999, /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.kv_overrides =*/ nullptr, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, /*.check_tensors =*/ false, /*.use_extra_bufts =*/ true, /*.no_host =*/ false, }; return result; } const llama_vocab * llama_model_get_vocab(const llama_model * model) { return &model->vocab; } void llama_free_model(llama_model * model) { llama_model_free(model); } void llama_model_free(llama_model * model) { delete model; } int32_t llama_model_n_ctx_train(const llama_model * model) { return model->hparams.n_ctx_train; } int32_t llama_model_n_embd(const llama_model * model) { return model->hparams.n_embd; } int32_t llama_model_n_layer(const llama_model * model) { return model->hparams.n_layer; } int32_t llama_model_n_head(const llama_model * model) { return model->hparams.n_head(); } int32_t llama_model_n_head_kv(const llama_model * model) { return model->hparams.n_head_kv(); } int32_t llama_model_n_swa(const llama_model * model) { return model->hparams.n_swa; } uint32_t llama_model_n_cls_out(const struct llama_model * model) { return model->hparams.n_cls_out; } const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) { if (i < model->classifier_labels.size()) { return model->classifier_labels[i].c_str(); } return nullptr; } // deprecated int32_t llama_n_ctx_train(const llama_model * model) { return llama_model_n_ctx_train(model); } // deprecated int32_t llama_n_embd(const llama_model * model) { return llama_model_n_embd(model); } // deprecated int32_t llama_n_layer(const llama_model * model) { return llama_model_n_layer(model); } // deprecated int32_t llama_n_head(const llama_model * model) { return llama_model_n_head(model); } llama_rope_type llama_model_rope_type(const llama_model * model) { switch (model->arch) { // these models do not use RoPE case LLM_ARCH_CLIP: case LLM_ARCH_GPT2: case LLM_ARCH_GPTJ: case LLM_ARCH_MPT: case LLM_ARCH_REFACT: case LLM_ARCH_BLOOM: case LLM_ARCH_MAMBA: case LLM_ARCH_MAMBA2: case LLM_ARCH_JAMBA: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_T5: case LLM_ARCH_T5ENCODER: case LLM_ARCH_JAIS: case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6QWEN2: case LLM_ARCH_RWKV7: case LLM_ARCH_ARWKV7: case LLM_ARCH_WAVTOKENIZER_DEC: case LLM_ARCH_NEMOTRON_H: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values case LLM_ARCH_LLAMA: case LLM_ARCH_LLADA: case LLM_ARCH_LLAMA4: case LLM_ARCH_DECI: case LLM_ARCH_BAICHUAN: case LLM_ARCH_STARCODER: case LLM_ARCH_INTERNLM2: case LLM_ARCH_MINICPM: case LLM_ARCH_XVERSE: case LLM_ARCH_COMMAND_R: case LLM_ARCH_COHERE2: case LLM_ARCH_OLMO: case LLM_ARCH_ARCTIC: case LLM_ARCH_DEEPSEEK: case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_PLM: case LLM_ARCH_CHATGLM: case LLM_ARCH_GLM4: case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: case LLM_ARCH_GRANITE_HYBRID: case LLM_ARCH_CHAMELEON: case LLM_ARCH_BAILINGMOE: case LLM_ARCH_NEO_BERT: case LLM_ARCH_SMOLLM3: case LLM_ARCH_ARCEE: case LLM_ARCH_ERNIE4_5: case LLM_ARCH_ERNIE4_5_MOE: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2 case LLM_ARCH_FALCON: case LLM_ARCH_FALCON_H1: case LLM_ARCH_GROK: case LLM_ARCH_DBRX: case LLM_ARCH_BERT: case LLM_ARCH_JINA_BERT_V3: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: case LLM_ARCH_STABLELM: case LLM_ARCH_BITNET: case LLM_ARCH_QWEN: case LLM_ARCH_QWEN2: case LLM_ARCH_DREAM: case LLM_ARCH_QWEN2MOE: case LLM_ARCH_QWEN3: case LLM_ARCH_QWEN3MOE: case LLM_ARCH_LLADA_MOE: case LLM_ARCH_OLMO2: case LLM_ARCH_OLMOE: case LLM_ARCH_PHI2: case LLM_ARCH_PHI3: case LLM_ARCH_PHIMOE: case LLM_ARCH_PLAMO: case LLM_ARCH_PLAMO2: case LLM_ARCH_GEMMA: case LLM_ARCH_GEMMA2: case LLM_ARCH_GEMMA3: case LLM_ARCH_GEMMA3N: case LLM_ARCH_GEMMA_EMBEDDING: