#include "models.h" llm_build_grok::llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } cur = build_norm(cur, model.layers[il].attn_out_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_out_norm", il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // MoE branch ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_GELU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(moe_out, "ffn_moe_out", il); if (model.layers[il].ffn_up) { ggml_tensor * ffn_out = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_GELU, LLM_FFN_PAR, il); cb(ffn_out, "ffn_out", il); cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2); cb(cur, "ffn_out", il); } else { cur = moe_out; } cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_post_norm", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cur = ggml_scale(ctx0, cur, hparams.f_logit_scale); // final logit soft-capping if (hparams.f_final_logit_softcapping) { cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping); cur = ggml_tanh(ctx0, cur); cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping); } cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }