void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uint idx_m, const uint block, const uint end_k) { #if defined(DATA_A_F32) || defined(DATA_A_F16) #if LOAD_VEC_A == 8 const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; FLOAT_TYPE_VEC8 aa = FLOAT_TYPE_VEC8(data_a[idx]); buf_a[buf_idx ] = aa[0].xy; buf_a[buf_idx + 1] = aa[0].zw; buf_a[buf_idx + 2] = aa[1].xy; buf_a[buf_idx + 3] = aa[1].zw; #elif LOAD_VEC_A == 4 const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; FLOAT_TYPE_VEC4 aa = FLOAT_TYPE_VEC4(data_a[idx]); buf_a[buf_idx ] = aa.xy; buf_a[buf_idx + 1] = aa.zw; #else // LOAD_VEC_BATCH_A == 2 const uint idx = pos_a + col * p.stride_a + row * 2; const uint buf_idx = col * SHMEM_STRIDE + row; if (idx_m < p.M && block + row * 2 + 1 < end_k) { buf_a[buf_idx] = FLOAT_TYPE_VEC2(data_a[idx], data_a[idx + 1]); } else if (idx_m < p.M && block + row * 2 < end_k) { buf_a[buf_idx] = FLOAT_TYPE_VEC2(data_a[idx], 0.0f); } else { buf_a[buf_idx] = FLOAT_TYPE_VEC2(0.0f); } #endif #elif defined(DATA_A_BF16) #if LOAD_VEC_A == 4 const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; FLOAT_TYPE_VEC4 aa = FLOAT_TYPE_VEC4(TO_FLOAT_TYPE(data_a[idx])); buf_a[buf_idx ] = aa.xy; buf_a[buf_idx + 1] = aa.zw; #else // LOAD_VEC_BATCH_A == 2 const uint idx = pos_a + col * p.stride_a + row * 2; const uint buf_idx = col * SHMEM_STRIDE + row; if (idx_m < p.M && block + row * 2 + 1 < end_k) { buf_a[buf_idx] = FLOAT_TYPE_VEC2(TO_FLOAT_TYPE(data_a[idx]), TO_FLOAT_TYPE(data_a[idx + 1])); } else if (idx_m < p.M && block + row * 2 < end_k) { buf_a[buf_idx] = FLOAT_TYPE_VEC2(TO_FLOAT_TYPE(data_a[idx]), 0.0f); } else { buf_a[buf_idx] = FLOAT_TYPE_VEC2(0.0f); } #endif #elif defined(DATA_A_Q4_0) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + 2 * row; const uint ib = idx / 4; const uint iqs = idx & 0x03; const float d = float(data_a_packed16[ib].d); const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16); const vec4 v0 = (vec4(unpack8(vui & 0x0F0F0F0F)) - 8.0f) * d; const vec4 v1 = (vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) - 8.0f) * d; buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v0.xy); buf_a[buf_idx + 1] = FLOAT_TYPE_VEC2(v0.zw); buf_a[buf_idx + 8] = FLOAT_TYPE_VEC2(v1.xy); buf_a[buf_idx + 9] = FLOAT_TYPE_VEC2(v1.zw); #elif defined(DATA_A_Q4_1) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + 2 * row; const uint ib = idx / 4; const uint iqs = idx & 0x03; const float d = float(data_a_packed16[ib].d); const float m = float(data_a_packed16[ib].m); const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16); const vec4 v0 = vec4(unpack8(vui & 0x0F0F0F0F)) * d + m; const vec4 v1 = vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) * d + m; buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v0.xy); buf_a[buf_idx + 1 ] = FLOAT_TYPE_VEC2(v0.zw); buf_a[buf_idx + 8 ] = FLOAT_TYPE_VEC2(v1.xy); buf_a[buf_idx + 9 ] = FLOAT_TYPE_VEC2(v1.zw); #elif defined(DATA_A_Q5_0) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row; const uint ib = idx / 8; const uint iqs = idx & 0x07; const float d = float(data_a_packed16[ib].d); const uint uint_qh = uint(data_a_packed16[ib].qh[1]) << 16 | uint(data_a_packed16[ib].qh[0]); const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10); const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10); const uint vui = uint(data_a_packed16[ib].qs[iqs]); const vec4 v = (vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) - 16.0f) * d; buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v.xz); buf_a[buf_idx + 8] = FLOAT_TYPE_VEC2(v.yw); #elif defined(DATA_A_Q5_1) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row; const uint ib = idx / 8; const uint iqs = idx & 0x07; const float d = float(data_a_packed16[ib].d); const float m = float(data_a_packed16[ib].m); const uint uint_qh = data_a_packed16[ib].qh; const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10); const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10); const uint vui = uint(data_a_packed16[ib].qs[iqs]); const vec4 v = vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) * d + m; buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v.xz); buf_a[buf_idx + 8] = FLOAT_TYPE_VEC2(v.yw); #elif defined(DATA_A_Q8_0) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 8; const uint iqs = idx & 0x07; const float d = float(data_a_packed16[ib].d); const i8vec2 v0 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs])).xy; // vec4 used due to #12147 const i8vec2 v1 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs + 1])).xy; const vec4 v = vec4(v0.x, v0.y, v1.x, v1.y) * d; buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v.xy); buf_a[buf_idx + 1] = FLOAT_TYPE_VEC2(v.zw); #elif defined(DATA_A_Q2_K) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint qsi = (iqs / 64) * 16 + (iqs % 16); // 0..15 const uint scalesi = iqs / 8; // 0..15 const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6 const uvec2 qs = uvec2(unpack8(data_a_packed16[ib].qs[qsi])); const uint scales = data_a[ib].scales[scalesi]; const vec2 dm = vec2(data_a[ib].dm); const vec2 v = dm.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - dm.y * float(scales >> 4); buf_a[buf_idx] = FLOAT_TYPE_VEC2(v.xy); #elif defined(DATA_A_Q3_K) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint n = iqs / 64; // 0,1 const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..62 const uint hmi = (iqs % 16) * 2; // 0,2,4..30 const uint j = (iqs % 64) / 4; // 0..3 const uint is = iqs / 8; // 0..15 const uint halfsplit = ((iqs % 64) / 16); // 0,1,2,3 const uint qsshift = halfsplit * 2; // 0,2,4,6 const uint m = 1 << (4 * n + halfsplit); // 1,2,4,8,16,32,64,128 const int8_t us = int8_t(((data_a[ib].scales[is % 8] >> (4 * int(is / 8))) & 0xF) | (((data_a[ib].scales[8 + (is % 4)] >> (2 * int(is / 4))) & 3) << 4)); const float dl = float(data_a[ib].d) * float(us - 32); buf_a[buf_idx] = FLOAT_TYPE_VEC2(dl * float(int8_t((data_a[ib].qs[qsi ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi ] & m) != 0) ? 0 : 4)), dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4))); #elif defined(DATA_A_Q4_K) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint n = iqs / 32; // 0,1,2,3 const uint b = (iqs % 32) / 16; // 0,1 const uint is = 2 * n + b; // 0..7 const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126 const vec2 loadd = vec2(data_a[ib].d); const uint scidx0 = (is < 4) ? is : (is + 4); const uint scidx1 = (is < 4) ? is : (is - 4); const uint scidxmask1 = (is < 4) ? 0x30 : 0xC0; const uint scidxshift1 = (is < 4) ? 0 : 2; const uint mbidx0 = is + 4; const uint mbidx1 = (is < 4) ? is + 4 : is; const uint mbidxmask0 = (is < 4) ? 0xF : 0xF0; const uint mbidxshift0 = (is < 4) ? 0 : 4; const uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0; const uint mbidxshift1 = (is < 4) ? 