#include "arg.h" #include "chat.h" #include "common.h" #include "gguf.h" // for reading GGUF splits #include "json-schema-to-grammar.h" #include "log.h" #include "sampling.h" // fix problem with std::min and std::max #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX # define NOMINMAX #endif #include #endif #define JSON_ASSERT GGML_ASSERT #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(LLAMA_USE_CURL) #include #include #else #include "http.h" #endif #ifdef __linux__ #include #elif defined(_WIN32) # if !defined(PATH_MAX) # define PATH_MAX MAX_PATH # endif #elif defined(_AIX) #include #else #include #endif #define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083 // isatty #if defined(_WIN32) #include #else #include #endif using json = nlohmann::ordered_json; std::initializer_list mmproj_examples = { LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_SERVER, }; static std::string read_file(const std::string & fname) { std::ifstream file(fname); if (!file) { throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str())); } std::string content((std::istreambuf_iterator(file)), std::istreambuf_iterator()); file.close(); return content; } static void write_file(const std::string & fname, const std::string & content) { const std::string fname_tmp = fname + ".tmp"; std::ofstream file(fname_tmp); if (!file) { throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str())); } try { file << content; file.close(); // Makes write atomic if (rename(fname_tmp.c_str(), fname.c_str()) != 0) { LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, fname_tmp.c_str(), fname.c_str()); // If rename fails, try to delete the temporary file if (remove(fname_tmp.c_str()) != 0) { LOG_ERR("%s: unable to delete temporary file: %s\n", __func__, fname_tmp.c_str()); } } } catch (...) { // If anything fails, try to delete the temporary file if (remove(fname_tmp.c_str()) != 0) { LOG_ERR("%s: unable to delete temporary file: %s\n", __func__, fname_tmp.c_str()); } throw std::runtime_error(string_format("error: failed to write file '%s'\n", fname.c_str())); } } static bool is_output_a_tty() { #if defined(_WIN32) return _isatty(_fileno(stdout)); #else return isatty(1); #endif } common_arg & common_arg::set_examples(std::initializer_list examples) { this->examples = std::move(examples); return *this; } common_arg & common_arg::set_excludes(std::initializer_list excludes) { this->excludes = std::move(excludes); return *this; } common_arg & common_arg::set_env(const char * env) { help = help + "\n(env: " + env + ")"; this->env = env; return *this; } common_arg & common_arg::set_sparam() { is_sparam = true; return *this; } bool common_arg::in_example(enum llama_example ex) { return examples.find(ex) != examples.end(); } bool common_arg::is_exclude(enum llama_example ex) { return excludes.find(ex) != excludes.end(); } bool common_arg::get_value_from_env(std::string & output) { if (env == nullptr) return false; char * value = std::getenv(env); if (value) { output = value; return true; } return false; } bool common_arg::has_value_from_env() { return env != nullptr && std::getenv(env); } static std::vector break_str_into_lines(std::string input, size_t max_char_per_line) { std::vector result; std::istringstream iss(input); std::string line; auto add_line = [&](const std::string& l) { if (l.length() <= max_char_per_line) { result.push_back(l); } else { std::istringstream line_stream(l); std::string word, current_line; while (line_stream >> word) { if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) { if (!current_line.empty()) result.push_back(current_line); current_line = word; } else { current_line += (!current_line.empty() ? " " : "") + word; } } if (!current_line.empty()) result.push_back(current_line); } }; while (std::getline(iss, line)) { add_line(line); } return result; } std::string common_arg::to_string() { // params for printing to console const static int n_leading_spaces = 40; const static int n_char_per_line_help = 70; // TODO: detect this based on current console std::string leading_spaces(n_leading_spaces, ' '); std::ostringstream ss; for (const auto arg : args) { if (arg == args.front()) { if (args.size() == 1) { ss << arg; } else { // first arg is usually abbreviation, we need padding to make it more beautiful auto tmp = std::string(arg) + ", "; auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' '); ss << tmp << spaces; } } else { ss << arg << (arg != args.back() ? ", " : ""); } } if (value_hint) ss << " " << value_hint; if (value_hint_2) ss << " " << value_hint_2; if (ss.tellp() > n_leading_spaces - 3) { // current line is too long, add new line ss << "\n" << leading_spaces; } else { // padding between arg and help, same line ss << std::string(leading_spaces.size() - ss.tellp(), ' '); } const auto help_lines = break_str_into_lines(help, n_char_per_line_help); for (const auto & line : help_lines) { ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n"; } return ss.str(); } // // downloader // struct common_hf_file_res { std::string repo; // repo name with ":tag" removed std::string ggufFile; std::string mmprojFile; }; static void write_etag(const std::string & path, const std::string & etag) { const std::string etag_path = path + ".etag"; write_file(etag_path, etag); LOG_DBG("%s: file etag saved: %s\n", __func__, etag_path.c_str()); } static std::string read_etag(const std::string & path) { std::string none; const std::string etag_path = path + ".etag"; if (std::filesystem::exists(etag_path)) { std::ifstream etag_in(etag_path); if (!etag_in) { LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str()); return none; } std::string etag; std::getline(etag_in, etag); return etag; } // no etag file, but maybe there is an old .json // remove this code later const std::string metadata_path = path + ".json"; if (std::filesystem::exists(metadata_path)) { std::ifstream metadata_in(metadata_path); try { nlohmann::json metadata_json; metadata_in >> metadata_json; LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata_json.dump().c_str()); if (metadata_json.contains("etag") && metadata_json.at("etag").is_string()) { std::string etag = metadata_json.at("etag"); write_etag(path, etag); if (!std::filesystem::remove(metadata_path)) { LOG_WRN("%s: failed to delete old .json metadata file: %s\n", __func__, metadata_path.c_str()); } return etag; } } catch (const nlohmann::json::exception & e) { LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what()); } } return none; } #ifdef LLAMA_USE_CURL // // CURL utils // using curl_ptr = std::unique_ptr; // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one struct curl_slist_ptr { struct curl_slist * ptr = nullptr; ~curl_slist_ptr() { if (ptr) { curl_slist_free_all(ptr); } } }; static CURLcode common_curl_perf(CURL * curl) { CURLcode res = curl_easy_perform(curl); if (res != CURLE_OK) { LOG_ERR("%s: curl_easy_perform() failed\n", __func__); } return res; } // Send a HEAD request to retrieve the etag and last-modified headers struct common_load_model_from_url_headers { std::string etag; std::string last_modified; std::string accept_ranges; }; struct FILE_deleter { void operator()(FILE * f) const { fclose(f); } }; static size_t common_header_callback(char * buffer, size_t, size_t n_items, void * userdata) { common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata; static std::regex header_regex("([^:]+): (.*)\r\n"); static std::regex etag_regex("ETag", std::regex_constants::icase); static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase); static std::regex accept_ranges_regex("Accept-Ranges", std::regex_constants::icase); std::string header(buffer, n_items); std::smatch match; if (std::regex_match(header, match, header_regex)) { const std::string & key = match[1]; const std::string & value = match[2]; if (std::regex_match(key, match, etag_regex)) { headers->etag = value; } else if (std::regex_match(key, match, last_modified_regex)) { headers->last_modified = value; } else if (std::regex_match(key, match, accept_ranges_regex)) { headers->accept_ranges = value; } } return n_items; } static size_t common_write_callback(void * data, size_t size, size_t nmemb, void * fd) { return std::fwrite(data, size, nmemb, static_cast(fd)); } // helper function to hide password in URL static std::string llama_download_hide_password_in_url(const std::string & url) { // Use regex to match and replace the user[:password]@ pattern in URLs // Pattern: scheme://[user[:password]@]host[...] static const std::regex url_regex(R"(^(?:[A-Za-z][A-Za-z0-9+.-]://)(?:[^/@]+@)?.$)"); std::smatch match; if (std::regex_match(url, match, url_regex)) { // match[1] = scheme (e.g., "https://") // match[2] = user[:password]@ part // match[3] = rest of URL (host and path) return match[1].str() + "********@" + match[3].str(); } return url; // No credentials found or malformed URL } static void common_curl_easy_setopt_head(CURL * curl, const std::string & url) { // Set the URL, allow to follow http redirection curl_easy_setopt(curl, CURLOPT_URL, url.c_str()); curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L); # if defined(_WIN32) // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of // operating system. Currently implemented under MS-Windows. curl_easy_setopt(curl, CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); # endif curl_easy_setopt(curl, CURLOPT_NOBODY, 1L); // will trigger the HEAD verb curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1L); // hide head request progress curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, common_header_callback); } static void common_curl_easy_setopt_get(CURL * curl) { curl_easy_setopt(curl, CURLOPT_NOBODY, 0L); curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, common_write_callback); // display download progress curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L); } static bool common_pull_file(CURL * curl, const std::string & path_temporary) { if (std::filesystem::exists(path_temporary)) { const std::string partial_size = std::to_string(std::filesystem::file_size(path_temporary)); LOG_INF("%s: server supports range requests, resuming download from byte %s\n", __func__, partial_size.c_str()); const std::string range_str = partial_size + "-"; curl_easy_setopt(curl, CURLOPT_RANGE, range_str.c_str()); } // Always open file in append mode could be resuming std::unique_ptr outfile(fopen(path_temporary.c_str(), "ab")); if (!outfile) { LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path_temporary.c_str()); return false; } common_curl_easy_setopt_get(curl); curl_easy_setopt(curl, CURLOPT_WRITEDATA, outfile.get()); return common_curl_perf(curl) == CURLE_OK; } static bool common_download_head(CURL * curl, curl_slist_ptr & http_headers, const std::string & url, const std::string & bearer_token) { if (!curl) { LOG_ERR("%s: error initializing libcurl\n", __func__); return false; } http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp"); // Check if hf-token or bearer-token was specified if (!bearer_token.empty()) { std::string auth_header = "Authorization: Bearer " + bearer_token; http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str()); } curl_easy_setopt(curl, CURLOPT_HTTPHEADER, http_headers.ptr); common_curl_easy_setopt_head(curl, url); return common_curl_perf(curl) == CURLE_OK; } // download one single file from remote URL to local path static bool common_download_file_single_online(const std::string & url, const std::string & path, const std::string & bearer_token) { static const int max_attempts = 3; static const int retry_delay_seconds = 2; for (int i = 0; i < max_attempts; ++i) { std::string etag; // Check if the file already exists locally const auto file_exists = std::filesystem::exists(path); if (file_exists) { etag = read_etag(path); } else { LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str()); } bool head_request_ok = false; bool should_download = !file_exists; // by default, we should download if the file does not exist // Initialize libcurl curl_ptr curl(curl_easy_init(), &curl_easy_cleanup); common_load_model_from_url_headers headers; curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers); curl_slist_ptr http_headers; const bool was_perform_successful = common_download_head(curl.get(), http_headers, url, bearer_token); if (!was_perform_successful) { head_request_ok = false; } long http_code = 0; curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); if (http_code == 200) { head_request_ok = true; } else { LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code); head_request_ok = false; } // if head_request_ok is false, we don't have the etag or last-modified headers // we leave should_download as-is, which is true if the file does not exist bool should_download_from_scratch = false; if (head_request_ok) { // check if ETag or Last-Modified headers are different // if it is, we need to download the file again if (!etag.empty() && etag != headers.etag) { LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str()); should_download = true; should_download_from_scratch = true; } } const bool accept_ranges_supported = !headers.accept_ranges.empty() && headers.accept_ranges != "none"; if (should_download) { if (file_exists && !accept_ranges_supported) { // Resumable downloads not supported, delete and start again. LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); if (remove(path.c_str()) != 0) { LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str()); return false; } } const std::string path_temporary = path + ".downloadInProgress"; if (should_download_from_scratch) { if (std::filesystem::exists(path_temporary)) { if (remove(path_temporary.c_str()) != 0) { LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str()); return false; } } if (std::filesystem::exists(path)) { if (remove(path.c_str()) != 0) { LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str()); return false; } } } if (head_request_ok) { write_etag(path, headers.etag); } // start the download LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__, llama_download_hide_password_in_url(url).c_str(), path_temporary.c_str(), headers.etag.c_str(), headers.last_modified.c_str()); const bool was_pull_successful = common_pull_file(curl.get(), path_temporary); if (!was_pull_successful) { if (i + 1 < max_attempts) { const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000; LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay); std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay)); } else { LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts); } continue; } long http_code = 0; curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); if (http_code < 200 || http_code >= 400) { LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code); return false; } if (rename(path_temporary.c_str(), path.c_str()) != 0) { LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); return false; } } else { LOG_INF("%s: using cached file: %s\n", __func__, path.c_str()); } break; } return true; } std::pair> common_remote_get_content(const std::string & url, const common_remote_params & params) { curl_ptr curl(curl_easy_init(), &curl_easy_cleanup); curl_slist_ptr http_headers; std::vector res_buffer; curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str()); curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L); curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 1L); typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data); auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t { auto data_vec = static_cast *>(data); data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb); return size * nmemb; }; curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast(write_callback)); curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer); #if defined(_WIN32) curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); #endif if (params.timeout > 0) { curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout); } if (params.max_size > 0) { curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size); } http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp"); for (const auto & header : params.headers) { http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str()); } curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr); CURLcode res = curl_easy_perform(curl.get()); if (res != CURLE_OK) { std::string error_msg = curl_easy_strerror(res); throw std::runtime_error("error: cannot make GET request: " + error_msg); } long res_code; curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code); return { res_code, std::move(res_buffer) }; } #else static void print_progress(size_t current, size_t total) { if (!is_output_a_tty()) { return; } if (!total) { return; } size_t width = 50; size_t pct = (100 * current) / total; size_t pos = (width * current) / total; std::cout << "[" << std::string(pos, '=') << (pos < width ? ">" : "") << std::string(width - pos, ' ') << "] " << std::setw(3) << pct << "% (" << current / (1024 * 1024) << " MB / " << total / (1024 * 1024) << " MB)\r"; std::cout.flush(); } static bool common_pull_file(httplib::Client & cli, const std::string & resolve_path, const std::string & path_tmp, bool supports_ranges, size_t existing_size, size_t & total_size) { std::ofstream ofs(path_tmp, std::ios::binary | std::ios::app); if (!ofs.is_open()) { LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path_tmp.c_str()); return false; } httplib::Headers headers; if (supports_ranges && existing_size > 0) { headers.emplace("Range", "bytes=" + std::to_string(existing_size) + "-"); } std::atomic downloaded{existing_size}; auto res = cli.Get(resolve_path, headers, [&](const httplib::Response &response) { if (existing_size > 0 && response.status != 206) { LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", __func__, response.status); return false; } if (existing_size == 0 && response.status != 200) { LOG_WRN("%s: download received non-successful status code: %d\n", __func__, response.status); return false; } if (total_size == 0 && response.has_header("Content-Length")) { try { size_t content_length = std::stoull(response.get_header_value("Content-Length")); total_size = existing_size + content_length; } catch (const std::exception &e) { LOG_WRN("%s: invalid Content-Length header: %s\n", __func__, e.what()); } } return true; }, [&](const char *data, size_t len) { ofs.write(data, len); if (!ofs) { LOG_ERR("%s: error writing to file: %s\n", __func__, path_tmp.c_str()); return false; } downloaded += len; print_progress(downloaded, total_size); return true; }, nullptr ); std::cout << "\n"; if (!res) { LOG_ERR("%s: error during download. Status: %d\n", __func__, res ? res->status : -1); return false; } return true; } // download one single file from remote URL to local path static bool common_download_file_single_online(const std::string & url, const std::string & path, const std::string & bearer_token) { static const int max_attempts = 3; static const int retry_delay_seconds = 2; auto [cli, parts] = common_http_client(url); httplib::Headers default_headers = {{"User-Agent", "llama-cpp"}}; if (!bearer_token.empty()) { default_headers.insert({"Authorization", "Bearer " + bearer_token}); } cli.set_default_headers(default_headers); const bool file_exists = std::filesystem::exists(path); std::string last_etag; if (file_exists) { last_etag = read_etag(path); } else { LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str()); } for (int i = 0; i < max_attempts; ++i) { auto head = cli.Head(parts.path); bool head_ok = head && head->status >= 200 && head->status < 300; if (!head_ok) { LOG_WRN("%s: HEAD invalid http status code received: %d\n", __func__, head ? head->status : -1); if (file_exists) { LOG_INF("%s: Using cached file (HEAD failed): %s\n", __func__, path.c_str()); return true; } } std::string etag; if (head_ok && head->has_header("ETag")) { etag = head->get_header_value("ETag"); } size_t total_size = 0; if (head_ok && head->has_header("Content-Length")) { try { total_size = std::stoull(head->get_header_value("Content-Length")); } catch (const std::exception& e) { LOG_WRN("%s: Invalid Content-Length in HEAD response: %s\n", __func__, e.what()); } } bool supports_ranges = false; if (head_ok && head->has_header("Accept-Ranges")) { supports_ranges = head->get_header_value("Accept-Ranges") != "none"; } bool should_download_from_scratch = false; if (!last_etag.empty() && !etag.empty() && last_etag != etag) { LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, last_etag.c_str(), etag.c_str()); should_download_from_scratch = true; } if (file_exists) { if (!should_download_from_scratch) { LOG_INF("%s: using cached file: %s\n", __func__, path.c_str()); return true; } LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); if (remove(path.c_str()) != 0) { LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str()); return false; } } const std::string path_temporary = path + ".downloadInProgress"; size_t existing_size = 0; if (std::filesystem::exists(path_temporary)) { if (supports_ranges && !should_download_from_scratch) { existing_size = std::filesystem::file_size(path_temporary); } else if (remove(path_temporary.c_str()) != 0) { LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str()); return false; } } // start the download LOG_INF("%s: trying to download model from %s to %s (etag:%s)...\n", __func__, common_http_show_masked_url(parts).c_str(), path_temporary.c_str(), etag.c_str()); const bool was_pull_successful = common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size); if (!was_pull_successful) { if (i + 1 < max_attempts) { const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000; LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay); std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay)); } else { LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts); } continue; } if (std::rename(path_temporary.c_str(), path.c_str()) != 0) { LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); return false; } if (!etag.empty()) { write_etag(path, etag); } break; } return true; } std::pair> common_remote_get_content(const std::string & url, const common_remote_params & params) { auto [cli, parts] = common_http_client(url); httplib::Headers headers = {{"User-Agent", "llama-cpp"}}; for (const auto & header : params.headers) { size_t pos = header.find(':'); if (pos != std::string::npos) { headers.emplace(header.substr(0, pos), header.substr(pos + 1)); } else { headers.emplace(header, ""); } } if (params.timeout > 0) { cli.set_read_timeout(params.timeout, 0); cli.set_write_timeout(params.timeout, 0); } std::vector buf; auto res = cli.Get(parts.path, headers, [&](const char *data, size_t len) { buf.insert(buf.end(), data, data + len); return params.max_size == 0 || buf.size() <= static_cast(params.max_size); }, nullptr ); if (!res) { throw std::runtime_error("error: cannot make GET request"); } return { res->status, std::move(buf) }; } #endif // LLAMA_USE_CURL static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token, bool offline) { if (!offline) { return common_download_file_single_online(url, path, bearer_token); } if (!std::filesystem::exists(path)) { LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str()); return false; } LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str()); return true; } // download multiple files from remote URLs to local paths // the input is a vector of pairs static bool common_download_file_multiple(const std::vector> & urls, const std::string & bearer_token, bool offline) { // Prepare download in parallel std::vector> futures_download; for (auto const & item : urls) { futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair & it) -> bool { return common_download_file_single(it.first, it.second, bearer_token, offline); }, item)); } // Wait for all downloads to complete for (auto & f : futures_download) { if (!f.get()) { return false; } } return true; } static bool common_download_model( const common_params_model & model, const std::string & bearer_token, bool offline) { // Basic validation of the model.url if (model.url.empty()) { LOG_ERR("%s: invalid model url\n", __func__); return false; } if (!common_download_file_single(model.url, model.path, bearer_token, offline)) { return false; } // check for additional GGUFs split to download int n_split = 0; { struct gguf_init_params gguf_params = { /*.no_alloc = */ true, /*.ctx = */ NULL, }; auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params); if (!ctx_gguf) { LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str()); return false; } auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT); if (key_n_split >= 0) { n_split = gguf_get_val_u16(ctx_gguf, key_n_split); } gguf_free(ctx_gguf); } if (n_split > 1) { char split_prefix[PATH_MAX] = {0}; char split_url_prefix[LLAMA_MAX_URL_LENGTH] = {0}; // Verify the first split file format // and extract split URL and PATH prefixes { if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) { LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split); return false; } if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) { LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split); return false; } } std::vector> urls; for (int idx = 1; idx < n_split; idx++) { char split_path[PATH_MAX] = {0}; llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); char split_url[LLAMA_MAX_URL_LENGTH] = {0}; llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split); if (std::string(split_path) == model.path) { continue; // skip the already downloaded file } urls.push_back({split_url, split_path}); } // Download in parallel common_download_file_multiple(urls, bearer_token, offline); } return true; } /** * Allow getting the HF file from the HF repo with tag (like ollama), for example: * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4 * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo) * * Return pair of (with "repo" already having tag removed) * * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files. */ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) { auto parts = string_split(hf_repo_with_tag, ':'); std::string tag = parts.size() > 1 ? parts.back() : "latest"; std::string hf_repo = parts[0]; if (string_split(hf_repo, '/').size() != 2) { throw std::invalid_argument("error: invalid HF repo format, expected /[:quant]\n"); } std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag; // headers std::vector headers; headers.push_back("Accept: application/json"); if (!bearer_token.empty()) { headers.push_back("Authorization: Bearer " + bearer_token); } // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response // User-Agent header is already set in common_remote_get_content, no need to set it here // we use "=" to avoid clashing with other component, while still being allowed on windows std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json"; string_replace_all(cached_response_fname, "/", "_"); std::string cached_response_path = fs_get_cache_file(cached_response_fname); // make the request common_remote_params params; params.headers = headers; long res_code = 0; std::string res_str; bool use_cache = false; if (!offline) { try { auto res = common_remote_get_content(url, params); res_code = res.first; res_str = std::string(res.second.data(), res.second.size()); } catch (const std::exception & e) { LOG_WRN("error: failed to get manifest at %s: %s\n", url.c_str(), e.what()); } } if (res_code == 0) { if (std::filesystem::exists(cached_response_path)) { LOG_WRN("trying to read manifest from cache: %s\n", cached_response_path.c_str()); res_str = read_file(cached_response_path); res_code = 200; use_cache = true; } else { throw std::runtime_error( offline ? "error: failed to get manifest (offline mode)" : "error: failed to get manifest (check your internet connection)"); } } std::string ggufFile; std::string mmprojFile; if (res_code == 200 || res_code == 304) { try { auto j = json::parse(res_str); if (j.contains("ggufFile") && j["ggufFile"].contains("rfilename")) { ggufFile = j["ggufFile"]["rfilename"].get(); } if (j.contains("mmprojFile") && j["mmprojFile"].contains("rfilename")) { mmprojFile = j["mmprojFile"]["rfilename"].get(); } } catch (const std::exception & e) { throw std::runtime_error(std::string("error parsing manifest JSON: ") + e.what()); } if (!use_cache) { // if not using cached response, update the cache file write_file(cached_response_path, res_str); } } else if (res_code == 401) { throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token"); } else { throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str())); } // check response if (ggufFile.empty()) { throw std::runtime_error("error: model does not have ggufFile"); } return { hf_repo, ggufFile, mmprojFile }; } // // Docker registry functions // static std::string common_docker_get_token(const std::string & repo) { std::string url = "https://auth.docker.io/token?service=registry.docker.io&scope=repository:" + repo + ":pull"; common_remote_params params; auto res = common_remote_get_content(url, params); if (res.first != 200) { throw std::runtime_error("Failed to get Docker registry token, HTTP code: " + std::to_string(res.first)); } std::string response_str(res.second.begin(), res.second.end()); nlohmann::ordered_json response = nlohmann::ordered_json::parse(response_str); if (!response.contains("token")) { throw std::runtime_error("Docker registry token response missing 'token' field"); } return response["token"].get(); } static std::string common_docker_resolve_model(const std::string & docker) { // Parse ai/smollm2:135M-Q4_0 size_t colon_pos = docker.find(':'); std::string repo, tag; if (colon_pos != std::string::npos) { repo = docker.substr(0, colon_pos); tag = docker.substr(colon_pos + 1); } else { repo = docker; tag = "latest"; } // ai/ is the default size_t slash_pos = docker.find('/'); if (slash_pos == std::string::npos) { repo.insert(0, "ai/"); } LOG_INF("%s: Downloading Docker Model: %s:%s\n", __func__, repo.c_str(), tag.c_str()); try { // --- helper: digest validation --- auto validate_oci_digest = [](const std::string & digest) -> std::string { // Expected: algo:hex ; start with sha256 (64 hex chars) // You can extend this map if supporting other algorithms in future. static const std::regex re("^sha256:([a-fA-F0-9]{64})$"); std::smatch m; if (!std::regex_match(digest, m, re)) { throw std::runtime_error("Invalid OCI digest format received in manifest: " + digest); } // normalize hex to lowercase std::string normalized = digest; std::transform(normalized.begin()+7, normalized.end(), normalized.begin()+7, [](unsigned char c){ return std::tolower(c); }); return normalized; }; std::string token = common_docker_get_token(repo); // Get authentication token // Get manifest const std::string url_prefix = "https://registry-1.docker.io/v2/" + repo; std::string manifest_url = url_prefix + "/manifests/" + tag; common_remote_params manifest_params; manifest_params.headers.push_back("Authorization: Bearer " + token); manifest_params.headers.push_back( "Accept: application/vnd.docker.distribution.manifest.v2+json,application/vnd.oci.image.manifest.v1+json"); auto manifest_res = common_remote_get_content(manifest_url, manifest_params); if (manifest_res.first != 200) { throw std::runtime_error("Failed to get Docker manifest, HTTP code: " + std::to_string(manifest_res.first)); } std::string manifest_str(manifest_res.second.begin(), manifest_res.second.end()); nlohmann::ordered_json manifest = nlohmann::ordered_json::parse(manifest_str); std::string gguf_digest; // Find the GGUF layer if (manifest.contains("layers")) { for (const auto & layer : manifest["layers"]) { if (layer.contains("mediaType")) { std::string media_type = layer["mediaType"].get(); if (media_type == "application/vnd.docker.ai.gguf.v3" || media_type.find("gguf") != std::string::npos) { gguf_digest = layer["digest"].get(); break; } } } } if (gguf_digest.empty()) { throw std::runtime_error("No GGUF layer found in Docker manifest"); } // Validate & normalize digest gguf_digest = validate_oci_digest(gguf_digest); LOG_DBG("%s: Using validated digest: %s\n", __func__, gguf_digest.c_str()); // Prepare local filename std::string model_filename = repo; std::replace(model_filename.begin(), model_filename.end(), '/', '_'); model_filename += "_" + tag + ".gguf"; std::string local_path = fs_get_cache_file(model_filename); const std::string blob_url = url_prefix + "/blobs/" + gguf_digest; if (!common_download_file_single(blob_url, local_path, token, false)) { throw std::runtime_error("Failed to download Docker Model"); } LOG_INF("%s: Downloaded Docker Model to: %s\n", __func__, local_path.c_str()); return local_path; } catch (const std::exception & e) { LOG_ERR("%s: Docker Model download failed: %s\n", __func__, e.what()); throw; } } // // utils // // Helper function to parse tensor buffer override strings static void parse_tensor_buffer_overrides(const std::string & value, std::vector & overrides) { std::map buft_list; for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { auto * dev = ggml_backend_dev_get(i); auto * buft = ggml_backend_dev_buffer_type(dev); if (buft) { buft_list[ggml_backend_buft_name(buft)] = buft; } } for (const auto & override : string_split(value, ',')) { std::string::size_type pos = override.find('='); if (pos == std::string::npos) { throw std::invalid_argument("invalid value"); } std::string tensor_name = override.substr(0, pos); std::string buffer_type = override.substr(pos + 1); if (buft_list.find(buffer_type) == buft_list.end()) { printf("Available buffer types:\n"); for (const auto & it : buft_list) { printf(" %s\n", ggml_backend_buft_name(it.second)); } throw std::invalid_argument("unknown buffer type"); } // keep strings alive and avoid leaking memory by storing them in a static vector static std::list buft_overrides; buft_overrides.push_back(tensor_name); overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)}); } } struct handle_model_result { bool found_mmproj = false; common_params_model mmproj; }; static handle_model_result common_params_handle_model( struct common_params_model & model, const std::string & bearer_token, const std::string & model_path_default, bool offline) { handle_model_result result; // handle pre-fill default model path and url based on hf_repo and hf_file { if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths model.path = common_docker_resolve_model(model.docker_repo); } else if (!model.hf_repo.empty()) { // short-hand to avoid specifying --hf-file -> default it to --model if (model.hf_file.empty()) { if (model.path.empty()) { auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline); if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) { exit(1); // built without CURL, error message already printed } model.hf_repo = auto_detected.repo; model.hf_file = auto_detected.ggufFile; if (!auto_detected.mmprojFile.empty()) { result.found_mmproj = true; result.mmproj.hf_repo = model.hf_repo; result.mmproj.hf_file = auto_detected.mmprojFile; } } else { model.hf_file = model.path; } } std::string model_endpoint = get_model_endpoint(); model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file; // make sure model path is present (for caching purposes) if (model.path.empty()) { // this is to avoid different repo having same file name, or same file name in different subdirs std::string filename = model.hf_repo + "_" + model.hf_file; // to make sure we don't have any slashes in the filename string_replace_all(filename, "/", "_"); model.path = fs_get_cache_file(filename); } } else if (!model.url.empty()) { if (model.path.empty()) { auto f = string_split(model.url, '#').front(); f = string_split(f, '?').front(); model.path = fs_get_cache_file(string_split(f, '/').back()); } } else if (model.path.empty()) { model.path = model_path_default; } } // then, download it if needed if (!model.url.empty()) { bool ok = common_download_model(model, bearer_token, offline); if (!ok) { LOG_ERR("error: failed to download model from %s\n", model.url.c_str()); exit(1); } } return result; } const std::vector kv_cache_types = { GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, GGML_TYPE_IQ4_NL, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, }; static ggml_type kv_cache_type_from_str(const std::string & s) { for (const auto & type : kv_cache_types) { if (ggml_type_name(type) == s) { return type; } } throw std::runtime_error("Unsupported cache type: " + s); } static std::string get_all_kv_cache_types() { std::ostringstream msg; for (const auto & type : kv_cache_types) { msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", "); } return msg.str(); } // // CLI argument parsing functions // static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) { common_params & params = ctx_arg.params; std::unordered_map arg_to_options; for (auto & opt : ctx_arg.options) { for (const auto & arg : opt.args) { arg_to_options[arg] = &opt; } } // handle environment variables for (auto & opt : ctx_arg.options) { std::string value; if (opt.get_value_from_env(value)) { try { if (opt.handler_void && (value == "1" || value == "true")) { opt.handler_void(params); } if (opt.handler_int) { opt.handler_int(params, std::stoi(value)); } if (opt.handler_string) { opt.handler_string(params, value); continue; } } catch (std::exception & e) { throw std::invalid_argument(string_format( "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what())); } } } // handle command line arguments auto check_arg = [&](int i) { if (i+1 >= argc) { throw std::invalid_argument("expected value for argument"); } }; for (int i = 1; i < argc; i++) { const std::string arg_prefix = "--"; std::string arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg_to_options.find(arg) == arg_to_options.end()) { throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str())); } auto opt = *arg_to_options[arg]; if (opt.has_value_from_env()) { fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str()); } try { if (opt.handler_void) { opt.handler_void(params); continue; } // arg with single value check_arg(i); std::string val = argv[++i]; if (opt.handler_int) { opt.handler_int(params, std::stoi(val)); continue; } if (opt.handler_string) { opt.handler_string(params, val); continue; } // arg with 2 values check_arg(i); std::string val2 = argv[++i]; if (opt.handler_str_str) { opt.handler_str_str(params, val, val2); continue; } } catch (std::exception & e) { throw std::invalid_argument(string_format( "error while handling argument \"%s\": %s\n\n" "usage:\n%s\n\nto show complete usage, run with -h", arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str())); } } postprocess_cpu_params(params.cpuparams, nullptr); postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams); postprocess_cpu_params(params.speculative.cpuparams, ¶ms.cpuparams); postprocess_cpu_params(params.speculative.cpuparams_batch, ¶ms.cpuparams_batch); if (params.prompt_cache_all && (params.interactive || params.interactive_first)) { throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); } // handle model and download { auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline); if (params.no_mmproj) { params.mmproj = {}; } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) { // optionally, handle mmproj model when -hf is specified params.mmproj = res.mmproj; } // only download mmproj if the current example is using it for (auto & ex : mmproj_examples) { if (ctx_arg.ex == ex) { common_params_handle_model(params.mmproj, params.hf_token, "", params.offline); break; } } common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline); common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline); } if (params.escape) { string_process_escapes(params.prompt); string_process_escapes(params.input_prefix); string_process_escapes(params.input_suffix); for (auto & antiprompt : params.antiprompt) { string_process_escapes(antiprompt); } for (auto & seq_breaker : params.sampling.dry_sequence_breakers) { string_process_escapes(seq_breaker); } for (auto & pair : params.speculative.replacements) { string_process_escapes(pair.first); string_process_escapes(pair.second); } } if (!params.kv_overrides.empty()) { params.kv_overrides.emplace_back(); params.kv_overrides.back().key[0] = 0; } if (!params.tensor_buft_overrides.empty()) { params.tensor_buft_overrides.push_back({nullptr, nullptr}); } if (!params.speculative.tensor_buft_overrides.empty()) { params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr}); } if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) { throw std::runtime_error(string_format( "error: the supplied chat template is not supported: %s%s\n", params.chat_template.c_str(), params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates" )); } return true; } static void common_params_print_usage(common_params_context & ctx_arg) { auto print_options = [](std::vector & options) { for (common_arg * opt : options) { printf("%s", opt->to_string().c_str()); } }; std::vector common_options; std::vector sparam_options; std::vector specific_options; for (auto & opt : ctx_arg.options) { // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example if (opt.is_sparam) { sparam_options.push_back(&opt); } else if (opt.in_example(ctx_arg.ex)) { specific_options.push_back(&opt); } else { common_options.push_back(&opt); } } printf("----- common params -----\n\n"); print_options(common_options); printf("\n\n----- sampling params -----\n\n"); print_options(sparam_options); // TODO: maybe convert enum llama_example to string printf("\n\n----- example-specific params -----\n\n"); print_options(specific_options); } static void common_params_print_completion(common_params_context & ctx_arg) { std::vector common_options; std::vector sparam_options; std::vector specific_options; for (auto & opt : ctx_arg.options) { if (opt.is_sparam) { sparam_options.push_back(&opt); } else if (opt.in_example(ctx_arg.ex)) { specific_options.push_back(&opt); } else { common_options.push_back(&opt); } } printf("_llama_completions() {\n"); printf(" local cur prev opts\n"); printf(" COMPREPLY=()\n"); printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n"); printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n"); printf(" opts=\""); auto print_options = [](const std::vector & options) { for (const common_arg * opt : options) { for (const char * arg : opt->args) { printf("%s ", arg); } } }; print_options(common_options); print_options(sparam_options); print_options(specific_options); printf("\"\n\n"); printf(" case \"$prev\" in\n"); printf(" --model|-m)\n"); printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n"); printf(" return 0\n"); printf(" ;;\n"); printf(" --grammar-file)\n"); printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n"); printf(" return 0\n"); printf(" ;;\n"); printf(" --chat-template-file)\n"); printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n"); printf(" return 0\n"); printf(" ;;\n"); printf(" *)\n"); printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n"); printf(" return 0\n"); printf(" ;;\n"); printf(" esac\n"); printf("}\n\n"); std::set executables = { "llama-batched", "llama-batched-bench", "llama-bench", "llama-cli", "llama-convert-llama2c-to-ggml", "llama-cvector-generator", "llama-embedding", "llama-eval-callback", "llama-export-lora", "llama-gen-docs", "llama-gguf", "llama-gguf-hash", "llama-gguf-split", "llama-gritlm", "llama-imatrix", "llama-infill", "llama-mtmd-cli", "llama-llava-clip-quantize-cli", "llama-lookahead", "llama-lookup", "llama-lookup-create", "llama-lookup-merge", "llama-lookup-stats", "llama-parallel", "llama-passkey", "llama-perplexity", "llama-q8dot", "llama-quantize", "llama-qwen2vl-cli", "llama-retrieval", "llama-run", "llama-save-load-state", "llama-server", "llama-simple", "llama-simple-chat", "llama-speculative", "llama-speculative-simple", "llama-tokenize", "llama-tts", "llama-vdot" }; for (const auto& exe : executables) { printf("complete -F _llama_completions %s\n", exe.c_str()); } } static std::vector parse_device_list(const std::string & value) { std::vector devices; auto dev_names = string_split(value, ','); if (dev_names.empty()) { throw std::invalid_argument("no devices specified"); } if (dev_names.size() == 1 && dev_names[0] == "none") { devices.push_back(nullptr); } else { for (const auto & device : dev_names) { auto * dev = ggml_backend_dev_by_name(device.c_str()); if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) { throw std::invalid_argument(string_format("invalid device: %s", device.c_str())); } devices.push_back(dev); } devices.push_back(nullptr); } return devices; } static void add_rpc_devices(const std::string & servers) { auto rpc_servers = string_split(servers, ','); if (rpc_servers.empty()) { throw std::invalid_argument("no RPC servers specified"); } ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC"); if (!rpc_reg) { throw std::invalid_argument("failed to find RPC backend"); } typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint); ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server"); if (!ggml_backend_rpc_add_server_fn) { throw std::invalid_argument("failed to find RPC add server function"); } for (const auto & server : rpc_servers) { auto reg = ggml_backend_rpc_add_server_fn(server.c_str()); ggml_backend_register(reg); } } bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) { auto ctx_arg = common_params_parser_init(params, ex, print_usage); const common_params params_org = ctx_arg.params; // the example can modify the default params try { if (!common_params_parse_ex(argc, argv, ctx_arg)) { ctx_arg.params = params_org; return false; } if (ctx_arg.params.usage) { common_params_print_usage(ctx_arg); if (ctx_arg.print_usage) { ctx_arg.print_usage(argc, argv); } exit(0); } if (ctx_arg.params.completion) { common_params_print_completion(ctx_arg); exit(0); } params.lr.init(); } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); ctx_arg.params = params_org; return false; } catch (std::exception & ex) { fprintf(stderr, "%s\n", ex.what()); exit(1); // for other exceptions, we exit with status code 1 } return true; } static std::string list_builtin_chat_templates() { std::vector supported_tmpl; int32_t res = llama_chat_builtin_templates(nullptr, 0); supported_tmpl.resize(res); res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size()); std::ostringstream msg; for (auto & tmpl : supported_tmpl) { msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", "); } return