case LLM_ARCH_STARCODER2: case LLM_ARCH_OPENELM: case LLM_ARCH_GPTNEOX: case LLM_ARCH_CODESHELL: case LLM_ARCH_ORION: case LLM_ARCH_NEMOTRON: case LLM_ARCH_EXAONE: case LLM_ARCH_EXAONE4: case LLM_ARCH_MINICPM3: case LLM_ARCH_BAILINGMOE2: case LLM_ARCH_DOTS1: case LLM_ARCH_HUNYUAN_MOE: case LLM_ARCH_OPENAI_MOE: case LLM_ARCH_HUNYUAN_DENSE: case LLM_ARCH_LFM2: case LLM_ARCH_LFM2MOE: case LLM_ARCH_SMALLTHINKER: case LLM_ARCH_GLM4_MOE: case LLM_ARCH_SEED_OSS: case LLM_ARCH_GROVEMOE: case LLM_ARCH_APERTUS: case LLM_ARCH_MINIMAX_M2: case LLM_ARCH_COGVLM: return LLAMA_ROPE_TYPE_NEOX; case LLM_ARCH_QWEN2VL: return LLAMA_ROPE_TYPE_MROPE; case LLM_ARCH_QWEN3VL: case LLM_ARCH_QWEN3VLMOE: return LLAMA_ROPE_TYPE_IMROPE; // all model arches should be listed explicitly here case LLM_ARCH_UNKNOWN: GGML_ABORT("unknown architecture"); } return LLAMA_ROPE_TYPE_NONE; } float llama_model_rope_freq_scale_train(const llama_model * model) { return model->hparams.rope_freq_scale_train; } int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) { const auto & it = model->gguf_kv.find(key); if (it == model->gguf_kv.end()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } return snprintf(buf, buf_size, "%s", it->second.c_str()); } int32_t llama_model_meta_count(const llama_model * model) { return (int)model->gguf_kv.size(); } int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) { if (i < 0 || i >= (int)model->gguf_kv.size()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } auto it = model->gguf_kv.begin(); std::advance(it, i); return snprintf(buf, buf_size, "%s", it->first.c_str()); } int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) { if (i < 0 || i >= (int)model->gguf_kv.size()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } auto it = model->gguf_kv.begin(); std::advance(it, i); return snprintf(buf, buf_size, "%s", it->second.c_str()); } int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) { return snprintf(buf, buf_size, "%s", model->desc().c_str()); } uint64_t llama_model_size(const llama_model * model) { return model->size(); } const char * llama_model_chat_template(const llama_model * model, const char * name) { const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE) : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE); const auto & it = model->gguf_kv.find(key); if (it == model->gguf_kv.end()) { // one-off fix for very popular models (so we are not flooded with issues) // do not extend this list unless absolutely necessary // Mistral-Small-2503 does not have built-in chat template llama_vocab_pre_type pre_type = model->vocab.get_pre_type(); if (!name && pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) { return "mistral-v7-tekken"; } return nullptr; } return it->second.c_str(); } uint64_t llama_model_n_params(const llama_model * model) { return model->n_elements(); } bool llama_model_has_encoder(const llama_model * model) { switch (model->arch) { case LLM_ARCH_T5: return true; case LLM_ARCH_T5ENCODER: return true; default: return false; } } bool llama_model_has_decoder(const llama_model * model) { switch (model->arch) { case LLM_ARCH_T5ENCODER: return false; default: return true; } } llama_token llama_model_decoder_start_token(const llama_model * model) { return model->hparams.dec_start_token_id; } bool llama_model_is_recurrent(const llama_model * model) { return llm_arch_is_recurrent(model->arch); } bool llama_model_is_hybrid(const llama_model * model) { return llm_arch_is_hybrid(model->arch); } bool llama_model_is_diffusion(const llama_model * model) { return llm_arch_is_diffusion(model->arch); } const std::vector> & llama_internal_get_tensor_map(const llama_model * model) { return model->tensors_by_name; }