#include "common.cuh" #include "fattn-common.cuh" #include "fattn-tile-f16.cuh" #define FATTN_KQ_STRIDE_TILE_F16 64 template // D == head size #if !defined(GGML_USE_HIP) __launch_bounds__(nwarps*WARP_SIZE, 2) #endif // !defined(GGML_USE_HIP) static __global__ void flash_attn_tile_ext_f16( const char * __restrict__ Q, const char * __restrict__ K, const char * __restrict__ V, const char * __restrict__ mask, const char * __restrict__ sinks, const int * __restrict__ KV_max, float * __restrict__ dst, float2 * __restrict__ dst_meta, const float scale, const float max_bias, const float m0, const float m1, const uint32_t n_head_log2, const float logit_softcap, const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, const int32_t nb01, const int32_t nb02, const int32_t nb03, const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, const int32_t nb11, const int32_t nb12, const int64_t nb13, const int32_t nb21, const int32_t nb22, const int64_t nb23, const int32_t ne31, const int32_t ne32, const int32_t ne33, const int32_t nb31, const int32_t nb32, const int64_t nb33) { #if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE) // Skip unused kernel variants for faster compilation: #ifdef FP16_MMA_AVAILABLE NO_DEVICE_CODE; return; #endif // FP16_MMA_AVAILABLE if (use_logit_softcap && !(D == 128 || D == 256)) { NO_DEVICE_CODE; return; } //In this kernel Q, K, V are matrices while i, j, k are matrix indices. const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on. const int sequence = blockIdx.z / ne02; const int head = blockIdx.z - sequence*ne02; const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0); const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio)); const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0); const float * sinksf = (const float *) (sinks); const int stride_KV2 = nb11 / sizeof(half2); const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1); const half slopeh = __float2half(slopef); static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); __shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16]; half2 * KQ2 = (half2 *) KQ; __shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts. half kqmax[ncols/nwarps]; #pragma unroll for (int j0 = 0; j0 < ncols; j0 += nwarps) { kqmax[j0/nwarps] = -HALF_MAX_HALF; } half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}}; half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}}; // Convert Q to half2 and store in registers: __shared__ half2 Q_h2[ncols][D/2]; #pragma unroll for (int j0 = 0; j0 < ncols; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f); Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); } } __syncthreads(); const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11; for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) { // Calculate KQ tile and keep track of new maximum KQ values: half kqmax_new[ncols/nwarps]; #pragma unroll for (int j = 0; j < ncols/nwarps; ++j) { kqmax_new[j] = kqmax[j]; } #pragma unroll for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) { const int i_KQ = i_KQ_0 + threadIdx.y; #pragma unroll for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { const int k_KQ = k_KQ_0 + threadIdx.x; KV_tmp[i_KQ][k_KQ] = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; } } __syncthreads(); half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}}; #pragma unroll for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) { half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE]; half2 Q_k[ncols/nwarps]; #pragma unroll for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { const int i_KQ = i_KQ_0 + threadIdx.x; K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ]; } #pragma unroll for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { const int j_KQ = j_KQ_0 + threadIdx.y; Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ]; } #pragma unroll for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { #pragma unroll for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps]; } } } #pragma unroll for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { const int i_KQ = i_KQ_0 + threadIdx.x; #pragma unroll for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { const int j_KQ = j_KQ_0 + threadIdx.y; half sum; if (use_logit_softcap) { const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); sum = logit_softcap * tanhf(tmp.x + tmp.y); } else { sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); } sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum); KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum; } } __syncthreads(); #pragma unroll for (int j0 = 0; j0 < ncols; j0 += nwarps) { const int j = j0 + threadIdx.y; kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]); const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps])); kqmax[j0/nwarps] = kqmax_new[j0/nwarps]; #pragma unroll for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]); const half2 val = h2exp(diff); kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val; KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val; } #pragma unroll for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale; } } __syncthreads(); #pragma unroll for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) { const int k = k0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; KV_tmp[k][i] = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i]; } } __syncthreads(); #pragma unroll for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) { half2 V_k[(D/2)/WARP_SIZE][2]; half2 KQ_k[ncols/nwarps]; #pragma unroll for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i]; V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i]; } #pragma unroll for (int j0 = 0; j0 < ncols; j0 += nwarps) { const int j = j0 + threadIdx.y; KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2]; } #pragma unroll for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { #pragma unroll for (int j0 = 0; j0 < ncols; j0 += nwarps) { VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]); VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]); } } } __syncthreads(); } //Attention sink: adjust running max and sum once per head if (sinksf && blockIdx.y == 0) { const half sink = __float2half(sinksf[head]); #pragma unroll for (int j0 = 0; j0 < ncols; j0 += nwarps) { half kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink); kqmax_new_j = warp_reduce_max(kqmax_new_j); const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new_j)); kqmax[j0/nwarps] = kqmax_new_j; const half val = hexp(sink - kqmax[j0/nwarps]); kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale; if (threadIdx.x == 0) { kqsum[j0/nwarps].x = __hadd(__low2half(kqsum[j0/nwarps]), val); } #pragma unroll for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale; } } } float2 * dst2 = (float2 *) dst; #pragma unroll for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { const int j_VKQ = j_VKQ_0 + threadIdx.y; if (ic0 + j_VKQ >= ne01) { return; } half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]); kqsum_j = warp_reduce_sum((float)kqsum_j); const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y; #pragma unroll for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) { const int i0 = i00 + threadIdx.x; half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE]; if (gridDim.y == 1) { dst_val /= __half2half2(kqsum_j); } dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val); } if (gridDim.y != 1 && threadIdx.x == 0) { dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j); } } #else GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale, max_bias, m0, m1, n_head_log2, logit_softcap, ne00, ne01, ne02, ne03, nb01, nb02, nb03, ne10, ne11, ne12, ne13, nb11, nb12, nb13, nb21, nb22, nb23, ne31, ne32, ne33, nb31, nb32, nb33); NO_DEVICE_CODE; #endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE) } template void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * Q = dst->src[0]; switch (Q->ne[0]) { case 64: { constexpr int D = 64; constexpr int nwarps = 8; constexpr size_t nbytes_shared = 0; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16; launch_fattn (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false); } break; case 128: { constexpr int D = 128; constexpr int nwarps = 8; constexpr size_t nbytes_shared = 0; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16; launch_fattn (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false); } break; default: { GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128."); } break; } } void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * KQV = dst; const ggml_tensor * Q = dst->src[0]; const int32_t precision = KQV->op_params[3]; GGML_ASSERT(precision == GGML_PREC_DEFAULT); float logit_softcap; memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float)); if (Q->ne[1] <= 16) { constexpr int cols_per_block = 16; if (logit_softcap == 0.0f) { constexpr bool use_logit_softcap = false; launch_fattn_tile_f16_64_128(ctx, dst); } else { constexpr bool use_logit_softcap = true; launch_fattn_tile_f16_64_128(ctx, dst); } return; } constexpr int cols_per_block = 32; if (logit_softcap == 0.0f) { constexpr bool use_logit_softcap = false; launch_fattn_tile_f16_64_128(ctx, dst); } else { constexpr bool use_logit_softcap = true; launch_fattn_tile_f16_64_128(ctx, dst); } }