#version 450 #extension GL_EXT_control_flow_attributes : enable #ifdef COOPMAT2 #extension GL_NV_cooperative_matrix2 : enable #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #extension GL_KHR_memory_scope_semantics : enable #endif #ifdef USE_COLLECTIVES # extension GL_KHR_shader_subgroup_shuffle : enable #endif #include "types.comp" // shape notation: [dim(N), ..., dim(0)] -- stride(dim(j)) >= stride(dim(i)) if i > j layout(binding = 0) readonly buffer A { A_TYPE knl_data[]; }; // src0 - kernel: [KW, KH, Cin, Cout] layout(binding = 1) readonly buffer B { B_TYPE src_data[]; }; // src1 - input: [W, H, Cin, N] -- channel_first format layout(binding = 2) writeonly buffer D { D_TYPE dst_data[]; }; // dst - result: [OW, OH, Cout, N] layout(push_constant) uniform parameter { // I/O channels, batch size uint32_t Cout; uint32_t Cin; uint32_t N; // Tensor spatial sizes: kernel, input, output uint32_t KW; uint32_t KH; uint32_t W; uint32_t H; uint32_t OW; uint32_t OH; // Parameters: stride, padding, dilation - 0=y, 1=x uint32_t s0; uint32_t s1; uint32_t p0; uint32_t p1; uint32_t d0; uint32_t d1; // Strides in elements uint32_t nb01; uint32_t nb02; uint32_t nb03; uint32_t nb11; uint32_t nb12; uint32_t nb13; uint32_t nb1; uint32_t nb2; uint32_t nb3; // fastdiv helper values uint32_t KWmp; uint32_t KWL; uint32_t KWKHmp; uint32_t KWKHL; uint32_t OWmp; uint32_t OWL; uint32_t OWOHmp; uint32_t OWOHL; } p; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; // Blocktile sizes layout(constant_id = 1) const uint BS_K = 128; layout(constant_id = 2) const uint BS_CRS = 16; layout(constant_id = 3) const uint BS_NPQ = 128; // Thread-tile sizes layout(constant_id = 4) const uint TS_K = 8; layout(constant_id = 5) const uint use_collectives = 1; layout(constant_id = 6) const uint SHMEM_PAD = 4; uint32_t tid = gl_LocalInvocationID.x; const uint32_t WG_SIZE = gl_WorkGroupSize.x; uint splitWork(uint work_size, uint block_size) { return (block_size + work_size - 1) / block_size; } uint32_t K = p.Cout; uint32_t CRS = p.Cin * p.KH * p.KW; uint32_t NPQ = p.N * p.OH * p.OW; uint32_t n_elems_out = K * NPQ; // Number of blocktiles per input uint32_t NB_CRS = splitWork(CRS, BS_CRS); #ifdef COOPMAT2 #define SHMEM_TYPE float16_t #else #define SHMEM_TYPE float #endif const uint32_t Ash_stride = BS_CRS + SHMEM_PAD; const uint32_t Bsh_stride = BS_NPQ + SHMEM_PAD; const uint32_t Ash_numel = BS_K * BS_CRS; const uint32_t Bsh_numel = BS_CRS * BS_NPQ; const uint32_t Ash_len = BS_K * Ash_stride; const uint32_t Bsh_len = BS_CRS * Bsh_stride; shared SHMEM_TYPE Ash[Ash_len]; // K x CRS shared SHMEM_TYPE Bsh[Bsh_len]; // CRS x NPQ // Threadtile sizes const uint32_t TS_NPQ = BS_K * BS_NPQ / WG_SIZE / TS_K; // Number of threadtiles per blocktile const uint32_t NT_K = BS_K / TS_K; const uint32_t NT_NPQ = BS_NPQ / TS_NPQ; /* Compute KxCRS @ CRSxNPQ = K x NPQ K=Cout C=Cin R,S=KH,KW P,Q=OH,OW */ uint32_t B_idx_K = gl_WorkGroupID.x; uint32_t B_idx_NPQ = gl_WorkGroupID.y; uint32_t T_y = tid / NT_NPQ; uint32_t T_x = tid % NT_NPQ; uint32_t Ar = tid / BS_CRS; uint32_t Ac = tid % BS_CRS; const uint32_t ArpWg = WG_SIZE / BS_CRS; uint32_t Br = tid / BS_NPQ; uint32_t Bc = tid % BS_NPQ; const uint32_t BrpWg = WG_SIZE / BS_NPQ; // see init_fastdiv_values in ggml-vulkan.cpp uint fastdiv(uint n, uint mp, uint L) { uint msbs, lsbs; // msbs = mulhi(n, mp) umulExtended(n, mp, msbs, lsbs); return (msbs + n) >> L; } #ifdef COOPMAT2 #define ACC_TYPE float16_t ACC_TYPE perElemOpStore(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem) { uint32_t K_idx = B_idx_K * BS_K + r; uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + c; uint32_t N_idx = fastdiv(NPQ_idx, p.OWOHmp, p.OWOHL); // divide by p.OH * p.OW; uint32_t OH_idx = fastdiv(NPQ_idx - N_idx * p.OH * p.OW, p.OWmp, p.OWL); // divide by p.OW; uint32_t OW_idx = NPQ_idx - N_idx * p.OH * p.OW - OH_idx * p.OW; uint32_t dst_idx = OW_idx + OH_idx * p.nb1 + K_idx * p.nb2 + N_idx * p.nb3; if (K_idx < K && NPQ_idx < NPQ) { dst_data[dst_idx] = D_TYPE(elem); } return elem; } #endif void main() { #ifdef COOPMAT2 coopmat matC; matC = coopmat(0.0); #else float regC[TS_K][TS_NPQ]; for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) { for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) { regC[T_ly][T_lx] = 0.0; } } #endif /* Advance block in CRS dim */ for (uint32_t B_idx_CRS = 0; B_idx_CRS < NB_CRS; B_idx_CRS++) { uint32_t CRS_idx_a; uint32_t Cin_idx_a; uint32_t KH_idx_a; uint32_t KW_idx_a; #ifdef USE_COLLECTIVES uint32_t cached_CRS_idx; uint32_t cached_Cin_idx; uint32_t cached_KH_idx; uint32_t cached_KW_idx; if (use_collectives == 1) { cached_CRS_idx = B_idx_CRS * BS_CRS + gl_SubgroupInvocationID; cached_Cin_idx = fastdiv(cached_CRS_idx, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH); uint32_t cached_CRS_remainder = (cached_CRS_idx - cached_Cin_idx * p.KW * p.KH); cached_KH_idx = fastdiv(cached_CRS_remainder, p.KWmp, p.KWL); // divide by p.KW; cached_KW_idx = cached_CRS_remainder - cached_KH_idx * p.KW; CRS_idx_a = subgroupShuffle(cached_CRS_idx, Ac); Cin_idx_a = subgroupShuffle(cached_Cin_idx, Ac); KH_idx_a = subgroupShuffle(cached_KH_idx, Ac); KW_idx_a = subgroupShuffle(cached_KW_idx, Ac); } else { CRS_idx_a = B_idx_CRS * BS_CRS + Ac; // Global CRS_idx_a (column index of A) Cin_idx_a = fastdiv(CRS_idx_a, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH); uint32_t CRS_remainder = CRS_idx_a - Cin_idx_a * p.KW * p.KH; KH_idx_a = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW; KW_idx_a = CRS_remainder - KH_idx_a * p.KW; } #else CRS_idx_a = B_idx_CRS * BS_CRS + Ac; // Global CRS_idx_a (column index of A) Cin_idx_a = fastdiv(CRS_idx_a, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH); / (p.KW * p.KH); CRS_remainder = CRS_idx_a - Cin_idx_a * p.KW * p.KH; KH_idx_a = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW; KW_idx_a = CRS_remainder - KH_idx_a * p.KW; #endif /* Load kernel to A_block: (BS_K x BS_CRS)*/ for (uint32_t r_offset = 0; r_offset < BS_K; r_offset += ArpWg) { uint32_t B_ly = r_offset + Ar; uint32_t B_lx = Ac; uint32_t K_idx = B_idx_K * BS_K + B_ly; /* Global K_idx (row index of A)*/ uint32_t knl_idx = min(KW_idx_a + KH_idx_a * p.nb01 + Cin_idx_a * p.nb02 + K_idx * p.nb03, K * CRS - 1); float val = knl_data[knl_idx]; if (K_idx >= K || CRS_idx_a >= CRS) { val = 0.0; } Ash[B_ly * Ash_stride + B_lx] = SHMEM_TYPE(val); } /* Load input to B_block: (BS_CRS x BS_NPQ) */ UNROLL for (uint32_t r_offset = 0; r_offset < BS_CRS; r_offset += BrpWg) { uint32_t B_ly = r_offset + Br; /* Row index of B block */ uint32_t B_lx = Bc; uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + B_lx; /* Global NPQ index (column index of B) */ uint32_t N_idx = fastdiv(NPQ_idx, p.OWOHmp, p.OWOHL); // divide by p.OH * p.OW; uint32_t NPQ_remainder = NPQ_idx - N_idx * p.OH * p.OW; uint32_t OH_idx = fastdiv(NPQ_remainder, p.OWmp, p.OWL); // divide by p.OW; uint32_t OW_idx = NPQ_remainder - OH_idx * p.OW; uint32_t CRS_idx_b; uint32_t Cin_idx_b; uint32_t KH_idx_b; uint32_t KW_idx_b; #ifdef USE_COLLECTIVES if (use_collectives == 1) { CRS_idx_b = subgroupShuffle(cached_CRS_idx, r_offset + Br); Cin_idx_b = subgroupShuffle(cached_Cin_idx, r_offset + Br); KH_idx_b = subgroupShuffle(cached_KH_idx, r_offset + Br); KW_idx_b = subgroupShuffle(cached_KW_idx, r_offset + Br); } else { CRS_idx_b = B_idx_CRS * BS_CRS + B_ly; /* Global CRS index (row index of B) */ Cin_idx_b = fastdiv(CRS_idx_b, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH); uint32_t CRS_remainder = CRS_idx_b - Cin_idx_b * p.KW * p.KH; KH_idx_b = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW; KW_idx_b = CRS_remainder - KH_idx_b * p.KW; } #else CRS_idx_b = B_idx_CRS * BS_CRS + B_ly; /* Global CRS index (row index of B) */ Cin_idx_b = fastdiv(CRS_idx_b, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH); uint32_t CRS_remainder = CRS_idx_b - Cin_idx_b * p.KW * p.KH; KH_idx_b = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW; KW_idx_b = CRS_remainder - KH_idx_b * p.KW; #endif uint32_t H_idx = OH_idx * p.s1 + KH_idx_b * p.d1 - p.p1; uint32_t W_idx = OW_idx * p.s0 + KW_idx_b * p.d0 - p.p0; uint32_t src_idx = min(max(W_idx + H_idx * p.nb11 + Cin_idx_b * p.nb12 + N_idx * p.nb13, 0), p.Cin * p.N * p.W * p.H - 1); float val = src_data[src_idx]; if (CRS_idx_b >= CRS || NPQ_idx >= NPQ || H_idx < 0 || H_idx >= p.H || W_idx < 0 || W_idx >= p.W) { val = 0.0; } Bsh[B_ly * Bsh_stride + B_lx] = SHMEM_TYPE(val); } barrier(); #ifdef COOPMAT2 coopmat matA; coopmat matB; coopMatLoad(matA, Ash, 0, Ash_stride, gl_CooperativeMatrixLayoutRowMajor); coopMatLoad(matB, Bsh, 0, Bsh_stride, gl_CooperativeMatrixLayoutRowMajor); matC = coopMatMulAdd(matA, matB, matC); #else if (T_y * TS_K < K) { UNROLL for (uint32_t CRS_lidx = 0; CRS_lidx < BS_CRS; CRS_lidx++) { float regA[TS_K]; float regB[TS_NPQ]; for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) { regA[T_ly] = Ash[(T_y * TS_K + T_ly) * Ash_stride + CRS_lidx]; } for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) { regB[T_lx] = Bsh[CRS_lidx * Bsh_stride + T_x * TS_NPQ + T_lx]; } for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) { for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) { regC[T_ly][T_lx] = fma(regA[T_ly], regB[T_lx], regC[T_ly][T_lx]); } } } } #endif barrier(); } /* Save C* */ #ifdef COOPMAT2 coopMatPerElementNV(matC, matC, perElemOpStore); #else if (T_y * TS_K < K) { for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) { for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) { uint32_t K_idx = B_idx_K * BS_K + T_y * TS_K + T_ly; uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + T_x * TS_NPQ + T_lx; uint32_t N_idx = fastdiv(NPQ_idx, p.OWOHmp, p.OWOHL); // divide by p.OH * p.OW; uint32_t OH_idx = fastdiv(NPQ_idx - N_idx * p.OH * p.OW, p.OWmp, p.OWL); // divide by p.OW; uint32_t OW_idx = NPQ_idx - N_idx * p.OH * p.OW - OH_idx * p.OW; uint32_t dst_idx = OW_idx + OH_idx * p.nb1 + K_idx * p.nb2 + N_idx * p.nb3; if (K_idx < K && NPQ_idx < NPQ) { dst_data[dst_idx] = regC[T_ly][T_lx]; } } } } #endif }