msg.str(); } static bool is_truthy(const std::string & value) { return value == "on" || value == "enabled" || value == "1"; } static bool is_falsey(const std::string & value) { return value == "off" || value == "disabled" || value == "0"; } static bool is_autoy(const std::string & value) { return value == "auto" || value == "-1"; } common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) { // load dynamic backends ggml_backend_load_all(); common_params_context ctx_arg(params); ctx_arg.print_usage = print_usage; ctx_arg.ex = ex; std::string sampler_type_chars; std::string sampler_type_names; for (const auto & sampler : params.sampling.samplers) { sampler_type_chars += common_sampler_type_to_chr(sampler); sampler_type_names += common_sampler_type_to_str(sampler) + ";"; } sampler_type_names.pop_back(); /** * filter options by example * rules: * - all examples inherit options from LLAMA_EXAMPLE_COMMON * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example */ auto add_opt = [&](common_arg arg) { if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) { ctx_arg.options.push_back(std::move(arg)); } }; add_opt(common_arg( {"-h", "--help", "--usage"}, "print usage and exit", [](common_params & params) { params.usage = true; } )); add_opt(common_arg( {"--version"}, "show version and build info", [](common_params &) { fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); exit(0); } )); add_opt(common_arg( {"--completion-bash"}, "print source-able bash completion script for llama.cpp", [](common_params & params) { params.completion = true; } )); add_opt(common_arg( {"--verbose-prompt"}, string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"), [](common_params & params) { params.verbose_prompt = true; } )); add_opt(common_arg( {"--no-display-prompt"}, string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"), [](common_params & params) { params.display_prompt = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"-co", "--color"}, string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"), [](common_params & params) { params.use_color = true; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP})); add_opt(common_arg( {"-t", "--threads"}, "N", string_format("number of CPU threads to use during generation (default: %d)", params.cpuparams.n_threads), [](common_params & params, int value) { params.cpuparams.n_threads = value; if (params.cpuparams.n_threads <= 0) { params.cpuparams.n_threads = std::thread::hardware_concurrency(); } } ).set_env("LLAMA_ARG_THREADS")); add_opt(common_arg( {"-tb", "--threads-batch"}, "N", "number of threads to use during batch and prompt processing (default: same as --threads)", [](common_params & params, int value) { params.cpuparams_batch.n_threads = value; if (params.cpuparams_batch.n_threads <= 0) { params.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); } } )); add_opt(common_arg( {"-C", "--cpu-mask"}, "M", "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")", [](common_params & params, const std::string & mask) { params.cpuparams.mask_valid = true; if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } )); add_opt(common_arg( {"-Cr", "--cpu-range"}, "lo-hi", "range of CPUs for affinity. Complements --cpu-mask", [](common_params & params, const std::string & range) { params.cpuparams.mask_valid = true; if (!parse_cpu_range(range, params.cpuparams.cpumask)) { throw std::invalid_argument("invalid range"); } } )); add_opt(common_arg( {"--cpu-strict"}, "<0|1>", string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu), [](common_params & params, const std::string & value) { params.cpuparams.strict_cpu = std::stoul(value); } )); add_opt(common_arg( {"--prio"}, "N", string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority), [](common_params & params, int prio) { if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) { throw std::invalid_argument("invalid value"); } params.cpuparams.priority = (enum ggml_sched_priority) prio; } )); add_opt(common_arg( {"--poll"}, "<0...100>", string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll), [](common_params & params, const std::string & value) { params.cpuparams.poll = std::stoul(value); } )); add_opt(common_arg( {"-Cb", "--cpu-mask-batch"}, "M", "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)", [](common_params & params, const std::string & mask) { params.cpuparams_batch.mask_valid = true; if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } )); add_opt(common_arg( {"-Crb", "--cpu-range-batch"}, "lo-hi", "ranges of CPUs for affinity. Complements --cpu-mask-batch", [](common_params & params, const std::string & range) { params.cpuparams_batch.mask_valid = true; if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid range"); } } )); add_opt(common_arg( {"--cpu-strict-batch"}, "<0|1>", "use strict CPU placement (default: same as --cpu-strict)", [](common_params & params, int value) { params.cpuparams_batch.strict_cpu = value; } )); add_opt(common_arg( {"--prio-batch"}, "N", string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority), [](common_params & params, int prio) { if (prio < 0 || prio > 3) { throw std::invalid_argument("invalid value"); } params.cpuparams_batch.priority = (enum ggml_sched_priority) prio; } )); add_opt(common_arg( {"--poll-batch"}, "<0|1>", "use polling to wait for work (default: same as --poll)", [](common_params & params, int value) { params.cpuparams_batch.poll = value; } )); add_opt(common_arg( {"-lcs", "--lookup-cache-static"}, "FNAME", "path to static lookup cache to use for lookup decoding (not updated by generation)", [](common_params & params, const std::string & value) { params.lookup_cache_static = value; } ).set_examples({LLAMA_EXAMPLE_LOOKUP})); add_opt(common_arg( {"-lcd", "--lookup-cache-dynamic"}, "FNAME", "path to dynamic lookup cache to use for lookup decoding (updated by generation)", [](common_params & params, const std::string & value) { params.lookup_cache_dynamic = value; } ).set_examples({LLAMA_EXAMPLE_LOOKUP})); add_opt(common_arg( {"-c", "--ctx-size"}, "N", string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx), [](common_params & params, int value) { params.n_ctx = value; } ).set_env("LLAMA_ARG_CTX_SIZE")); add_opt(common_arg( {"-n", "--predict", "--n-predict"}, "N", string_format( ex == LLAMA_EXAMPLE_MAIN ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)" : "number of tokens to predict (default: %d, -1 = infinity)", params.n_predict), [](common_params & params, int value) { params.n_predict = value; } ).set_env("LLAMA_ARG_N_PREDICT")); add_opt(common_arg( {"-b", "--batch-size"}, "N", string_format("logical maximum batch size (default: %d)", params.n_batch), [](common_params & params, int value) { params.n_batch = value; } ).set_env("LLAMA_ARG_BATCH")); add_opt(common_arg( {"-ub", "--ubatch-size"}, "N", string_format("physical maximum batch size (default: %d)", params.n_ubatch), [](common_params & params, int value) { params.n_ubatch = value; } ).set_env("LLAMA_ARG_UBATCH")); add_opt(common_arg( {"--keep"}, "N", string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep), [](common_params & params, int value) { params.n_keep = value; } )); add_opt(common_arg( {"--swa-full"}, string_format("use full-size SWA cache (default: %s)\n" "[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"), [](common_params & params) { params.swa_full = true; } ).set_env("LLAMA_ARG_SWA_FULL")); add_opt(common_arg( {"--ctx-checkpoints", "--swa-checkpoints"}, "N", string_format("max number of context checkpoints to create per slot (default: %d)\n" "[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints), [](common_params & params, int value) { params.n_ctx_checkpoints = value; } ).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--cache-ram", "-cram"}, "N", string_format("set the maximum cache size in MiB (default: %d, -1 - no limit, 0 - disable)\n" "[(more info)](https://github.com/ggml-org/llama.cpp/pull/16391)", params.cache_ram_mib), [](common_params & params, int value) { params.cache_ram_mib = value; } ).set_env("LLAMA_ARG_CACHE_RAM").set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--kv-unified", "-kvu"}, string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n" "[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)", params.kv_unified ? "true" : "false"), [](common_params & params) { params.kv_unified = true; } ).set_env("LLAMA_ARG_KV_SPLIT")); add_opt(common_arg( {"--no-context-shift"}, string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"), [](common_params & params) { params.ctx_shift = false; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT")); add_opt(common_arg( {"--context-shift"}, string_format("enables context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"), [](common_params & params) { params.ctx_shift = true; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT")); add_opt(common_arg( {"--chunks"}, "N", string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks), [](common_params & params, int value) { params.n_chunks = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL})); add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]", string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')", llama_flash_attn_type_name(params.flash_attn_type)), [](common_params & params, const std::string & value) { if (is_truthy(value)) { params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED; } else if (is_falsey(value)) { params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED; } else if (is_autoy(value)) { params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; } else { throw std::runtime_error( string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str())); } }).set_env("LLAMA_ARG_FLASH_ATTN")); add_opt(common_arg( {"-p", "--prompt"}, "PROMPT", "prompt to start generation with; for system message, use -sys", [](common_params & params, const std::string & value) { params.prompt = value; } ).set_excludes({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-sys", "--system-prompt"}, "PROMPT", "system prompt to use with model (if applicable, depending on chat template)", [](common_params & params, const std::string & value) { params.system_prompt = value; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_DIFFUSION})); add_opt(common_arg( {"--no-perf"}, string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"), [](common_params & params) { params.no_perf = true; params.sampling.no_perf = true; } ).set_env("LLAMA_ARG_NO_PERF")); add_opt(common_arg( {"-f", "--file"}, "FNAME", "a file containing the prompt (default: none)", [](common_params & params, const std::string & value) { params.prompt = read_file(value); // store the external file name in params params.prompt_file = value; if (!params.prompt.empty() && params.prompt.back() == '\n') { params.prompt.pop_back(); } } ).set_excludes({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-sysf", "--system-prompt-file"}, "FNAME", "a file containing the system prompt (default: none)", [](common_params & params, const std::string & value) { params.system_prompt = read_file(value); if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') { params.system_prompt.pop_back(); } } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--in-file"}, "FNAME", "an input file (repeat to specify multiple files)", [](common_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); } params.in_files.push_back(value); } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"-bf", "--binary-file"}, "FNAME", "binary file containing the prompt (default: none)", [](common_params & params, const std::string & value) { std::ifstream file(value, std::ios::binary); if (!file) { throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); } // store the external file name in params params.prompt_file = value; std::ostringstream ss; ss << file.rdbuf(); params.prompt = ss.str(); fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str()); } ).set_excludes({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-e", "--escape"}, string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"), [](common_params & params) { params.escape = true; } )); add_opt(common_arg( {"--no-escape"}, "do not process escape sequences", [](common_params & params) { params.escape = false; } )); add_opt(common_arg( {"-ptc", "--print-token-count"}, "N", string_format("print token count every N tokens (default: %d)", params.n_print), [](common_params & params, int value) { params.n_print = value; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--prompt-cache"}, "FNAME", "file to cache prompt state for faster startup (default: none)", [](common_params & params, const std::string & value) { params.path_prompt_cache = value; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--prompt-cache-all"}, "if specified, saves user input and generations to cache as well\n", [](common_params & params) { params.prompt_cache_all = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--prompt-cache-ro"}, "if specified, uses the prompt cache but does not update it", [](common_params & params) { params.prompt_cache_ro = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"-r", "--reverse-prompt"}, "PROMPT", "halt generation at PROMPT, return control in interactive mode\n", [](common_params & params, const std::string & value) { params.antiprompt.emplace_back(value); } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-sp", "--special"}, string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"), [](common_params & params) { params.special = true; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-cnv", "--conversation"}, "run in conversation mode:\n" "- does not print special tokens and suffix/prefix\n" "- interactive mode is also enabled\n" "(default: auto enabled if chat template is available)", [](common_params & params) { params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"-no-cnv", "--no-conversation"}, "force disable conversation mode (default: false)", [](common_params & params) { params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"-st", "--single-turn"}, "run conversation for a single turn only, then exit when done\n" "will not be interactive if first turn is predefined with --prompt\n" "(default: false)", [](common_params & params) { params.single_turn = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"-i", "--interactive"}, string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"), [](common_params & params) { params.interactive = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"-if", "--interactive-first"}, string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"), [](common_params & params) { params.interactive_first = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"-mli", "--multiline-input"}, "allows you to write or paste multiple lines without ending each in '\\'", [](common_params & params) { params.multiline_input = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--in-prefix-bos"}, "prefix BOS to user inputs, preceding the `--in-prefix` string", [](common_params & params) { params.input_prefix_bos = true; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--in-prefix"}, "STRING", "string to prefix user inputs with (default: empty)", [](common_params & params, const std::string & value) { params.input_prefix = value; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--in-suffix"}, "STRING", "string to suffix after user inputs with (default: empty)", [](common_params & params, const std::string & value) { params.input_suffix = value; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--no-warmup"}, "skip warming up the model with an empty run", [](common_params & params) { params.warmup = false; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--spm-infill"}, string_format( "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" ), [](common_params & params) { params.spm_infill = true; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--samplers"}, "SAMPLERS", string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()), [](common_params & params, const std::string & value) { const auto sampler_names = string_split(value, ';'); params.sampling.samplers = common_sampler_types_from_names(sampler_names, true); } ).set_sparam()); add_opt(common_arg( {"-s", "--seed"}, "SEED", string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED), [](common_params & params, const std::string & value) { params.sampling.seed = std::stoul(value); } ).set_sparam()); add_opt(common_arg( {"--sampling-seq", "--sampler-seq"}, "SEQUENCE", string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()), [](common_params & params, const std::string & value) { params.sampling.samplers = common_sampler_types_from_chars(value); } ).set_sparam()); add_opt(common_arg( {"--ignore-eos"}, "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)", [](common_params & params) { params.sampling.ignore_eos = true; } ).set_sparam()); add_opt(common_arg( {"--temp"}, "N", string_format("temperature (default: %.1f)", (double)params.sampling.temp), [](common_params & params, const std::string & value) { params.sampling.temp = std::stof(value); params.sampling.temp = std::max(params.sampling.temp, 0.0f); } ).set_sparam()); add_opt(common_arg( {"--top-k"}, "N", string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k), [](common_params & params, int value) { params.sampling.top_k = value; } ).set_sparam()); add_opt(common_arg( {"--top-p"}, "N", string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p), [](common_params & params, const std::string & value) { params.sampling.top_p = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--min-p"}, "N", string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p), [](common_params & params, const std::string & value) { params.sampling.min_p = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--top-nsigma"}, "N", string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma), [](common_params & params, const std::string & value) { params.sampling.top_n_sigma = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--xtc-probability"}, "N", string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability), [](common_params & params, const std::string & value) { params.sampling.xtc_probability = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--xtc-threshold"}, "N", string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold), [](common_params & params, const std::string & value) { params.sampling.xtc_threshold = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--typical"}, "N", string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p), [](common_params & params, const std::string & value) { params.sampling.typ_p = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--repeat-last-n"}, "N", string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n), [](common_params & params, int value) { if (value < -1) { throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value)); } params.sampling.penalty_last_n = value; params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n); } ).set_sparam()); add_opt(common_arg( {"--repeat-penalty"}, "N", string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat), [](common_params & params, const std::string & value) { params.sampling.penalty_repeat = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--presence-penalty"}, "N", string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present), [](common_params & params, const std::string & value) { params.sampling.penalty_present = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--frequency-penalty"}, "N", string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq), [](common_params & params, const std::string & value) { params.sampling.penalty_freq = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--dry-multiplier"}, "N", string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier), [](common_params & params, const std::string & value) { params.sampling.dry_multiplier = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--dry-base"}, "N", string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base), [](common_params & params, const std::string & value) { float potential_base = std::stof(value); if (potential_base >= 1.0f) { params.sampling.dry_base = potential_base; } } ).set_sparam()); add_opt(common_arg( {"--dry-allowed-length"}, "N", string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length), [](common_params & params, int value) { params.sampling.dry_allowed_length = value; } ).set_sparam()); add_opt(common_arg( {"--dry-penalty-last-n"}, "N", string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n), [](common_params & params, int value) { if (value < -1) { throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value)); } params.sampling.dry_penalty_last_n = value; } ).set_sparam()); add_opt(common_arg( {"--dry-sequence-breaker"}, "STRING", string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n", params.sampling.dry_sequence_breakers.empty() ? "none" : std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()), params.sampling.dry_sequence_breakers.end(), std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'", [](const std::string& a, const std::string& b) { std::string formatted_b = (b == "\n") ? "\\n" : b; return a + ", '" + formatted_b + "'"; }).c_str()), [](common_params & params, const std::string & value) { static bool defaults_cleared = false; if (!defaults_cleared) { params.sampling.dry_sequence_breakers.clear(); defaults_cleared = true; } if (value == "none") { params.sampling.dry_sequence_breakers.clear(); } else { params.sampling.dry_sequence_breakers.emplace_back(value); } } ).set_sparam()); add_opt(common_arg( {"--dynatemp-range"}, "N", string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range), [](common_params & params, const std::string & value) { params.sampling.dynatemp_range = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--dynatemp-exp"}, "N", string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent), [](common_params & params, const std::string & value) { params.sampling.dynatemp_exponent = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--mirostat"}, "N", string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n" "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat), [](common_params & params, int value) { params.sampling.mirostat = value; } ).set_sparam()); add_opt(common_arg( {"--mirostat-lr"}, "N", string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta), [](common_params & params, const std::string & value) { params.sampling.mirostat_eta = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"--mirostat-ent"}, "N", string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau), [](common_params & params, const std::string & value) { params.sampling.mirostat_tau = std::stof(value); } ).set_sparam()); add_opt(common_arg( {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n" "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'", [](common_params & params, const std::string & value) { std::stringstream ss(value); llama_token key; char sign; std::string value_str; try { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); params.sampling.logit_bias.push_back({key, bias}); } else { throw std::invalid_argument("invalid input format"); } } catch (const std::exception&) { throw std::invalid_argument("invalid input format"); } } ).set_sparam()); add_opt(common_arg( {"--grammar"}, "GRAMMAR", string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()), [](common_params & params, const std::string & value) { params.sampling.grammar = value; } ).set_sparam()); add_opt(common_arg( {"--grammar-file"}, "FNAME", "file to read grammar from", [](common_params & params, const std::string & value) { params.sampling.grammar = read_file(value); } ).set_sparam()); add_opt(common_arg( {"-j", "--json-schema"}, "SCHEMA", "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead", [](common_params & params, const std::string & value) { params.sampling.grammar = json_schema_to_grammar(json::parse(value)); } ).set_sparam()); add_opt(common_arg( {"-jf", "--json-schema-file"}, "FILE", "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead", [](common_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); } std::string schema; std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(schema) ); params.sampling.grammar = json_schema_to_grammar(json::parse(schema)); } ).set_sparam()); add_opt(common_arg( {"--pooling"}, "{none,mean,cls,last,rank}", "pooling type for embeddings, use model default if unspecified", [](common_params & params, const std::string & value) { /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING")); add_opt(common_arg( {"--attention"}, "{causal,non-causal}", "attention type for embeddings, use model default if unspecified", [](common_params & params, const std::string & value) { /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; } else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(common_arg( {"--rope-scaling"}, "{none,linear,yarn}", "RoPE frequency scaling method, defaults to linear unless specified by the model", [](common_params & params, const std::string & value) { /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { throw std::invalid_argument("invalid value"); } } ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE")); add_opt(common_arg( {"--rope-scale"}, "N", "RoPE context scaling factor, expands context by a factor of N", [](common_params & params, const std::string & value) { params.rope_freq_scale = 1.0f / std::stof(value); } ).set_env("LLAMA_ARG_ROPE_SCALE")); add_opt(common_arg( {"--rope-freq-base"}, "N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)", [](common_params & params, const std::string & value) { params.rope_freq_base = std::stof(value); } ).set_env("LLAMA_ARG_ROPE_FREQ_BASE")); add_opt(common_arg( {"--rope-freq-scale"}, "N", "RoPE frequency scaling factor, expands context by a factor of 1/N", [](common_params & params, const std::string & value) { params.rope_freq_scale = std::stof(value); } ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE")); add_opt(common_arg( {"--yarn-orig-ctx"}, "N", string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx), [](common_params & params, int value) { params.yarn_orig_ctx = value; } ).set_env("LLAMA_ARG_YARN_ORIG_CTX")); add_opt(common_arg( {"--yarn-ext-factor"}, "N", string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor), [](common_params & params, const std::string & value) { params.yarn_ext_factor = std::stof(value); } ).set_env("LLAMA_ARG_YARN_EXT_FACTOR")); add_opt(common_arg( {"--yarn-attn-factor"}, "N", string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor), [](common_params & params, const std::string & value) { params.yarn_attn_factor = std::stof(value); } ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR")); add_opt(common_arg( {"--yarn-beta-slow"}, "N", string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow), [](common_params & params, const std::string & value) { params.yarn_beta_slow = std::stof(value); } ).set_env("LLAMA_ARG_YARN_BETA_SLOW")); add_opt(common_arg( {"--yarn-beta-fast"}, "N", string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast), [](common_params & params, const std::string & value) { params.yarn_beta_fast = std::stof(value); } ).set_env("LLAMA_ARG_YARN_BETA_FAST")); add_opt(common_arg( {"-gan", "--grp-attn-n"}, "N", string_format("group-attention factor (default: %d)", params.grp_attn_n), [](common_params & params, int value) { params.grp_attn_n = value; } ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY})); add_opt(common_arg( {"-gaw", "--grp-attn-w"}, "N", string_format("group-attention width (default: %d)", params.grp_attn_w), [](common_params & params, int value) { params.grp_attn_w = value; } ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"-nkvo", "--no-kv-offload"}, "disable KV offload", [](common_params & params) { params.no_kv_offload = true; } ).set_env("LLAMA_ARG_NO_KV_OFFLOAD")); add_opt(common_arg( {"-nr", "--no-repack"}, "disable weight repacking", [](common_params & params) { params.no_extra_bufts = true; } ).set_env("LLAMA_ARG_NO_REPACK")); add_opt(common_arg( {"--no-host"}, "bypass host buffer allowing extra buffers to be used", [](common_params & params) { params.no_host = true; } ).set_env("LLAMA_ARG_NO_HOST")); add_opt(common_arg( {"-ctk", "--cache-type-k"}, "TYPE", string_format( "KV cache data type for K\n" "allowed values: %s\n" "(default: %s)", get_all_kv_cache_types().c_str(), ggml_type_name(params.cache_type_k) ), [](common_params & params, const std::string & value) { params.cache_type_k = kv_cache_type_from_str(value); } ).set_env("LLAMA_ARG_CACHE_TYPE_K")); add_opt(common_arg( {"-ctv", "--cache-type-v"}, "TYPE", string_format( "KV cache data type for V\n" "allowed values: %s\n" "(default: %s)", get_all_kv_cache_types().c_str(), ggml_type_name(params.cache_type_v) ), [](common_params & params, const std::string & value) { params.cache_type_v = kv_cache_type_from_str(value); } ).set_env("LLAMA_ARG_CACHE_TYPE_V")); add_opt(common_arg( {"--hellaswag"}, "compute HellaSwag score over random tasks from datafile supplied with -f", [](common_params & params) { params.hellaswag = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--hellaswag-tasks"}, "N", string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks), [](common_params & params, int value) { params.hellaswag_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--winogrande"}, "compute Winogrande score over random tasks from datafile supplied with -f", [](common_params & params) { params.winogrande = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--winogrande-tasks"}, "N", string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks), [](common_params & params, int value) { params.winogrande_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--multiple-choice"}, "compute multiple choice score over random tasks from datafile supplied with -f", [](common_params & params) { params.multiple_choice = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--multiple-choice-tasks"}, "N", string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks), [](common_params & params, int value) { params.multiple_choice_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--kl-divergence"}, "computes KL-divergence to logits provided via --kl-divergence-base", [](common_params & params) { params.kl_divergence = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--save-all-logits", "--kl-divergence-base"}, "FNAME", "set logits file", [](common_params & params, const std::string & value) { params.logits_file = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--ppl-stride"}, "N", string_format("stride for perplexity calculation (default: %d)", params.ppl_stride), [](common_params & params, int value) { params.ppl_stride = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"--ppl-output-type"}, "<0|1>", string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type), [](common_params & params, int value) { params.ppl_output_type = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(common_arg( {"-dt", "--defrag-thold"}, "N", string_format("KV cache defragmentation threshold (DEPRECATED)"), [](common_params & params, const std::string & value) { GGML_UNUSED(params); GGML_UNUSED(value); LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n"); } ).set_env("LLAMA_ARG_DEFRAG_THOLD")); add_opt(common_arg( {"-np", "--parallel"}, "N", string_format("number of parallel sequences to decode (default: %d)", params.n_parallel), [](common_params & params, int value) { params.n_parallel = value; } ).set_env("LLAMA_ARG_N_PARALLEL")); add_opt(common_arg( {"-ns", "--sequences"}, "N", string_format("number of sequences to decode (default: %d)", params.n_sequences), [](common_params & params, int value) { params.n_sequences = value; } ).set_examples({LLAMA_EXAMPLE_PARALLEL})); add_opt(common_arg( {"-cb", "--cont-batching"}, string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"), [](common_params & params) { params.cont_batching = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING")); add_opt(common_arg( {"-nocb", "--no-cont-batching"}, "disable continuous batching", [](common_params & params) { params.cont_batching = false; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING")); add_opt(common_arg( {"--mmproj"}, "FILE", "path to a multimodal projector file. see tools/mtmd/README.md\n" "note: if -hf is used, this argument can be omitted", [](common_params & params, const std::string & value) { params.mmproj.path = value; } ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ")); add_opt(common_arg( {"--mmproj-url"}, "URL", "URL to a multimodal projector file. see tools/mtmd/README.md", [](common_params & params, const std::string & value) { params.mmproj.url = value; } ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL")); add_opt(common_arg( {"--no-mmproj"}, "explicitly disable multimodal projector, useful when using -hf", [](common_params & params) { params.no_mmproj = true; } ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ")); add_opt(common_arg( {"--no-mmproj-offload"}, "do not offload multimodal projector to GPU", [](common_params & params) { params.mmproj_use_gpu = false; } ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD")); add_opt(common_arg( {"--image", "--audio"}, "FILE", "path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n", [](common_params & params, const std::string & value) { params.image.emplace_back(value); } ).set_examples({LLAMA_EXAMPLE_MTMD})); if (llama_supports_rpc()) { add_opt(common_arg( {"--rpc"}, "SERVERS", "comma separated list of RPC servers", [](common_params & params, const std::string & value) { add_rpc_devices(value); GGML_UNUSED(params); } ).set_env("LLAMA_ARG_RPC")); } add_opt(common_arg( {"--mlock"}, "force system to keep model in RAM rather than swapping or compressing", [](common_params & params) { params.use_mlock = true; } ).set_env("LLAMA_ARG_MLOCK")); add_opt(common_arg( {"--no-mmap"}, "do not memory-map model (slower load but may reduce pageouts if not using mlock)", [](common_params & params) { params.use_mmap = false; } ).set_env("LLAMA_ARG_NO_MMAP")); add_opt(common_arg( {"--numa"}, "TYPE", "attempt optimizations that help on some NUMA systems\n" "- distribute: spread execution evenly over all nodes\n" "- isolate: only spawn threads on CPUs on the node that execution started on\n" "- numactl: use the CPU map provided by numactl\n" "if run without this previously, it is recommended to drop the system page cache before using this\n" "see https://github.com/ggml-org/llama.cpp/issues/1437", [](common_params & params, const std::string & value) { /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } else { throw std::invalid_argument("invalid value"); } } ).set_env("LLAMA_ARG_NUMA")); add_opt(common_arg( {"-dev", "--device"}, "", "comma-separated list of devices to use for offloading (none = don't offload)\n" "use --list-devices to see a list of available devices", [](common_params & params, const std::string & value) { params.devices = parse_device_list(value); } ).set_env("LLAMA_ARG_DEVICE")); add_opt(common_arg( {"--list-devices"}, "print list of available devices and exit", [](common_params &) { std::vector devices; for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { auto * dev = ggml_backend_dev_get(i); if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) { devices.push_back(dev); } } printf("Available devices:\n"); for (auto * dev : devices) { size_t free, total; ggml_backend_dev_memory(dev, &free, &total); printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024); } exit(0); } )); add_opt(common_arg( {"--override-tensor", "-ot"}, "=,...", "override tensor buffer type", [](common_params & params, const std::string & value) { parse_tensor_buffer_overrides(value, params.tensor_buft_overrides); } )); add_opt(common_arg( {"--override-tensor-draft", "-otd"}, "=,...", "override tensor buffer type for draft model", [](common_params & params, const std::string & value) { parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides); } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--cpu-moe", "-cmoe"}, "keep all Mixture of Experts (MoE) weights in the CPU", [](common_params & params) { params.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override()); } ).set_env("LLAMA_ARG_CPU_MOE")); add_opt(common_arg( {"--n-cpu-moe", "-ncmoe"}, "N", "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU", [](common_params & params, int value) { if (value < 0) { throw std::invalid_argument("invalid value"); } for (int i = 0; i < value; ++i) { // keep strings alive and avoid leaking memory by storing them in a static vector static std::list buft_overrides; buft_overrides.push_back(llm_ffn_exps_block_regex(i)); params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()}); } } ).set_env("LLAMA_ARG_N_CPU_MOE")); add_opt(common_arg( {"--cpu-moe-draft", "-cmoed"}, "keep all Mixture of Experts (MoE) weights in the CPU for the draft model", [](common_params & params) { params.speculative.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override()); } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT")); add_opt(common_arg( {"--n-cpu-moe-draft", "-ncmoed"}, "N", "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model", [](common_params & params, int value) { if (value < 0) { throw std::invalid_argument("invalid value"); } for (int i = 0; i < value; ++i) { static std::list buft_overrides_draft; buft_overrides_draft.push_back(llm_ffn_exps_block_regex(i)); params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()}); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT")); add_opt(common_arg( {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers), [](common_params & params, int value) { params.n_gpu_layers = value; if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n"); fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n"); fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n"); } } ).set_env("LLAMA_ARG_N_GPU_LAYERS")); add_opt(common_arg( {"-sm", "--split-mode"}, "{none,layer,row}", "how to split the model across multiple GPUs, one of:\n" "- none: use one GPU only\n" "- layer (default): split layers and KV across GPUs\n" "- row: split rows across GPUs", [](common_params & params, const std::string & value) { std::string arg_next = value; if (arg_next == "none") { params.split_mode = LLAMA_SPLIT_MODE_NONE; } else if (arg_next == "layer") { params.split_mode = LLAMA_SPLIT_MODE_LAYER; } else if (arg_next == "row") { params.split_mode = LLAMA_SPLIT_MODE_ROW; } else { throw std::invalid_argument("invalid value"); } if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n"); } } ).set_env("LLAMA_ARG_SPLIT_MODE")); add_opt(common_arg( {"-ts", "--tensor-split"}, "N0,N1,N2,...", "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1", [](common_params & params, const std::string & value) { std::string arg_next = value; // split string by , and / const std::regex regex{ R"([,/]+)" }; std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; std::vector split_arg{ it, {} }; if (split_arg.size() >= llama_max_devices()) { throw std::invalid_argument( string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices()) ); } for (size_t i = 0; i < llama_max_devices(); ++i) { if (i < split_arg.size()) { params.tensor_split[i] = std::stof(split_arg[i]); } else { params.tensor_split[i] = 0.0f; } } if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n"); } } ).set_env("LLAMA_ARG_TENSOR_SPLIT")); add_opt(common_arg( {"-mg", "--main-gpu"}, "INDEX", string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu), [](common_params & params, int value) { params.main_gpu = value; if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n"); } } ).set_env("LLAMA_ARG_MAIN_GPU")); add_opt(common_arg( {"--check-tensors"}, string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"), [](common_params & params) { params.check_tensors = true; } )); add_opt(common_arg( {"--override-kv"}, "KEY=TYPE:VALUE", "advanced option to override model metadata by key. may be specified multiple times.\n" "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false", [](common_params & params, const std::string & value) { if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) { throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str())); } } )); add_opt(common_arg( {"--no-op-offload"}, string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"), [](common_params & params) { params.no_op_offload = true; } )); add_opt(common_arg( {"--lora"}, "FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)", [](common_params & params, const std::string & value) { params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr }); } // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); add_opt(common_arg( {"--lora-scaled"}, "FNAME", "SCALE", "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)", [](common_params & params, const std::string & fname, const std::string & scale) { params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr }); } // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); add_opt(common_arg( {"--control-vector"}, "FNAME", "add a control vector\nnote: this argument can be repeated to add multiple control vectors", [](common_params & params, const std::string & value) { params.control_vectors.push_back({ 1.0f, value, }); } )); add_opt(common_arg( {"--control-vector-scaled"}, "FNAME", "SCALE", "add a control vector with user defined scaling SCALE\n" "note: this argument can be repeated to add multiple scaled control vectors", [](common_params & params, const std::string & fname, const std::string & scale) { params.control_vectors.push_back({ std::stof(scale), fname }); } )); add_opt(common_arg( {"--control-vector-layer-range"}, "START", "END", "layer range to apply the control vector(s) to, start and end inclusive", [](common_params & params, const std::string & start, const std::string & end) { params.control_vector_layer_start = std::stoi(start); params.control_vector_layer_end = std::stoi(end); } )); add_opt(common_arg( {"-a", "--alias"}, "STRING", "set alias for model name (to be used by REST API)", [](common_params & params, const std::string & value) { params.model_alias = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS")); add_opt(common_arg( {"-m", "--model"}, "FNAME", ex == LLAMA_EXAMPLE_EXPORT_LORA ? std::string("model path from which to load base model") : string_format( "model path (default: `models/$filename` with filename from `--hf-file` " "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH ), [](common_params & params, const std::string & value) { params.model.path = value; } ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL")); add_opt(common_arg( {"-mu", "--model-url"}, "MODEL_URL", "model download url (default: unused)", [](common_params & params, const std::string & value) { params.model.url = value; } ).set_env("LLAMA_ARG_MODEL_URL")); add_opt(common_arg( { "-dr", "--docker-repo" }, "[/][:quant]", "Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n" "example: gemma3\n" "(default: unused)", [](common_params & params, const std::string & value) { params.model.docker_repo = value; } ).set_env("LLAMA_ARG_DOCKER_REPO")); add_opt(common_arg( {"-hf", "-hfr", "--hf-repo"}, "/[:quant]", "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n" "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n" "example: unsloth/phi-4-GGUF:q4_k_m\n" "(default: unused)", [](common_params & params, const std::string & value) { params.model.hf_repo = value; } ).set_env("LLAMA_ARG_HF_REPO")); add_opt(common_arg( {"-hfd", "-hfrd", "--hf-repo-draft"}, "/[:quant]", "Same as --hf-repo, but for the draft model (default: unused)", [](common_params & params, const std::string & value) { params.speculative.model.hf_repo = value; } ).set_env("LLAMA_ARG_HFD_REPO")); add_opt(common_arg( {"-hff", "--hf-file"}, "FILE", "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)", [](common_params & params, const std::string & value) { params.model.hf_file = value; } ).set_env("LLAMA_ARG_HF_FILE")); add_opt(common_arg( {"-hfv", "-hfrv", "--hf-repo-v"}, "/[:quant]", "Hugging Face model repository for the vocoder model (default: unused)", [](common_params & params, const std::string & value) { params.vocoder.model.hf_repo = value; } ).set_env("LLAMA_ARG_HF_REPO_V")); add_opt(common_arg( {"-hffv", "--hf-file-v"}, "FILE", "Hugging Face model file for the vocoder model (default: unused)", [](common_params & params, const std::string & value) { params.vocoder.model.hf_file = value; } ).set_env("LLAMA_ARG_HF_FILE_V")); add_opt(common_arg( {"-hft", "--hf-token"}, "TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)", [](common_params & params, const std::string & value) { params.hf_token = value; } ).set_env("HF_TOKEN")); add_opt(common_arg( {"--context-file"}, "FNAME", "file to load context from (repeat to specify multiple files)", [](common_params & params, const std::string & value) { std::ifstream file(value, std::ios::binary); if (!file) { throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); } params.context_files.push_back(value); } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(common_arg( {"--chunk-size"}, "N", string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size), [](common_params & params, int value) { params.chunk_size = value; } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(common_arg( {"--chunk-separator"}, "STRING", string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()), [](common_params & params, const std::string & value) { params.chunk_separator = value; } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(common_arg( {"--junk"}, "N", string_format("number of times to repeat the junk text (default: %d)", params.n_junk), [](common_params & params, int value) { params.n_junk = value; } ).