#include "ggml-cuda/common.cuh" #include "roll.cuh" static __forceinline__ __device__ int64_t wrap_index(const int64_t idx, const int64_t ne) { if (idx < 0) { return idx + ne; } if (idx >= ne) { return idx - ne; } return idx; } static __global__ void roll_f32_cuda(const float * __restrict__ src, float * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03, const int s0, const int s1, const int s2, const int s3) { const int64_t idx = int64_t(blockDim.x) * blockIdx.x + threadIdx.x; const int64_t n_elements = ne00 * ne01 * ne02 * ne03; if (idx >= n_elements) { return; } const int64_t i0 = idx % ne00; const int64_t i1 = (idx / ne00) % ne01; const int64_t i2 = (idx / (ne00 * ne01)) % ne02; const int64_t i3 = (idx / (ne00 * ne01 * ne02)) % ne03; const int64_t d0 = wrap_index(i0 - s0, ne00); const int64_t d1 = wrap_index(i1 - s1, ne01); const int64_t d2 = wrap_index(i2 - s2, ne02); const int64_t d3 = wrap_index(i3 - s3, ne03); dst[i3 * (ne00 * ne01 * ne02) + i2 * (ne01 * ne00) + i1 * ne00 + i0] = src[d3 * (ne00 * ne01 * ne02) + d2 * (ne01 * ne00) + d1 * ne00 + d0]; } void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { int s0 = dst->op_params[0]; int s1 = dst->op_params[1]; int s2 = dst->op_params[2]; int s3 = dst->op_params[3]; const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *) dst->src[0]->data; float * dst_d = (float *) dst->data; GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(ggml_are_same_shape(dst->src[0], dst)); cudaStream_t stream = ctx.stream(); int64_t sz = (ne00 * ne01 * ne02 * ne03); int64_t num_blocks = (sz + CUDA_ROLL_BLOCK_SIZE - 1) / CUDA_ROLL_BLOCK_SIZE; roll_f32_cuda<<>>( src0_d, dst_d, ne00, ne01, ne02, ne03, s0, s1, s2, s3); }