#include "mmq.cuh" #include "quantize.cuh" #include static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { switch (args.type_x) { case GGML_TYPE_Q4_0: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q4_1: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q5_0: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q5_1: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q8_0: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q2_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q3_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q4_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q5_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q6_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_IQ2_XXS: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_IQ2_XS: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_IQ2_S: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_IQ3_XXS: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_IQ3_S: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_IQ1_S: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_IQ4_XS: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_IQ4_NL: mul_mat_q_case(ctx, args, stream); break; default: GGML_ABORT("fatal error"); break; } } void ggml_cuda_mul_mat_q( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { GGML_ASSERT( src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); // Optional, used for batched GGML_MUL_MAT_ID. GGML_TENSOR_BINARY_OP_LOCALS; cudaStream_t stream = ctx.stream(); const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; const size_t ts_src0 = ggml_type_size(src0->type); const size_t ts_src1 = ggml_type_size(src1->type); const size_t ts_dst = ggml_type_size(dst->type); GGML_ASSERT( nb00 == ts_src0); GGML_ASSERT( nb10 == ts_src1); GGML_ASSERT( nb0 == ts_dst); GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type)); const char * src0_d = (const char *) src0->data; const float * src1_d = (const float *) src1->data; float * dst_d = (float *) dst->data; // If src0 is a temporary compute buffer, clear any potential padding. if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) { const size_t size_data = ggml_nbytes(src0); const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0); if (size_alloc > size_data) { GGML_ASSERT(ggml_is_contiguously_allocated(src0)); GGML_ASSERT(!src0->view_src); CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream)); } } const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING); const int64_t s01 = src0->nb[1] / ts_src0; const int64_t s1 = dst->nb[1] / ts_dst; const int64_t s02 = src0->nb[2] / ts_src0; const int64_t s2 = dst->nb[2] / ts_dst; const int64_t s03 = src0->nb[3] / ts_src0; const int64_t s3 = dst->nb[3] / ts_dst; const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA; if (!ids) { const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 + get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq); ggml_cuda_pool_alloc src1_q8_1(ctx.pool(), nbytes_src1_q8_1); { const int64_t s11 = src1->nb[1] / ts_src1; const int64_t s12 = src1->nb[2] / ts_src1; const int64_t s13 = src1->nb[3] / ts_src1; quantize_mmq_q8_1_cuda(src1_d, nullptr, src1_q8_1.get(), src0->type, ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream); } const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int)); const int64_t s13 = ne12*s12; const mmq_args args = { src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d, ne00, ne01, ne1, s01, ne11, s1, ne02, ne12, s02, s12, s2, ne03, ne13, s03, s13, s3, use_stream_k}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); return; } GGML_ASSERT(ne13 == 1); GGML_ASSERT(nb12 % nb11 == 0); GGML_ASSERT(nb2 % nb1 == 0); const int64_t n_expert_used = ids->ne[0]; const int64_t ne_get_rows = ne12 * n_expert_used; std::vector ids_host(ggml_nbytes(ids)); std::vector ids_src1_host; ids_src1_host.reserve(ne_get_rows); std::vector ids_dst_host; ids_dst_host.reserve(ne_get_rows); std::vector tokens_per_expert_host(ne02); std::vector expert_bounds_host(ne02 + 1); ggml_cuda_pool_alloc ids_buf_dev(ctx.pool()); CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaStreamSynchronize(stream)); for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens for (int64_t iex = 0; iex < n_expert_used; ++iex) { const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]); assert(expert_to_use >= 0 && expert_to_use < ne02); if (expert_to_use == i02) { ids_src1_host.push_back(i12*(nb12/nb11) + iex % ne11); ids_dst_host.push_back(i12*ne1 + iex); tokens_per_expert_host[i02]++; break; } } } } int32_t cumsum = 0; for (int64_t i = 0; i < ne02; ++i) { expert_bounds_host[i] = cumsum; cumsum += tokens_per_expert_host[i]; } expert_bounds_host[ne02] = cumsum; std::vector ids_buf_host; ids_buf_host.reserve(ids_src1_host.size() + ids_dst_host.size() + expert_bounds_host.size()); ids_buf_host.insert(ids_buf_host.end(), ids_src1_host.begin(), ids_src1_host.end()); ids_buf_host.insert(ids_buf_host.end(), ids_dst_host.begin(), ids_dst_host.end()); ids_buf_host.insert(ids_buf_host.end(), expert_bounds_host.begin(), expert_bounds_host.end()); ids_buf_dev.alloc(ids_buf_host.size() + get_mmq_x_max_host(cc)); // Expert bounds are padded on device. CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_buf_host.data(), ids_buf_host.size()*sizeof(int32_t), cudaMemcpyHostToDevice, stream)); CUDA_CHECK(cudaStreamSynchronize(stream)); const int32_t * ids_src1_dev = ids_buf_dev.ptr; const int32_t * ids_dst_dev = ids_src1_dev + ids_src1_host.size(); const int32_t * expert_bounds_dev = ids_dst_dev + ids_dst_host.size(); const size_t nbytes_src1_q8_1 = ne12*n_expert_used*ne10_padded * sizeof(block_q8_1)/QK8_1 + get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq); ggml_cuda_pool_alloc src1_q8_1(ctx.pool(), nbytes_src1_q8_1); const int64_t ne11_flat = ne12*n_expert_used; const int64_t ne12_flat = 1; const int64_t ne13_flat = 1; { const int64_t s11 = src1->nb[1] / ts_src1; const int64_t s12 = src1->nb[2] / ts_src1; const int64_t s13 = src1->nb[2] / ts_src1; quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type, ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream); } const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int)); const int64_t s13 = ne12*s12; // Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid. const mmq_args args = { src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d, ne00, ne01, ne_get_rows, s01, ne_get_rows, s1, ne02, ne02, s02, s12, s2, ne03, ne13, s03, s13, s3, use_stream_k}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); } void ggml_cuda_op_mul_mat_q( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream) { const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; GGML_ASSERT(ne10 % QK8_1 == 0); const int64_t ne0 = dst->ne[0]; const int64_t row_diff = row_high - row_low; const int64_t stride01 = ne00 / ggml_blck_size(src0->type); const int id = ggml_cuda_get_device(); const int cc = ggml_cuda_info().devices[id].cc; // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff; // The stream-k decomposition is only faster for recent NVIDIA GPUs. // Also its fixup needs to allocate a temporary buffer in the memory pool. // There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer. const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11; const mmq_args args = { src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, use_stream_k}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); GGML_UNUSED(src1); GGML_UNUSED(dst); GGML_UNUSED(src1_ddf_i); GGML_UNUSED(src1_padded_row_size); } bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) { #ifdef GGML_CUDA_FORCE_CUBLAS return false; #endif // GGML_CUDA_FORCE_CUBLAS bool mmq_supported; switch (type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_NL: mmq_supported = true; break; default: mmq_supported = false; break; } if (!mmq_supported) { return false; } if (new_mma_available(cc)) { return true; } if (ggml_cuda_highest_compiled_arch(cc) < GGML_CUDA_CC_DP4A) { return false; } #ifdef GGML_CUDA_FORCE_MMQ return true; #endif //GGML_CUDA_FORCE_MMQ if (GGML_CUDA_CC_IS_NVIDIA(cc)) { return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; } return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; }