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL})); add_opt(common_arg( {"--pos"}, "N", string_format("position of the passkey in the junk text (default: %d)", params.i_pos), [](common_params & params, int value) { params.i_pos = value; } ).set_examples({LLAMA_EXAMPLE_PASSKEY})); add_opt(common_arg( {"-o", "--output", "--output-file"}, "FNAME", string_format("output file (default: '%s')", params.out_file.c_str()), [](common_params & params, const std::string & value) { params.out_file = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE})); add_opt(common_arg( {"-ofreq", "--output-frequency"}, "N", string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq), [](common_params & params, int value) { params.n_out_freq = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"--output-format"}, "{gguf,dat}", string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"), [](common_params & params, const std::string & value) { /**/ if (value == "gguf") { params.imat_dat = -1; } else if (value == "dat") { params.imat_dat = 1; } else { throw std::invalid_argument("invalid output format"); } } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"--save-frequency"}, "N", string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq), [](common_params & params, int value) { params.n_save_freq = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"--process-output"}, string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"), [](common_params & params) { params.process_output = true; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"--no-ppl"}, string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"), [](common_params & params) { params.compute_ppl = false; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"--chunk", "--from-chunk"}, "N", string_format("start processing the input from chunk N (default: %d)", params.i_chunk), [](common_params & params, int value) { params.i_chunk = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"--show-statistics"}, string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"), [](common_params & params) { params.show_statistics = true; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"--parse-special"}, string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"), [](common_params & params) { params.parse_special = true; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"-pps"}, string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"), [](common_params & params) { params.is_pp_shared = true; } ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL})); add_opt(common_arg( {"-npp"}, "n0,n1,...", "number of prompt tokens", [](common_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_pp.insert(params.n_pp.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(common_arg( {"-ntg"}, "n0,n1,...", "number of text generation tokens", [](common_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_tg.insert(params.n_tg.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(common_arg( {"-npl"}, "n0,n1,...", "number of parallel prompts", [](common_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_pl.insert(params.n_pl.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(common_arg( {"--embd-normalize"}, "N", string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize), [](common_params & params, int value) { params.embd_normalize = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(common_arg( {"--embd-output-format"}, "FORMAT", "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix", [](common_params & params, const std::string & value) { params.embd_out = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(common_arg( {"--embd-separator"}, "STRING", "separator of embeddings (default \\n) for example \"<#sep#>\"", [](common_params & params, const std::string & value) { params.embd_sep = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(common_arg( {"--cls-separator"}, "STRING", "separator of classification sequences (default \\t) for example \"<#seq#>\"", [](common_params & params, const std::string & value) { params.cls_sep = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(common_arg( {"--host"}, "HOST", string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()), [](common_params & params, const std::string & value) { params.hostname = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST")); add_opt(common_arg( {"--port"}, "PORT", string_format("port to listen (default: %d)", params.port), [](common_params & params, int value) { params.port = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT")); add_opt(common_arg( {"--path"}, "PATH", string_format("path to serve static files from (default: %s)", params.public_path.c_str()), [](common_params & params, const std::string & value) { params.public_path = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH")); add_opt(common_arg( {"--api-prefix"}, "PREFIX", string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()), [](common_params & params, const std::string & value) { params.api_prefix = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX")); add_opt(common_arg( {"--no-webui"}, string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"), [](common_params & params) { params.webui = false; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI")); add_opt(common_arg( {"--embedding", "--embeddings"}, string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"), [](common_params & params) { params.embedding = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS")); add_opt(common_arg( {"--reranking", "--rerank"}, string_format("enable reranking endpoint on server (default: %s)", "disabled"), [](common_params & params) { params.embedding = true; params.pooling_type = LLAMA_POOLING_TYPE_RANK; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING")); add_opt(common_arg( {"--api-key"}, "KEY", "API key to use for authentication (default: none)", [](common_params & params, const std::string & value) { params.api_keys.push_back(value); } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY")); add_opt(common_arg( {"--api-key-file"}, "FNAME", "path to file containing API keys (default: none)", [](common_params & params, const std::string & value) { std::ifstream key_file(value); if (!key_file) { throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); } std::string key; while (std::getline(key_file, key)) { if (!key.empty()) { params.api_keys.push_back(key); } } key_file.close(); } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--ssl-key-file"}, "FNAME", "path to file a PEM-encoded SSL private key", [](common_params & params, const std::string & value) { params.ssl_file_key = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE")); add_opt(common_arg( {"--ssl-cert-file"}, "FNAME", "path to file a PEM-encoded SSL certificate", [](common_params & params, const std::string & value) { params.ssl_file_cert = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE")); add_opt(common_arg( {"--chat-template-kwargs"}, "STRING", string_format("sets additional params for the json template parser"), [](common_params & params, const std::string & value) { auto parsed = json::parse(value); for (const auto & item : parsed.items()) { params.default_template_kwargs[item.key()] = item.value().dump(); } } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS")); add_opt(common_arg( {"-to", "--timeout"}, "N", string_format("server read/write timeout in seconds (default: %d)", params.timeout_read), [](common_params & params, int value) { params.timeout_read = value; params.timeout_write = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT")); add_opt(common_arg( {"--threads-http"}, "N", string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http), [](common_params & params, int value) { params.n_threads_http = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP")); add_opt(common_arg( {"--cache-reuse"}, "N", string_format( "min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n" "[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse ), [](common_params & params, int value) { params.n_cache_reuse = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE")); add_opt(common_arg( {"--metrics"}, string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"), [](common_params & params) { params.endpoint_metrics = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS")); add_opt(common_arg( {"--props"}, string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"), [](common_params & params) { params.endpoint_props = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS")); add_opt(common_arg( {"--slots"}, string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), [](common_params & params) { params.endpoint_slots = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS")); add_opt(common_arg( {"--no-slots"}, "disables slots monitoring endpoint", [](common_params & params) { params.endpoint_slots = false; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS")); add_opt(common_arg( {"--slot-save-path"}, "PATH", "path to save slot kv cache (default: disabled)", [](common_params & params, const std::string & value) { params.slot_save_path = value; // if doesn't end with DIRECTORY_SEPARATOR, add it if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) { params.slot_save_path += DIRECTORY_SEPARATOR; } } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--jinja"}, "use jinja template for chat (default: disabled)", [](common_params & params) { params.use_jinja = true; } ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA")); add_opt(common_arg( {"--reasoning-format"}, "FORMAT", "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n" "- none: leaves thoughts unparsed in `message.content`\n" "- deepseek: puts thoughts in `message.reasoning_content`\n" "- deepseek-legacy: keeps `` tags in `message.content` while also populating `message.reasoning_content`\n" "(default: auto)", [](common_params & params, const std::string & value) { params.reasoning_format = common_reasoning_format_from_name(value); } ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK")); add_opt(common_arg( {"--reasoning-budget"}, "N", "controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)", [](common_params & params, int value) { if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); } params.reasoning_budget = value; } ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET")); add_opt(common_arg( {"--chat-template"}, "JINJA_TEMPLATE", string_format( "set custom jinja chat template (default: template taken from model's metadata)\n" "if suffix/prefix are specified, template will be disabled\n" "only commonly used templates are accepted (unless --jinja is set before this flag):\n" "list of built-in templates:\n%s", list_builtin_chat_templates().c_str() ), [](common_params & params, const std::string & value) { params.chat_template = value; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE")); add_opt(common_arg( {"--chat-template-file"}, "JINJA_TEMPLATE_FILE", string_format( "set custom jinja chat template file (default: template taken from model's metadata)\n" "if suffix/prefix are specified, template will be disabled\n" "only commonly used templates are accepted (unless --jinja is set before this flag):\n" "list of built-in templates:\n%s", list_builtin_chat_templates().c_str() ), [](common_params & params, const std::string & value) { params.chat_template = read_file(value); } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE")); add_opt(common_arg( {"--no-prefill-assistant"}, string_format( "whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n" "when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n" ), [](common_params & params) { params.prefill_assistant = false; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_PREFILL_ASSISTANT")); add_opt(common_arg( {"-sps", "--slot-prompt-similarity"}, "SIMILARITY", string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity), [](common_params & params, const std::string & value) { params.slot_prompt_similarity = std::stof(value); } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--lora-init-without-apply"}, string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"), [](common_params & params) { params.lora_init_without_apply = true; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--simple-io"}, "use basic IO for better compatibility in subprocesses and limited consoles", [](common_params & params) { params.simple_io = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(common_arg( {"--positive-file"}, "FNAME", string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()), [](common_params & params, const std::string & value) { params.cvector_positive_file = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(common_arg( {"--negative-file"}, "FNAME", string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()), [](common_params & params, const std::string & value) { params.cvector_negative_file = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(common_arg( {"--pca-batch"}, "N", string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch), [](common_params & params, int value) { params.n_pca_batch = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(common_arg( {"--pca-iter"}, "N", string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations), [](common_params & params, int value) { params.n_pca_iterations = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(common_arg( {"--method"}, "{pca, mean}", "dimensionality reduction method to be used (default: pca)", [](common_params & params, const std::string & value) { /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; } else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(common_arg( {"--output-format"}, "{md,jsonl}", "output format for batched-bench results (default: md)", [](common_params & params, const std::string & value) { /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; } else if (value == "md") { params.batched_bench_output_jsonl = false; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(common_arg( {"--log-disable"}, "Log disable", [](common_params &) { common_log_pause(common_log_main()); } )); add_opt(common_arg( {"--log-file"}, "FNAME", "Log to file", [](common_params &, const std::string & value) { common_log_set_file(common_log_main(), value.c_str()); } )); add_opt(common_arg( {"--log-colors"}, "[on|off|auto]", "Set colored logging ('on', 'off', or 'auto', default: 'auto')\n" "'auto' enables colors when output is to a terminal", [](common_params &, const std::string & value) { if (is_truthy(value)) { common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED); } else if (is_falsey(value)) { common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED); } else if (is_autoy(value)) { common_log_set_colors(common_log_main(), LOG_COLORS_AUTO); } else { throw std::invalid_argument( string_format("error: unkown value for --log-colors: '%s'\n", value.c_str())); } } ).set_env("LLAMA_LOG_COLORS")); add_opt(common_arg( {"-v", "--verbose", "--log-verbose"}, "Set verbosity level to infinity (i.e. log all messages, useful for debugging)", [](common_params & params) { params.verbosity = INT_MAX; common_log_set_verbosity_thold(INT_MAX); } )); add_opt(common_arg( {"--offline"}, "Offline mode: forces use of cache, prevents network access", [](common_params & params) { params.offline = true; } ).set_env("LLAMA_OFFLINE")); add_opt(common_arg( {"-lv", "--verbosity", "--log-verbosity"}, "N", "Set the verbosity threshold. Messages with a higher verbosity will be ignored.", [](common_params & params, int value) { params.verbosity = value; common_log_set_verbosity_thold(value); } ).set_env("LLAMA_LOG_VERBOSITY")); add_opt(common_arg( {"--log-prefix"}, "Enable prefix in log messages", [](common_params &) { common_log_set_prefix(common_log_main(), true); } ).set_env("LLAMA_LOG_PREFIX")); add_opt(common_arg( {"--log-timestamps"}, "Enable timestamps in