#version 450 #include "generic_binary_head.comp" #include "types.comp" #extension GL_EXT_control_flow_attributes : enable #define BLOCK_SIZE 512 layout (constant_id = 1) const bool do_multiply = false; layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; shared FLOAT_TYPE sumsh[BLOCK_SIZE]; void rms_norm(uint num_iters) { const uint ncols = p.ne00; const uint nrows = gl_NumWorkGroups.x; const uint nchannels = gl_NumWorkGroups.y; const uint row = gl_WorkGroupID.x; const uint channel = gl_WorkGroupID.y; const uint samp = gl_WorkGroupID.z; const uint tid = gl_LocalInvocationID.x; const uint stride_row = p.nb01; const uint stride_channel = p.nb02; const uint stride_sample = p.nb03; uint32_t a_offset = samp*stride_sample + channel*stride_channel + row*stride_row + get_aoffset(); uint32_t b_offset = src1_idx(0, row, channel, samp) + get_boffset(); uint32_t d_offset = ((samp*nchannels + channel)*nrows + row)*ncols + get_doffset(); FLOAT_TYPE sum = FLOAT_TYPE(0.0f); // partial sum for thread in warp [[unroll]] for (uint col = tid, idx = 0; idx < num_iters; col += BLOCK_SIZE, ++idx) { FLOAT_TYPE xi = FLOAT_TYPE(0); if (col < ncols) { xi = FLOAT_TYPE(data_a[a_offset + col]); } sum += xi * xi; } sumsh[tid] = sum; // sum up partial sums and write back result barrier(); [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { sum += sumsh[tid + s]; sumsh[tid] = sum; } barrier(); } sum = sumsh[0]; const FLOAT_TYPE mean = sum / FLOAT_TYPE(ncols); const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1)); if (do_multiply) { if (ncols > p.ne10) { [[unroll]] for (uint col = tid, idx = 0; idx < num_iters; col += BLOCK_SIZE, ++idx) { if (col >= ncols) { continue; } data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + fastmod(col, p.ne10)])); } } else { [[unroll]] for (uint col = tid, idx = 0; idx < num_iters; col += BLOCK_SIZE, ++idx) { if (col >= ncols) { continue; } data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + col])); } } } else { [[unroll]] for (uint col = tid, idx = 0; idx < num_iters; col += BLOCK_SIZE, ++idx) { if (col >= ncols) { continue; } data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col])); } } } void main() { // instantiate the rms_norm function for several different // dimensions, to allow loop unrolling uint num_blocks = (p.ne00 + BLOCK_SIZE - 1) / BLOCK_SIZE; if (num_blocks > 32) { rms_norm(num_blocks); } else if (num_blocks > 16) { rms_norm(32); } else if (num_blocks > 8) { rms_norm(16); } else if (num_blocks > 4) { rms_norm(8); } else if (num_blocks == 4) { rms_norm(4); } else if (num_blocks == 3) { rms_norm(3); } else if (num_blocks == 2) { rms_norm(2); } else if (num_blocks == 1) { rms_norm(1); } }