#include "ggml-impl.h" #include "opt-step-sgd.cuh" #include static __global__ void opt_step_sgd_f32( float * __restrict__ x, const float * __restrict__ g, const float * __restrict__ pars, const int64_t k) { const int64_t i = (int64_t) blockIdx.x*blockDim.x + threadIdx.x; if (i >= k) { return; } x[i] = x[i] * (1.0f - pars[0] * pars[1]) - pars[0] * g[i]; } static void opt_step_sgd_f32_cuda( float * x, const float * g, const float * __restrict__ pars, const int64_t k, cudaStream_t stream) { const dim3 block_dims(CUDA_OPT_STEP_SGD_BLOCK_SIZE, 1, 1); const dim3 block_nums((k + CUDA_OPT_STEP_SGD_BLOCK_SIZE - 1) / CUDA_OPT_STEP_SGD_BLOCK_SIZE, 1, 1); opt_step_sgd_f32<<>>(x, g, pars, k); } void ggml_cuda_opt_step_sgd(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src0_grad = dst->src[1]; const ggml_tensor * params = dst->src[2]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0_grad->type == GGML_TYPE_F32); GGML_ASSERT(params->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src0_grad)); GGML_ASSERT(ggml_is_contiguous(params)); GGML_ASSERT(ggml_are_same_shape(src0, src0_grad)); GGML_ASSERT(ggml_nelements(params) == 2); float * src0_d = (float *) src0->data; const float * src0_grad_d = (const float *) src0_grad->data; const float * params_d = (const float *) params->data; cudaStream_t stream = ctx.stream(); const int64_t ne = ggml_nelements(src0); opt_step_sgd_f32_cuda(src0_d, src0_grad_d, params_d, ne, stream); }