log messages", [](common_params &) { common_log_set_timestamps(common_log_main(), true); } ).set_env("LLAMA_LOG_TIMESTAMPS")); // speculative parameters add_opt(common_arg( {"-td", "--threads-draft"}, "N", "number of threads to use during generation (default: same as --threads)", [](common_params & params, int value) { params.speculative.cpuparams.n_threads = value; if (params.speculative.cpuparams.n_threads <= 0) { params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency(); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-tbd", "--threads-batch-draft"}, "N", "number of threads to use during batch and prompt processing (default: same as --threads-draft)", [](common_params & params, int value) { params.speculative.cpuparams_batch.n_threads = value; if (params.speculative.cpuparams_batch.n_threads <= 0) { params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-Cd", "--cpu-mask-draft"}, "M", "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", [](common_params & params, const std::string & mask) { params.speculative.cpuparams.mask_valid = true; if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"-Crd", "--cpu-range-draft"}, "lo-hi", "Ranges of CPUs for affinity. Complements --cpu-mask-draft", [](common_params & params, const std::string & range) { params.speculative.cpuparams.mask_valid = true; if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) { throw std::invalid_argument("invalid range"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"--cpu-strict-draft"}, "<0|1>", "Use strict CPU placement for draft model (default: same as --cpu-strict)", [](common_params & params, int value) { params.speculative.cpuparams.strict_cpu = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"--prio-draft"}, "N", string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority), [](common_params & params, int prio) { if (prio < 0 || prio > 3) { throw std::invalid_argument("invalid value"); } params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"--poll-draft"}, "<0|1>", "Use polling to wait for draft model work (default: same as --poll])", [](common_params & params, int value) { params.speculative.cpuparams.poll = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"-Cbd", "--cpu-mask-batch-draft"}, "M", "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", [](common_params & params, const std::string & mask) { params.speculative.cpuparams_batch.mask_valid = true; if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi", "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)", [](common_params & params, const std::string & range) { params.speculative.cpuparams_batch.mask_valid = true; if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"--cpu-strict-batch-draft"}, "<0|1>", "Use strict CPU placement for draft model (default: --cpu-strict-draft)", [](common_params & params, int value) { params.speculative.cpuparams_batch.strict_cpu = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"--prio-batch-draft"}, "N", string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority), [](common_params & params, int prio) { if (prio < 0 || prio > 3) { throw std::invalid_argument("invalid value"); } params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"--poll-batch-draft"}, "<0|1>", "Use polling to wait for draft model work (default: --poll-draft)", [](common_params & params, int value) { params.speculative.cpuparams_batch.poll = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(common_arg( {"--draft-max", "--draft", "--draft-n"}, "N", string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max), [](common_params & params, int value) { params.speculative.n_max = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX")); add_opt(common_arg( {"--draft-min", "--draft-n-min"}, "N", string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min), [](common_params & params, int value) { params.speculative.n_min = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN")); add_opt(common_arg( {"--draft-p-split"}, "P", string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split), [](common_params & params, const std::string & value) { params.speculative.p_split = std::stof(value); } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT")); add_opt(common_arg( {"--draft-p-min"}, "P", string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min), [](common_params & params, const std::string & value) { params.speculative.p_min = std::stof(value); } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN")); add_opt(common_arg( {"-cd", "--ctx-size-draft"}, "N", string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx), [](common_params & params, int value) { params.speculative.n_ctx = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT")); add_opt(common_arg( {"-devd", "--device-draft"}, "", "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n" "use --list-devices to see a list of available devices", [](common_params & params, const std::string & value) { params.speculative.devices = parse_device_list(value); } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N", "number of layers to store in VRAM for the draft model", [](common_params & params, int value) { params.speculative.n_gpu_layers = value; if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n"); fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT")); add_opt(common_arg( {"-md", "--model-draft"}, "FNAME", "draft model for speculative decoding (default: unused)", [](common_params & params, const std::string & value) { params.speculative.model.path = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT")); add_opt(common_arg( {"--spec-replace"}, "TARGET", "DRAFT", "translate the string in TARGET into DRAFT if the draft model and main model are not compatible", [](common_params & params, const std::string & tgt, const std::string & dft) { params.speculative.replacements.push_back({ tgt, dft }); } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-ctkd", "--cache-type-k-draft"}, "TYPE", string_format( "KV cache data type for K for the draft model\n" "allowed values: %s\n" "(default: %s)", get_all_kv_cache_types().c_str(), ggml_type_name(params.speculative.cache_type_k) ), [](common_params & params, const std::string & value) { params.speculative.cache_type_k = kv_cache_type_from_str(value); } ).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT")); add_opt(common_arg( {"-ctvd", "--cache-type-v-draft"}, "TYPE", string_format( "KV cache data type for V for the draft model\n" "allowed values: %s\n" "(default: %s)", get_all_kv_cache_types().c_str(), ggml_type_name(params.speculative.cache_type_v) ), [](common_params & params, const std::string & value) { params.speculative.cache_type_v = kv_cache_type_from_str(value); } ).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT")); add_opt(common_arg( {"-mv", "--model-vocoder"}, "FNAME", "vocoder model for audio generation (default: unused)", [](common_params & params, const std::string & value) { params.vocoder.model.path = value; } ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--tts-use-guide-tokens"}, "Use guide tokens to improve TTS word recall", [](common_params & params) { params.vocoder.use_guide_tokens = true; } ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--tts-speaker-file"}, "FNAME", "speaker file path for audio generation", [](common_params & params, const std::string & value) { params.vocoder.speaker_file = value; } ).set_examples({LLAMA_EXAMPLE_TTS})); add_opt(common_arg( {"--diffusion-steps"}, "N", string_format("number of diffusion steps (default: %d)", params.diffusion.steps), [](common_params & params, int value) { params.diffusion.steps = value; } ).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); add_opt(common_arg( {"--diffusion-visual"}, string_format("enable visual diffusion mode (show progressive generation) (default: %s)", params.diffusion.visual_mode ? "true" : "false"), [](common_params & params) { params.diffusion.visual_mode = true; } ).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); add_opt(common_arg( {"--diffusion-eps"}, "F", string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps), [](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); add_opt(common_arg( {"--diffusion-algorithm"}, "N", string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)", params.diffusion.algorithm), [](common_params & params, int value) { params.diffusion.algorithm = value; } ).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); add_opt(common_arg( {"--diffusion-alg-temp"}, "F", string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp), [](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); add_opt(common_arg( {"--diffusion-block-length"}, "N", string_format("llada block length for generation (default: %d)", params.diffusion.block_length), [](common_params & params, int value) { params.diffusion.block_length = value; } ).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); add_opt(common_arg( {"--diffusion-cfg-scale"}, "F", string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale), [](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); add_opt(common_arg( {"--diffusion-add-gumbel-noise"}, "F", string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"), [](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); add_opt(common_arg( { "-lr", "--learning-rate" }, "ALPHA", string_format("adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)", (double) params.lr.lr0), [](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_FINETUNE })); add_opt(common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA", string_format("(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)", (double) params.lr.lr_min), [](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_FINETUNE })); add_opt(common_arg( {"-decay-epochs", "--learning-rate-decay-epochs"}, "ALPHA", string_format("(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)", (double) params.lr.decay_epochs), [](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_FINETUNE })); add_opt(common_arg( {"-wd", "--weight-decay"}, "WD", string_format("adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).", (double) params.lr.wd), [](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_FINETUNE })); add_opt(common_arg( {"-val-split", "--val-split"}, "FRACTION", string_format("fraction of data to use as validation set for training (default: %.2g).", (double) params.val_split), [](common_params & params, const std::string & value) { params.val_split = std::stof(value); } ).set_examples({ LLAMA_EXAMPLE_FINETUNE })); add_opt(common_arg( {"-epochs", "--epochs"}, "N", string_format("optimizer max # of epochs (default: %d)", params.lr.epochs), [](common_params & params, int epochs) { params.lr.epochs = epochs; } ).set_examples({ LLAMA_EXAMPLE_FINETUNE })); add_opt(common_arg( {"-opt", "--optimizer"}, "sgd|adamw", "adamw or sgd", [](common_params & params, const std::string & name) { params.optimizer = common_opt_get_optimizer(name.c_str()); if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) { throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd"); } } ).set_examples({ LLAMA_EXAMPLE_FINETUNE })); // presets add_opt(common_arg( {"--tts-oute-default"}, string_format("use default OuteTTS models (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF"; params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf"; params.vocoder.model.hf_repo = "ggml-org/WavTokenizer"; params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf"; } ).set_examples({LLAMA_EXAMPLE_TTS})); add_opt(common_arg( {"--embd-gemma-default"}, string_format("use default EmbeddingGemma model (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/embeddinggemma-300M-qat-q4_0-GGUF"; params.model.hf_file = "embeddinggemma-300M-qat-Q4_0.gguf"; params.port = 8011; params.n_ubatch = 2048; params.n_batch = 2048; params.n_parallel = 32; params.n_ctx = 2048*params.n_parallel; params.verbose_prompt = true; params.embedding = true; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--fim-qwen-1.5b-default"}, string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf"; params.port = 8012; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; params.n_cache_reuse = 256; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--fim-qwen-3b-default"}, string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf"; params.port = 8012; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; params.n_cache_reuse = 256; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--fim-qwen-7b-default"}, string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf"; params.port = 8012; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; params.n_cache_reuse = 256; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--fim-qwen-7b-spec"}, string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf"; params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF"; params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf"; params.port = 8012; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; params.n_cache_reuse = 256; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--fim-qwen-14b-spec"}, string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf"; params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF"; params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf"; params.port = 8012; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; params.n_cache_reuse = 256; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--fim-qwen-30b-default"}, string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF"; params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf"; params.port = 8012; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; params.n_cache_reuse = 256; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--gpt-oss-20b-default"}, string_format("use gpt-oss-20b (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/gpt-oss-20b-GGUF"; params.model.hf_file = "gpt-oss-20b-mxfp4.gguf"; params.port = 8013; params.n_ubatch = 2048; params.n_batch = 32768; params.n_parallel = 2; params.n_ctx = 131072*params.n_parallel; params.sampling.temp = 1.0f; params.sampling.top_p = 1.0f; params.sampling.top_k = 0; params.sampling.min_p = 0.01f; params.use_jinja = true; //params.default_template_kwargs["reasoning_effort"] = "\"high\""; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--gpt-oss-120b-default"}, string_format("use gpt-oss-120b (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/gpt-oss-120b-GGUF"; params.port = 8013; params.n_ubatch = 2048; params.n_batch = 32768; params.n_parallel = 2; params.n_ctx = 131072*params.n_parallel; params.sampling.temp = 1.0f; params.sampling.top_p = 1.0f; params.sampling.top_k = 0; params.sampling.min_p = 0.01f; params.use_jinja = true; //params.default_template_kwargs["reasoning_effort"] = "\"high\""; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--vision-gemma-4b-default"}, string_format("use Gemma 3 4B QAT (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/gemma-3-4b-it-qat-GGUF"; params.port = 8014; params.n_ctx = 0; params.use_jinja = true; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"--vision-gemma-12b-default"}, string_format("use Gemma 3 12B QAT (note: can download weights from the internet)"), [](common_params & params) { params.model.hf_repo = "ggml-org/gemma-3-12b-it-qat-GGUF"; params.port = 8014; params.n_ctx = 0; params.use_jinja = true; } ).set_examples({LLAMA_EXAMPLE_SERVER})); return ctx_arg; }