0 : 2; const uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1)); const uint8_t mbyte = uint8_t((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0 | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1)); const float d = loadd.x * sc; const float m = -loadd.y * mbyte; buf_a[buf_idx] = FLOAT_TYPE_VEC2(fma(d, float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF), m), fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF), m)); #elif defined(DATA_A_Q5_K) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint n = iqs / 32; // 0,1,2,3 const uint b = (iqs % 32) / 16; // 0,1 const uint is = 2 * n + b; // 0..7 const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126 const uint qhi = (iqs % 16) * 2; // 0,2,4..30 const uint8_t hm = uint8_t(1 << (iqs / 16)); const vec2 loadd = vec2(data_a[ib].d); const uint scidx0 = (is < 4) ? is : (is + 4); const uint scidx1 = (is < 4) ? is : (is - 4); const uint scidxmask1 = (is < 4) ? 0x30 : 0xC0; const uint scidxshift1 = (is < 4) ? 0 : 2; const uint mbidx0 = is + 4; const uint mbidx1 = (is < 4) ? is + 4 : is; const uint mbidxmask0 = (is < 4) ? 0xF : 0xF0; const uint mbidxshift0 = (is < 4) ? 0 : 4; const uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0; const uint mbidxshift1 = (is < 4) ? 0 : 2; const uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1)); const uint8_t mbyte = uint8_t(((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0) | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1)); const float d = loadd.x * sc; const float m = -loadd.y * mbyte; buf_a[buf_idx] = FLOAT_TYPE_VEC2(fma(d, float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0), m), fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0), m)); #elif defined(DATA_A_Q6_K) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint n = iqs / 64; // 0,1 const uint b = (iqs % 64) / 32; // 0,1 const uint is_b = (iqs % 16) / 8; // 0,1 const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6 const uint is = 8 * n + qhshift + is_b; // 0..15 const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126 const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62 const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]); buf_a[buf_idx] = FLOAT_TYPE_VEC2(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32), dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32)); #elif defined(DATA_A_IQ1_S) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 32; // 8 values per idx const uint ib32 = (idx % 32) / 4; // 0..7 const uint ib8 = idx % 32; const float d = float(data_a[ib].d); const uint qh = data_a[ib].qh[ib32]; const uint qs = data_a[ib].qs[ib8]; const float dl = d * (2 * bitfieldExtract(qh, 12, 3) + 1); const float delta = ((qh & 0x8000) != 0) ? -IQ1S_DELTA : IQ1S_DELTA; const int16_t grid = int16_t(iq1s_grid[qs | (bitfieldExtract(qh, 3 * int(ib8 & 3), 3) << 8)]); [[unroll]] for (int k = 0; k < 4; ++k) { buf_a[buf_idx + k] = FLOAT_TYPE_VEC2(dl * (bitfieldExtract(grid, 4 * k , 2) + delta), dl * (bitfieldExtract(grid, 4 * k + 2, 2) + delta)); } #elif defined(DATA_A_IQ1_M) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 32; // 8 values per idx const uint ib8 = idx % 32; const uint ib16 = ib8 / 2; const uint16_t[4] scales = data_a[ib].scales; const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12; const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x); const uint sc = scales[ib8 / 8]; const uint qs = data_a[ib].qs[ib8]; const uint qh = data_a[ib].qh[ib16] >> (4 * (ib8 & 1)); const float dl = d * (2 * bitfieldExtract(sc, 3 * int(ib16 & 3), 3) + 1); const float delta = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA; const int16_t grid = int16_t(iq1s_grid[qs | ((qh & 7) << 8)]); [[unroll]] for (int k = 0; k < 4; ++k) { buf_a[buf_idx + k] = FLOAT_TYPE_VEC2(dl * (bitfieldExtract(grid, 4 * k , 2) + delta), dl * (bitfieldExtract(grid, 4 * k + 2, 2) + delta)); } #elif defined(DATA_A_IQ2_XXS) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 32; // 8 values per idx const uint ib32 = (idx % 32) / 4; // 0..7 const uint ib8 = idx % 4; const float d = float(data_a[ib].d); const uint qs = data_a[ib].qs[8 * ib32 + ib8]; const uint signs = pack32(u8vec4( data_a[ib].qs[8*ib32 + 4], data_a[ib].qs[8*ib32 + 5], data_a[ib].qs[8*ib32 + 6], data_a[ib].qs[8*ib32 + 7] )); const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + (signs >> 28))); const uint32_t sign7 = bitfieldExtract(signs, 7 * int(ib8), 7); const uint sign = sign7 | (bitCount(sign7) << 7); const uvec2 grid = iq2xxs_grid[qs]; const vec4 grid0 = vec4(unpack8(grid.x)); const vec4 grid1 = vec4(unpack8(grid.y)); buf_a[buf_idx ] = db * FLOAT_TYPE_VEC2((sign & 1) != 0 ? -grid0.x : grid0.x, (sign & 2) != 0 ? -grid0.y : grid0.y); buf_a[buf_idx + 1] = db * FLOAT_TYPE_VEC2((sign & 4) != 0 ? -grid0.z : grid0.z, (sign & 8) != 0 ? -grid0.w : grid0.w); buf_a[buf_idx + 2] = db * FLOAT_TYPE_VEC2((sign & 16) != 0 ? -grid1.x : grid1.x, (sign & 32) != 0 ? -grid1.y : grid1.y); buf_a[buf_idx + 3] = db * FLOAT_TYPE_VEC2((sign & 64) != 0 ? -grid1.z : grid1.z, (sign & 128) != 0 ? -grid1.w : grid1.w); #elif defined(DATA_A_IQ2_XS) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 32; // 8 values per idx const uint ib32 = (idx % 32) / 4; // 0..7 const uint ib8 = idx % 4; // 0..3 const float d = float(data_a[ib].d); const uint scale = (data_a[ib].scales[ib32] >> (2 * (ib8 & 2))) & 0xf; const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + scale)); const uint qs = data_a[ib].qs[4 * ib32 + ib8]; const uint sign7 = qs >> 9; const uint sign = sign7 | (bitCount(sign7) << 7); const uvec2 grid = iq2xs_grid[qs & 511]; const vec4 grid0 = vec4(unpack8(grid.x)); const vec4 grid1 = vec4(unpack8(grid.y)); buf_a[buf_idx ] = db * FLOAT_TYPE_VEC2((sign & 1) != 0 ? -grid0.x : grid0.x, (sign & 2) != 0 ? -grid0.y : grid0.y); buf_a[buf_idx + 1] = db * FLOAT_TYPE_VEC2((sign & 4) != 0 ? -grid0.z : grid0.z, (sign & 8) != 0 ? -grid0.w : grid0.w); buf_a[buf_idx + 2] = db * FLOAT_TYPE_VEC2((sign & 16) != 0 ? -grid1.x : grid1.x, (sign & 32) != 0 ? -grid1.y : grid1.y); buf_a[buf_idx + 3] = db * FLOAT_TYPE_VEC2((sign & 64) != 0 ? -grid1.z : grid1.z, (sign & 128) != 0 ? -grid1.w : grid1.w); #elif defined(DATA_A_IQ2_S) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 32; // 8 values per idx const uint ib8 = idx % 32; // 0..31 const uint ib32 = ib8 / 4; // 0..7 const uint scale = (data_a[ib].scales[ib32] >> (2 * (ib8 & 2))) & 0xf; const uint qs = data_a[ib].qs[ib8]; const uint qh = data_a[ib].qh[ib32]; const uint qhshift = 2 * (ib8 % 4); const uint sign = data_a[ib].qs[QUANT_K / 8 + ib8]; const float d = float(data_a[ib].d); const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + scale)); const uvec2 grid = iq2s_grid[qs | ((qh << (8 - qhshift)) & 0x300)]; const vec4 grid0 = vec4(unpack8(grid.x)); const vec4 grid1 = vec4(unpack8(grid.y)); buf_a[buf_idx ] = db * FLOAT_TYPE_VEC2((sign & 1) != 0 ? -grid0.x : grid0.x, (sign & 2) != 0 ? -grid0.y : grid0.y); buf_a[buf_idx + 1] = db * FLOAT_TYPE_VEC2((sign & 4) != 0 ? -grid0.z : grid0.z, (sign & 8) != 0 ? -grid0.w : grid0.w); buf_a[buf_idx + 2] = db * FLOAT_TYPE_VEC2((sign & 16) != 0 ? -grid1.x : grid1.x, (sign & 32) != 0 ? -grid1.y : grid1.y); buf_a[buf_idx + 3] = db * FLOAT_TYPE_VEC2((sign & 64) != 0 ? -grid1.z : grid1.z, (sign & 128) != 0 ? -grid1.w : grid1.w); #elif defined(DATA_A_IQ3_XXS) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 64; // 4 values per idx const uint iqs = idx % 64; // 0..63 const uint is = QUANT_K / 4 + 4 * (iqs / 8); // 8 values const float d = float(data_a[ib].d); const uint qs = data_a[ib].qs[iqs]; const uint signs = pack32(u8vec4( data_a[ib].qs[is+0], data_a[ib].qs[is+1], data_a[ib].qs[is+2], data_a[ib].qs[is+3] )); const float db = d * 0.5 * (0.5 + (signs >> 28)); const uint32_t sign7 = bitfieldExtract(signs, 7 * (int(iqs / 2) % 4), 7); const uint sign = (sign7 | (bitCount(sign7) << 7)) >> (4 * (idx % 2)); const uint grid = iq3xxs_grid[qs]; const vec4 v = db * vec4(unpack8(grid)); buf_a[buf_idx ] = FLOAT_TYPE_VEC2((sign & 1) != 0 ? -v.x : v.x, (sign & 2) != 0 ? -v.y : v.y); buf_a[buf_idx + 1] = FLOAT_TYPE_VEC2((sign & 4) != 0 ? -v.z : v.z, (sign & 8) != 0 ? -v.w : v.w); #elif defined(DATA_A_IQ3_S) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 64; // 4 values per idx const uint iqs = idx % 64; // 0..63 const uint iqh = iqs / 8; const float d = float(data_a[ib].d); const uint qs = data_a[ib].qs[iqs]; const uint qh = data_a[ib].qh[iqh]; const int8_t sign = int8_t(data_a[ib].signs[iqs / 2] >> (4 * (idx % 2))); const uint scale = data_a[ib].scales[iqs / 16]; const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(sign << 1, sign))); const float db = d * (1 + 2 * ((scale >> (4 * (iqh & 1))) & 0xf)); const uint32_t grid = iq3s_grid[qs | ((qh << (8 - (iqs % 8))) & 256)]; const vec4 v = db * vec4(unpack8(grid)); buf_a[buf_idx ] = FLOAT_TYPE_VEC2((sign & 1) != 0 ? -v.x : v.x, (sign & 2) != 0 ? -v.y : v.y); buf_a[buf_idx + 1] = FLOAT_TYPE_VEC2((sign & 4) != 0 ? -v.z : v.z, (sign & 8) != 0 ? -v.w : v.w); #elif defined(DATA_A_IQ4_XS) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2; const uint ib = idx / 128; // 2 values per idx const uint ib32 = (idx % 128) / 16; // 0..7 const uint iq = 16 * ib32 + 2 * (idx % 8); const uint sl = (data_a[ib].scales_l[ib32/2] >> (4 * (ib32 & 1))) & 0xF; const uint sh = ((data_a[ib].scales_h) >> (2 * ib32)) & 3; const uint qshift = (idx & 8) >> 1; u8vec2 qs = u8vec2(data_a[ib].qs[iq], data_a[ib].qs[iq + 1]); qs = (qs >> qshift) & uint8_t(0xF); const float d = float(data_a[ib].d); const vec2 v = d * float(int(sl | (sh << 4)) - 32) * vec2(kvalues_iq4nl[qs.x], kvalues_iq4nl[qs.y]); buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v.xy); #elif defined(DATA_A_IQ4_NL) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row; const uint ib = idx / 8; const uint iqs = idx & 0x07; const FLOAT_TYPE d = FLOAT_TYPE(data_a_packed16[ib].d); const uint vui = uint(data_a_packed16[ib].qs[iqs]); buf_a[buf_idx ] = d * FLOAT_TYPE_VEC2(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[bitfieldExtract(vui, 8, 4)]); buf_a[buf_idx + 8] = d * FLOAT_TYPE_VEC2(kvalues_iq4nl[bitfieldExtract(vui, 4, 4)], kvalues_iq4nl[vui >> 12]); #elif defined(DATA_A_MXFP4) const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row; const uint buf_idx = col * SHMEM_STRIDE + row; const uint ib = idx / 8; const uint iqs = (idx & 0x07) * 2; const float d = e8m0_to_fp32(data_a[ib].e); const uint vui = uint(data_a[ib].qs[iqs]); const uint vui2 = uint(data_a[ib].qs[iqs+1]); buf_a[buf_idx ] = FLOAT_TYPE_VEC2(kvalues_mxfp4[vui & 0xF] * d, kvalues_mxfp4[vui2 & 0xF] * d); buf_a[buf_idx + 8] = FLOAT_TYPE_VEC2(kvalues_mxfp4[vui >> 4] * d, kvalues_mxfp4[vui2 >> 4] * d); #endif } #if !defined(MUL_MAT_ID) void load_b_to_shmem(const uint pos_b, const uint row, const uint col, const uint idx_n, const uint block, const uint end_k) { #if LOAD_VEC_B == 8 // Not supported for b_type bf16 because bf16mat2x4 does not exist const uint idx = pos_b + col * p.stride_b / LOAD_VEC_B + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_B / 2; FLOAT_TYPE_VEC8 bb = FLOAT_TYPE_VEC8(data_b[idx]); buf_b[buf_idx + 0] = bb[0].xy; buf_b[buf_idx + 1] = bb[0].zw; buf_b[buf_idx + 2] = bb[1].xy; buf_b[buf_idx + 3] = bb[1].zw; #elif LOAD_VEC_B == 4 const uint idx = pos_b + col * p.stride_b / LOAD_VEC_B + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_B / 2; #if defined(DATA_B_BF16) FLOAT_TYPE_VEC4 bb = FLOAT_TYPE_VEC4(TO_FLOAT_TYPE(data_b[idx])); #else FLOAT_TYPE_VEC4 bb = FLOAT_TYPE_VEC4(data_b[idx]); #endif buf_b[buf_idx + 0] = bb.xy; buf_b[buf_idx + 1] = bb.zw; #else // LOAD_VEC_BATCH_B == 2 const uint idx = pos_b + col * p.stride_b + row * 2; const uint buf_idx = col * SHMEM_STRIDE + row; if (idx_n < p.N && block + row * 2 + 1 < end_k) { buf_b[buf_idx] = FLOAT_TYPE_VEC2(TO_FLOAT_TYPE(data_b[idx]), TO_FLOAT_TYPE(data_b[idx + 1])); } else if (idx_n < p.N && block + row * 2 < end_k) { buf_b[buf_idx] = FLOAT_TYPE_VEC2(TO_FLOAT_TYPE(data_b[idx]), 0.0f); } else { buf_b[buf_idx] = FLOAT_TYPE_VEC2(0.0f); } #endif } #else void load_b_to_shmem(const uint pos_b, const uint row, const uint col, const uint ic, const uint _ne1, const uint block, const uint end_k) { #if LOAD_VEC_B == 8 // Not supported for b_type bf16 because bf16mat2x4 does not exist const u16vec2 row_idx = row_ids[col]; const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_B / 2; FLOAT_TYPE_VEC8 bb = FLOAT_TYPE_VEC8(data_b[idx]); buf_b[buf_idx + 0] = bb[0].xy; buf_b[buf_idx + 1] = bb[0].zw; buf_b[buf_idx + 2] = bb[1].xy; buf_b[buf_idx + 3] = bb[1].zw; #elif LOAD_VEC_B == 4 const u16vec2 row_idx = row_ids[col]; const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + row; const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_B / 2; #if defined(DATA_B_BF16) FLOAT_TYPE_VEC4 bb = FLOAT_TYPE_VEC4(TO_FLOAT_TYPE(data_b[idx])); #else FLOAT_TYPE_VEC4 bb = FLOAT_TYPE_VEC4(data_b[idx]); #endif buf_b[buf_idx + 0] = bb.xy; buf_b[buf_idx + 1] = bb.zw; #else // LOAD_VEC_BATCH_B == 2 const uint row_i = ic * BN + col; const uint buf_idx = col * SHMEM_STRIDE + row; if (row_i < _ne1 && block + row * 2 + 1 < end_k) { const u16vec2 row_idx = row_ids[col]; const uint idx = pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + row * 2; buf_b[buf_idx] = FLOAT_TYPE_VEC2(TO_FLOAT_TYPE(data_b[idx]), TO_FLOAT_TYPE(data_b[idx + 1])); } else if (row_i < _ne1 && block + row * 2 < end_k) { const u16vec2 row_idx = row_ids[col]; const uint idx = pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + row * 2; buf_b[buf_idx] = FLOAT_TYPE_VEC2(TO_FLOAT_TYPE(data_b[idx]), 0.0f); } else { buf_b[buf_idx] = FLOAT_TYPE_VEC2(0.0f); } #endif } #endif